第五章 交流电路的频率特性
第五章正弦交流电

0 ωt i d(UmSinω t) u=C dt =ω CUmcosω t (a) (b) =ω CUmSin(ω t+90°)=ImSin(ω t+90°) · I 由上式得: (1)i与u是同频率的正弦量。 (2)i超前u相位角。 · U (c) (3)u与i的有效值(或最大值)之比称为容抗。 XC=U/I=Um/Im=1/ω C=1/2∏fC 若电压U和C电容确定时,当f较高时,容抗XC较少,电容中通过的电流较 大,说明电容对高频电流的阻碍作用较小;当f较低时,容抗XC较大,电 容中通过的电流较小,说明电容对低频电流的阻碍作用较大;当f=0,即直 流XC=∞,电容可视为开路. (4)电压u与电流i的波形如图(b) (5)电压与电流相量之比称为复容抗,即
+j
• (2)相量图求。
8v
· U1 10v · U
00
ψ =23° ψ =-30°
6v · U2
+1
第三节电阻元件的正弦交流电路
• 一、电阻的伏安特性: • u=Ri • 设电流i=ImSinω t, 代人得 • u=Ri=RImSinω t=UmSinω t • 则可得,u与i的伏安特性如下: (1)u是与i同频同相的正弦电压。 • (2)u与i的幅值或有效值间是线性关 • 系其比值是线性电阻R,即 • Um/Im=U/I=R • (3)u与i的波形如图(b) 。 • (4)u与i伏安关系的相量形式为: · • I=Iej0°=I∠0°=I, ˙ U=Uej0°=U∠O°=U · U U ej0° U • ·= = = R
第四节电感元件的正弦交流电路
• 一、电感的伏安特性: di • u=-e=L dt • 设电流为参考正弦量代人得
• • • • • • • •
第5章 正弦交流电路

j I2 I
I1 +1
O
例2 相量图(三角形) 相量图(三角形)
j I I2
I1 +1
O
§5 – 3 单一参数的正弦交流电路
一、电阻元件 1. u – i 关系 R u i ωt u
i
相量表示
U=RI
I
U
2. 功率关系 p
P i ωt
p 始终 ,R——耗能元件 始终>0, 耗能元件 P = UI = RI2 = U2/R
导纳角 φY = tg-1 (BC –XL )/G ——阻抗角 阻抗角 当 BC >BL 时,φY > 0 ,i 超前于 u ——容性 容性 当 BC <BL 时, φY < 0 ,u 超前于 i ——感性 感性 当 BC= BL 时, φY = 0 ,u 、i 同相 ——纯电导 纯电导
二、相量图——两个三角形 相量图 两个三角形 I= IG + IL + IC I U IG G IL L IC C
G
பைடு நூலகம்
φY
U IG IB I IL IC
φY
y
B
例题
R=30
XL=40
U=120V
求各电流及Y 求各电流及 设U = 120
I
0o V
U
R
IR
IL
L
IR = U/R= 4 A IL = U/jXL = – j3A I = IR+ IL =4 – j3A=5 – 37oA Y=1/R – j/XL=1/30 – j1/40(S) I IR IL U
2. 频率特性 XL=ωL ω U 相量表示 U = j(ωL) I I
3. 功率关系 p ωt
RC电路的频率特性

RC电路的频率特性RC电路的频率特性:=1/(2πfC),在RC串联的正弦交流电路中,由于电容元件的容抗XC它与电源的频率有关,所以当输入端外加电压保持幅值不变而频率变化时,其容抗将随频率的变化而变化,从而引起整个电路的阻抗发生变化,电路中的电流及在电阻和电容元件上所引起的电压也会随频率而改变。
我们将RC电路中的电流及各部分电压与频率的关系称为RC电路的频率特性。
截止频率是用来说明电路频率特性指标的一个特殊频率。
当保持电路输入信号的幅度不变,改变频率使输出信号降至最大值的0.707倍时,此频率即为截止频率。
截止频率公式1f0=RCπ2高通滤波器07.0T f ()(a )实验电路(b )幅频特性曲线图1高通滤波器低通滤波器07.0T f ()(a )实验电路(b )幅频特性曲线图2低通滤波器RC串并联选频电路10(a )实验电路(b )幅频特性曲线图3 选频电路实验目的(1)测量RC电路的频率特性,并画出其频率特性曲线。
(2)掌握测量截止频率的方法。
(3)进一步熟悉相关实验仪器的用途及使用方法。
图1 高通滤波器提示:在测量过程中应注意,在频率改变的同时用电压测试仪监测输入电压幅度,使之保持恒定。
表1 高通滤波器实验数据计算值:f 0= 测量值:f 0=图2低通滤波器表2 低通滤波器实验数据计算值:f 0= 测量值:f 0=图3选频电路1表3选频电路实验数据= 测量值:f0=计算值:f3 注意事项实验中,请同学们注意:(1)信号发生器输出端不可短路(2)测量交流高频信号电压有效值,须使用测试仪SCOPE 功能,不允许使用万用表(3)在测试仪的监测下,始终保持信号发生器输出电压有效值不变。
第五章_频域特性

,半径为
1 2
。
16
A()—— 幅频特性;G(j)的模,它等于稳态 的输出分 量与输入分量幅值之比. ()—— 相频特性;G(j)的幅角,它等于稳态输出分 量与输入分量的相位差。 G ( j ) U()—— 实频特性; j V V()—— 虚频特性; V ( ) 都是的函数,之间的 A ( ) 关系用矢量图来表示。
10
R
极坐标图
c 1 G ( j ) r R C j 2
r (t )
i (t )
C
c (t )
1 1 j T e
j a rc ta n T
e
j
1 1 j T
1 /( 2 T )
1/ 1 T
G ( j ) 9 0
由于幅角是常数,且幅值随ω增大而减小。因此,积分 环节是一条与虚轴负段相重合的直线。
14
典型环节的极坐标图
4. 惯性环节
G ( j ) 1 1 j T 1 1 ω T
2 2
1 1 T
2 2
j
T
1 T
2 2
G jω
取三个特殊点
(RC=T)
5
即为无源RC网络的频率特性。
频率特性的性质
1、与传递函数一样,频率特性也是一种数学模型。 它描述了系统的内在特性,与外界因素无关。当系统 结构参数给定,则频率特性也完全确定。 2、频率特性是一种稳态响应。 系统稳定的前提下求得的,不稳定系统则无法直接观 察到稳态响应。从理论上讲,系统动态过程的稳态分量总 可以分离出来,而且其规律并不依赖于系统的稳定性。因 此,我们仍可以用频率特性来分析系统的稳定性、动态性 能、稳态性能等。 3、系统的稳态输出量与输入量具有相同的频率。 当频率改变,则输出、输入量的幅值之比A()和相 位移()随之改变。这是系统中的储能元件引起的。
交流电路的特性与分析

交流电路的特性与分析交流电路是我们日常生活中经常接触的电路类型之一。
而如何了解交流电路的特性并对其进行适当的分析,对于解决实际问题和提高我们的理解能力都是十分重要的。
本文将从交流电路的基本特性、电路的分析与计算等方面进行探讨。
一、交流电路的基本特性在交流电路中,电流和电压都是随着时间变化的。
在正弦交流电路中,电流和电压的变化可以表示为:i(t) = Ipeak*sin(ωt)u(t) = Upeak*sin(ωt + θ)其中,Ipeak和Upeak分别表示电流和电压的峰值,ω为角频率,θ为相位差。
在交流电路中,角频率ω以Hz单位表示,而周期T则用秒表示。
ω和T的关系为ω = 2π/T。
在交流电路中,还存在着交流电阻、电感及电容等元件。
交流电阻与直流电路中的电阻类似,只是在交流电路中它的阻值随着时间变化。
而电感则可以看作是具有阻抗的元件,它的阻抗与频率有关,当频率越高时阻抗越大;而电容则相反,当频率越高时阻抗越小。
二、电路的分析与计算在对交流电路进行分析时,常用的方法有以下几种:1. 直接法直接法是一种最简单的分析方法,它通过对电路的每个元件进行分析,最终得出整个电路的性质。
对于一些简单的电路,直接法是非常适用的。
2. 欧姆定律法欧姆定律法是直接法的一种特殊形式,它通过应用欧姆定律和基尔霍夫电流定律进行分析。
在分析中,我们可以根据欧姆定律求出每个元件上的电流,再根据基尔霍夫电流定律求得整个电路的电流。
3. 等效电路法等效电路法是将复杂的电路简化为等效电路的方式进行分析。
在等效电路中,使用一些等效元件来代替原来的元件,以此来简化电路。
这种方法比直接法更快捷有效,而且容易理解。
4. 相量法相量法在分析交流电路时非常有用,它将交流信号表示为复数形式,并将复数表示为矢量形式。
我们可以利用矢量的加法、减法和乘法等运算,来分析电路中各元件的电流、电压等物理量。
在对电路进行计算时,我们通常需要使用一些数学工具,如复数运算、傅里叶级数展开、拉普拉斯变换等。
电工基础(第五版)第五章

第五章 单相交流电
平均值与最大值之间的关系是: 有效值与平均值之间的关系是:
第五章 单相交流电
3.相位与相位差 (1)相位
在式e=Emsin (ω t+φ 0)中, (ω t+φ 0)表示正弦量随时间
变化的角度,称为相位角,也称相位或相角,它反映了交流电变
化的进程。式中φ 0 为正弦量在t=0时的相位,称为初相位,也
率,用QL表示,单位是乏(Var)。其计算式为
第五章 单相交流电
无功功率并不是“无用功率”,“无功”的实质是指 能量发生互逆转换,而元件本身并没有消耗电能。实际上 许多具有电感性质的电动机装、变压器等设备都是根据 电磁转换原理利用无功功率工作的。
第五章 单相交流电
三、纯电容交流电路 1.电流与电压的关系 (1)在纯电容交流电路中,电压比电流滞后90°,即电流比
电容器的结构示意
第五章 单相交流电
电容器的类型和符号
电力电容器 单连可变电容器
电解电容器
金属膜电容器 涤纶电容器
双连可变电容器
瓷片电容器 云母电容器
微调电容器
第五章 单相交流电
2.电容器的主要参数
(1)电容量 电容量是指电容器储存电荷的能力,也简称电容,它在数值上等 于电容器在单位电压作用下所储存的电荷量,即
表示,如Em、Um、Im。
从正弦交流电的反向最大值到正向最大值称为峰—峰值。
第五章 单相交流电
从正弦交流电的反向最大值到正向最大值称为峰—峰值。
交流电的峰值和峰—峰值
第五章 单相交流电
(2)有效值
交流电的有效值
让交流电和稳恒直流电分别通过大小相同的电阻,如果在交流电的
一个周期内它们产生的热量相等,而这个稳恒直流电的电压是U ,电流 是I, U 、I 称为相应交流电的有效值。有效值用大写字母表示,如E、 U 、I。
第五章 交流电动机的工作原理及特性

第五章交流电动机的工作原理及特性5.1、有一台四极三相异步电动机,电源电压的频率为50H Z,满载时电动机的转差率为0.02,求电动机的同步转速、转子转速和转子电流频率。
解:同步转速:n0=60f/p=60*50/2=1500r/min因为转差率:S=(n0-n)/ n0,所以转子转速:n=(1-S) n0=(1-0.02)*1500=1470r/min转子电流频率:f2=Sf1=0.02*50=1H Z5.2、将三相异步电动机接三相电源的三根引线中的两根对调,此电动机是否会反转?为什么?答:如果将定子绕组接至电源的三相导线中的任意两根线对调,例如将B,C两根线对调,即使B相与C相绕组中电流的相位对调,此时A相绕组内的电流导前于C相绕组的电流2π/3,因此旋转方向也将变为A-C-B向逆时针方向旋转,与未对调的旋转方向相反。
5.3、有一台三相异步电动机,其n N=1470r/min,电源频率为50H Z。
设在额定负载下运行,试求:①定子旋转磁场对定子的转速;②定子旋转磁场对转子的转速;③转子旋转磁场对转子的转速;④转子旋转磁场对定子的转速;⑤转子旋转磁场对定子旋转磁场的转速。
解:因为三相异步电动机中的旋转磁场是由定子电流和转子电流共同产生的,故定子旋转磁场与转子旋转磁场实际上是同一个磁场。
因为转子转速n N=1470r/min,电源频率为50H Z,所以同步转速n0=1500r/min。
①定子旋转磁场对定子的转速为1500 r/min;②定子旋转磁场对转子的转速为30 r/min;③转子旋转磁场对转子的转速为30 r/min;④转子旋转磁场对定子的转速为1500 r/min;⑤转子旋转磁场对定子旋转磁场的转速为0 r/min。
5.4、当三相异步电动机的负载增加时,为什么定子电流会随转子电流的增加而增加?答:因为负载增加n减小,转子与旋转磁场间的相对转速( n0-n)增加,转子导体被磁感线切割的速度提高,于是转子的感应电动势增加,转子电流也增加,定子的感应电动势因为转子的电流增加而变大,所以定子的电流也随之提高。
2024年电工电子技术基础教案

2024年电工电子技术基础教案一、教学内容本节课选自《电工电子技术基础》教材第五章“交流电路”,具体内容包括:5.1节“交流电基本概念”,5.2节“交流电的表示方法”,5.3节“单一参数的交流电路”,5.4节“RLC并联交流电路”。
二、教学目标1. 理解并掌握交流电的基本概念,能正确区分交流电与直流电。
2. 学会使用正弦波表示交流电,并能推导出交流电的有效值、平均值等参数。
3. 能够分析单一参数的交流电路,了解RLC并联交流电路的特性。
三、教学难点与重点重点:交流电的基本概念、表示方法以及单一参数的交流电路分析。
难点:正弦波表示交流电的推导过程,RLC并联交流电路的特性分析。
四、教具与学具准备1. 教具:示波器、信号发生器、电阻、电感、电容等元器件。
2. 学具:计算器、草稿纸、教材、笔记本。
五、教学过程1. 实践情景引入(5分钟)利用示波器展示正弦波交流电信号,引导学生思考交流电与日常生活用电的关系。
2. 理论讲解(15分钟)讲解交流电的基本概念、表示方法,引导学生掌握正弦波交流电的参数计算。
3. 例题讲解(15分钟)分析单一参数的交流电路,RLC并联交流电路的特性,讲解计算方法。
4. 随堂练习(10分钟)布置相关练习题,让学生现场计算,巩固所学知识。
梳理本节课的知识点,强调重点和难点。
六、板书设计1. 黑板左侧:交流电基本概念、表示方法。
2. 黑板右侧:单一参数的交流电路分析、RLC并联交流电路特性。
七、作业设计1. 作业题目:(1)解释交流电与直流电的区别。
(2)计算正弦波交流电的有效值、平均值。
(3)分析RLC并联交流电路的频率特性。
2. 答案:(1)交流电:电流方向随时间改变;直流电:电流方向恒定不变。
(2)有效值:峰值除以根号2;平均值:0.637倍峰值。
(3)RLC并联交流电路的频率特性:低频时,电感L主导;高频时,电容C主导。
八、课后反思及拓展延伸1. 反思:关注学生对交流电基础知识的掌握,及时解答学生疑问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若 φu φi ,则 φ 0 则称电路发生谐振。 研究谐振目的: 充分利用谐振的特征,预防谐振产生的危害 按发生谐振的电路的不同
串联谐振 并联谐振
二、串联谐振
1 谐振条件
U Z = R + j ( X L - X C ) = Z e jφ I
+
I - jX C
R + j(wL - w 3 L2C - wR 2C ) ( - w LC) + w R C 1
2 2 2 2 2
+
+
L
C
w0 =?
ui
_
R
_
uo
谐振特征 (w 0 ) 0
w0 L - w03L2C - w0 R 2C 0
w0
1 R2 - 2 LC L
w0 或f 0 2
tg
φ2 arctan(1000 1000 ) arctan() -38.52o ω2 2 628
1 1.32 2.12 ( ) cos(-38.52 ) 2 15.92 / 2 2
R
+ _ +
ui
C
uo
_
P2 I 2U 2 cos 2
= 0.14W
③ n =4时
U o4m
ω j ωC
幅频特性
1 ω j ωC
0dB
ωc
0dB
ωc
20dB/十倍频程
-20dB/十倍频程
ω 1+ j ωC
20dB/十倍频程 0dB
1 1+ j ω ωC
0dB
ωc
ωc
-20dB/十倍频程
H ( jw )
10 jw (1 + jw / 10)
幅频特性: 20 lg H ( jw ) 20 lg 10 + 20 lg 20lgH(ω) 40dB 20dB 0dB 0.1 1
w - arctan(wRC )
2. 对数频率特性——波特图
对数坐标
ω—— 对数 20 log 10 H w dB w
0 .1
1
dB
1 0.1
十倍频下降20dB
0
-20 0.1 1 10
w wC
w wC w wC
10
w
0.1 1 10
H w 0.995 0.707 0.099
H(ω)
+ ui H (ω) =
R
C
+ uo -
13
0.707 3
1 32 + ( ω ω0 2 - ) ω0 ω
ω ω0 ω ω φ(ω) = -arctan 0 3 1 (ω0 = ) RC ωC1 、 ωC2 转折频率
2 4
0
ωC1 ~ ωC2 通频带宽 BW
- 4 - 2
波特图
10倍频下降45
jw / 100 H ( jw ) (1 + jw )(1 + jw / 100)
20lgH(w)/dB 20dB 0dB -20dB 1
1 1 + jw
10 100
jω / 100
w
1 1 + jw / 100
-40dB
20dB/10倍频程
-20dB/10倍频程
§5.3 交流电路中的谐振
1 1 + 20 lg jw 1 + jw / 10
ω
10
-20dB/十倍频程 -40dB/十倍频程
-20dB/十倍频程
H ( jw )
10 jw (1 + jw / 10)
相频特性: φ(ω)
(w ) - 90 - arctan
w
10
1
10
100 ω
- 45 - 90 - 180
R =10, C =100 F, f =100Hz, U on
1000 U in , φn arctan() -3 1 + j10 w n ωn
ui ( 3.18 + 5 sinw1t - 2.12 cos 2w1t - 0.42 cos 4w1t + ...)
uo 2 1.32 cos( 2w1t - 51.47 ) V
-1 wL - w
3 2
L C - wR 2C R
方法二: QL QC
UC 2 I L2 X L XC
Ui R 2 + w0 2 L2
w0 L U i 2w0C
2
已知:R =10,C =100 F,f =100Hz 及 ui 求:uo,Uo,P
1 1 + jwRC
1 jw 1+
dB
1 设wC RC
H (w ) 1
0.1ωc ωc
10 ωc
ω
wC
-20dB/十倍频程
1 + w wC 2
w - arctanw wC
ωc 界限频率(截止频率、转折频率)
0 ~ωc 通频带宽BW
R
w
H (w )
- 5 - 45 - 85
- 45 - 90
10倍频下降45
3. 波特图的折线画法 1
1 + (wRC )2
w - arctan(wRC )
三、低通滤波电路
R
+ + C _
R
ui
_
uo
+
U_ i
- jX C
+
_U o
H ( jw )
U o ( jw ) U i ( jw )
R C
L
C
+ ui _
+ uo _
+ ui _
+
R
uo _
阶数愈高,滤波效果愈好。
•
应用
起还原信号作用
+
= 非正弦
四、高通滤波电路
+
C
+
R
w , XC
1 , Uo wC
w , X C , Uo
ui _
uo _
H(w)
wC
1 RC( 转折频率)
ωC ~ 通频带宽 BW
C
H ( jw )
2
jX L
+ R
Zபைடு நூலகம்
R + ( X L - XC )
2
UC
_ + _ UL
R
U
_
UR
_
Z min
2) 电流最大
I max
U R
1/wC
|Z|
wL
R
0
ωo ω
ωo
ω
3)
U L + UC 0
UL
U UR
UC
UR U
U C- + U L +
R =10, C =100 F, f =100Hz, U on
1000 U in , φn arctan() -3 1 + j10 w n ωn
ui ( 3.18 + 5 sinw1t - 2.12 cos 2w1t - 0.42 cos 4w1t + ...)
① n =1时
ui4 0.42cos 4w1t V U i4m 0.420o = = = 0.16 - 68.3o V -3 1 + j10 ω4 1 + j4 0.628
I
+
U 0
-
LC整体来看,对外相当于“短路”。
U UL X LI X L R
UC X C I X C
XC X L R
U R
串联谐振也称电压谐振。
3 品质因数 Q
U L UC w0 L 1 Q U U R w 0CR
BW ω2 - ω1
jX L
U
_
R
即 X L XC 或 ω ω0
1 LC
时, ----谐振角频率
1/wC
X L - XC φ = arctan =0 R 1 L w0 L w 0C C ---- 特征阻抗
wL
R
0
ωo
ω
2 谐振特征
1) 电阻性
+
I - jX C
+
Q , BW ;
I
ω1
ω2
三、并联谐振
1 谐振条件 I 1 1 + + jwC i R jwL U 1 1 - j( - wC ) R wL
即 X L X C 或 ω ω0 2 谐振特征
• 电阻性 +
I
Ui
_
IC
C
IL
L
+ IR
R
Uo
_
1 LC
U o1m
ui1 5 sinw1t V
+ _
R
+
U i1m 50o = = 4.23 - 32.13o V 1 + j10 -3 w1 1 + j0.628
ui
C
uo
_
uo1 4.23 sin( w1t - 32.13 ) V
φ1 arctan(XC1
1000 1000 ) arctan() -57.87o ω1 2 3.14 100 1 1 15.92Ω -4 ω1C 2 3.14 100 10