41B 投影与视图
中考数学真题分类汇编及解析(四十二)投影与视图

(2022•玉林中考)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【解析】选B.这个几何体的主视图如下:(2022·安徽中考)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【解析】选A.从上面看,是一个矩形.(2022•江西中考)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.【解析】选A.如图,它的俯视图为:(2022•云南中考)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥(2022•丽水中考)如图是运动会领奖台,它的主视图是()A.B.C.D.【解析】选A.从正面看,可得如下图形:(2022•绍兴中考)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【解析】选B.由图可得,题目中图形的主视图是(2022•舟山中考)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A. B. C. D.【解析】选B.从正面看底层是三个正方形,上层左边是一个正方形.(2022•温州中考)某物体如图所示,它的主视图是()A.B.C.D.【解析】选D.某物体如图所示,它的主视图是:(2022•扬州中考)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【解析】选B.由于主视图与左视图是三角形,俯视图是正方形,故该几何体是四棱锥(2022•凉山州中考)如图所示的几何体的主视图是()A.B.C.D.【解析】选C.从正面看,底层是三个小正方形,上层的中间是一个小正方形(2022•泸州中考)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【解析】选C.从物体上面看,底层有一个正方形,上层有四个正方形(2022•湖州中考)如图是由四个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【解析】选B.观察该几何体发现:从正面看到的应该是三个正方形,上面1个左齐,下面2个(2022•宁波中考)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【解析】选C.根据题意可得,球体的俯视图是一个圆,圆柱的俯视图也是一个圆,圆柱的底面圆的半径大于球体的半径,如图,,故C选项符合题意(2022•黄冈中考)某几何体的三视图如图所示,则该几何体是()A.圆锥 B.三棱锥 C.三棱柱 D.四棱柱【解析】选C.由三视图可知,这个几何体是直三棱柱.(2022•宜宾中考)如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是()A.B.C.D.【解析】选D.从正面看,底层是三个相邻的小正方形,上层的右边是一个小正方形.(2022•十堰中考)下列几何体中,主视图与俯视图的形状不一样的几何体是()A. B. C. D.【解析】选C.A.正方体的主视图与俯视图都是正方形,故A不符合题意;B.圆柱的主视图与俯视图都是长方形,故B不符合题意;C.圆锥的主视图是等腰三角形,俯视图是一个圆和圆心,故C符合题意;D.球体的主视图与俯视图都是圆形,故D不符合题意.(2022•武汉中考)如图是由4个相同的小正方体组成的几何体,它的主视图是()A. B. C. D.【解析】选A.从正面看共有两层,底层三个正方形,上层左边是一个正方形.A.主视图和左视图 B.主视图和俯视图C.左视图和俯视图 D.三个视图均相同【解析】选A.该几何体的三视图中完全相同的是主视图和左视图,均为半圆;俯视图是一个实心圆. (2022•邵阳中考)下列四个图形中,圆柱体的俯视图是()A.B.C.D.【解析】选D.从圆柱体的上面看到是视图是圆,则圆柱体的俯视图是圆(2022•天津中考)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解析】选A.从正面看底层是两个正方形,左边是三个正方形,则立体图形的主视图是A中的图形(2022•嘉兴中考)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【解析】选C.由图可知主视图为:(2022•衡阳中考)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.【解析】选A.从正面看,可得如下图形,(2022•湘潭中考)下列几何体中,主视图是三角形的是()A.B.C.D.【解析】选A.A、圆锥的主视图是三角形,故此选项符合题意;B、圆柱的主视图是长方形,故此选项不符合题意;C、球的主视图是圆,故此选项不符合题意;D、三棱柱的主视图是长方形,中间还有一条实线,故此选项不符合题意(2022•眉山中考)下列立体图形中,俯视图是三角形的是()A.B.C.D.【解析】选B.A、圆锥体的俯视图是圆,故此选项不合题意;B、三棱柱的俯视图是三角形,故此选项符合题意;C、球的俯视图是圆,故此选项不合题意;D、圆柱体的俯视图是圆,故此选项不合题意(2022•台州中考)如图是由四个相同的正方体搭成的立体图形,其主视图是()A.B.C.D.【解析】选A.根据题意知,几何体的主视图为:(2022•福建中考)如图所示的圆柱,其俯视图是()A.B.C.D.【解析】选A.根据题意可得,圆柱的俯视图如图,.大致形状是()A.B.C.D.【解析】选B.根据长鼓舞中使用的“长鼓”内腔挖空,两端相通,可知俯视图中空,两端鼓口为圆形可知俯视图是圆形.(2022•雅安中考)下列几何体的三种视图都是圆形的是()A.B.C.D.【解析】选B.A选项的主视图和左视图为长方形,A选项不符合题意;∵B选项的三种视图都是圆形,∴B选项符合题意;∵C选项的主视图和左视图为等腰三角形,∴C选项不符合题意;∵D选项主视图和左视图为等腰梯形,∴D选项不符合题意;综上,B选项的三种视图都是圆形.(2022•贺州中考)下面四个几何体中,主视图为矩形的是()A.B.C.D.【解析】选A.A.长方体的主视图是矩形,故本选项符合题意;B.三棱锥的主视图是三角形,故本选项不符合题意;C.圆锥的主视图是等腰三角形,故本选项不符合题意;D.圆台的主视图是等腰梯形,故本选项不符合题意.(2022•黔东南州中考)一个物体的三视图如图所示,则该物体的形状是()A.圆锥B.圆柱C.四棱柱D.四棱锥【解析】选B.根据主视图和左视图都是长方形,判定该几何体是个柱体,∵俯视图是个圆,∴判定该几何体是个圆柱.(2022•哈尔滨中考)六个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【解析】选D.由题意知,题中几何体的左视图为:(2022•齐齐哈尔中考)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个【解析】选C.由俯视图知最下面一层一定有四个小正方体,由主视图和左视图知上面一层至少有处在对角的位置上的两个小正方体,故搭成该几何体的小正方体的个数最少为6个.(2022•鄂州中考)如图所示的几何体是由5个完全相同的小正方体组成,它的主视图是()A.B.C.D.【解析】选A.该几何体的主视图为:一共有两列,左侧有三个正方形,右侧有一个正方形,所以A选项正确.(2022•仙桃中考)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱【解析】选A.根据三视图可知,该立体图形是长方体.(2022•威海中考)如图所示的几何体是由五个大小相同的小正方体搭成的.其俯视图是()A.B.C.D.【解析】选B.从上面看,底层左边是一个小正方形,上层是三个小正方形.(2022•梧州中考)在下列立体图形中,主视图为矩形的是()A.B.C.D.【解析】选A.A.圆柱的主视图是矩形,故本选项符合题意;B.球的主视图是圆,故本选项不符合题意;C.圆锥的主视图是等腰三角形,故本选项不符合题意;D.三棱锥形的主视图是三角形,故本选项不符合题意.(2022•龙东中考)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【解析】选B.从俯视图课看出前后有三层,从左视图可看出最后面有2层高,中间最高是2层,要是最多就都是2层,最前面的最高是1层,所以最多的为:2+2×2+1×2=8.(2022•长沙中考)如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是()A.B.C.D.【解析】选B.根据主视图的概念,可知选B.(2022•包头中考)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【解析】选B.由俯视图可以得出几何体的左视图为:则这个几何体的左视图的面积为4.(2022•赤峰中考)下面几何体的俯视图是()A.B.C.D.【解析】选B.几何体的俯视图是:(2022·遵义中考)如图是《九章算术》中“堑堵”的立体图形,它的左视图为()A.B.C.D.【解析】选A.这个“堑堵”的左视图如图:(2022•海南中考)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的主视图是()A.B.C.D.【解析】选C.这个组合体的主视图如图:(2022·牡丹江中考)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.【解析】选A.由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面.(2022•吉林中考)吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美.如图是一款松花砚的示意图,其俯视图为()A.B.C.D.【解析】选C.俯视图是从物体的上面向下面投射所得的视图,由松花砚的示意图可得其俯视图为C.(2022•抚顺中考)如图是由6个完全相同的小正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.【解析】选B.从上面看,底层右边是一个小正方形,上层是三个小正方形.(2022•杭州中考)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=9.88m.【解析】∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.(2022•北部湾中考)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是134米.【解析】据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为4268=2x,解得:x=134.答案:134.。
投影与视图经典测试题含答案

【答案】B
【解析】
【分析】
【详解】
解:正六棱柱的俯视图为正六边形.
故选B.
考点:简单几何体的三视图.
10.一个几何体的三视图如图所示,其中主视图与左视图都是边长为 的等边三角形,则这个几何体的侧面展开图的面积为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.
A. B. C. D.
【答案】A
【解析】
【分析】
根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
【详解】
该几何体的俯视图是: .
故选A.
【点睛】
此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
18.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为( )
从上面看从左往右3列正方形的个数依次为1,1,2,
∴C是该物体的俯视图;
没有出现的是选项B.
故选B.
13.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )
A. B. C. D.
【答案】B
【解析】
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中
【详解】
从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,
D、主视图为 ,俯视图为 ,故此选项错误;
故选:B.
【点睛】
九年级数学下册 第二十九章 投影与视图本章总结提升

2021/12/11
第六页,共二十七页。
本章 总结 (běn zhānɡ) 提升
【归纳总结】投影在实际生活中有许多应用,解决这类问题,往往 利用相似三角形的知识进行计算,有时需要通过(tōngguò)作垂线构造相 似三角形求解.
2021/12/11
第七页,共二十七页。
本章 总结 (běn zhānɡ) 提升
知识框架
2021/12/11
第三页,共二十七页。
本章 总结 (běn zhānɡ) 提升
整合提升
问题1 投影的应用
什么是中心投影、平行投影?什么是正投影?当平面图形分别(fēnbié)平行、 倾斜和垂直于投影面时,它的正投影有什么性质?
2021/12/11
第四页,共二十七页。
本章总结(zǒngjié)提升
例1 如图29-T-1(示意图),某同学想测量旗杆的高度,他在某一时刻 测得1米长的竹竿竖直放置时的影长为1.5米,在同一时刻测量旗杆的影
长时,因旗杆靠近(kàojìn)一楼房,影子不全落在地面上,有一部分落在
墙上,他测得落在地面上的影长为15米,留在墙上的影高为2米,求
旗杆的高度.
2021/12/11
同一灯光下的影子如图29-T-8,请在图中画出光源的位置,并画出
旗杆EF在该灯光下的影子.
2021/12/11
第二十二页,共二十七页。
图29-T-8
本章 总结 (běn zhānɡ) 提升
解:连接A′A并延长,连接C′C并延长,两延长线相交于点O,连接OE并延长与地面相 交于点E′,则FE′为旗杆(qígān)EF在该灯光下的影子,如图29-T-9.
2021/12/11
第十八页,共二十七页。
北师大版九年级上册数学第五章 投影与视图含答案

北师大版九年级上册数学第五章投影与视图含答案一、单选题(共15题,共计45分)1、将两个长方体如图放置,则所构成的几何体的左视图可能是()A. B. C. D.2、如图所示的几何体的俯视图是()A. B. C. D.3、下列几何体的主视图与其他三个不同的是()A. B. C. D.4、如图,由两块长方体叠成的几何体,从正面看它所得到的平面图形是()A. B. C. D.5、如图的几何体,左视图是()A. B. C. D.6、如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()A. B. C. D.7、如图是由六个棱长为1的小正方体搭成的几何体,其俯视图的面积为()A.3B.4C.5D.68、墨墨在操场上练习双杠的过程中发现双杠的两横杠在地上的影子()A.相交B.互相垂直C.互相平行D.无法确定9、下列水平放置的几何体中,俯视图是矩形的是()A.圆柱B.长方体C.三棱柱D.圆锥10、下列四幅图,表示两棵树在同一时刻阳光下的影子是()A. B. C. D.11、如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是()A. B. C.D.12、如图,是一个几何体的三视图,则这个几何体是()A. B. C.D.13、如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A. B. C. D.14、如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()A. B. C. D.15、如图,甲、乙两图是分别由五个棱长为“1”的立方块组成的两个几何体,它们的三视图中完全一致的是()A.主视图B.左视图C.俯视图D.三视图都一致二、填空题(共10题,共计30分)16、下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为________.17、如图是两棵小树在同一时刻的影子,请问它们的影子是在________ 光线下形成的(填“灯光”或“太阳”).18、小刚身高180cm,他站立在阳光下的影子长为90cm,他把手臂竖直举起,此时影子长为115cm,那么小刚的手臂超出头顶________cm.19、某校九年级科技小组,利用日晷原理,设计制造了一台简易的“日晷”,并在一个阳光明媚的日子里记录了不同时刻晷针的影长,其中10:00时的影长被墨水污染.请根据规律,判断10:00时,该晷针的影长是________cm.时间7:00 8:00 9:00 10:00 11:00 12:00影长10cm 7.5cm 5.5cm ●cm 3cm 2.5cm20、小莉身高,在阳光下的影子长为,在同一时刻站在阳光下,小林的影长比小莉长,则小林的身高为________ .21、如图,在一面与地面垂直的围墙的同侧有一根高13米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了侧得电线杆的高度,数学兴趣小组的同学进行了如下测量某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为3米,落在地面上的影子BF的长为8米,而电信杆落在围墙上的影子GH的长度为米,落在地面上的银子DH的长为6米,依据这些数据,该小组的同学计算出了电线杆的高度是________米22、两根不一样长的木杆垂直竖立在地面上,若它们的影长相等,则此时的投影是________.(填写“平行投影”或“中心投影”)23、太阳光形成的投影是________ ,手电筒、电灯泡所发出的光线形成的投影是________ .24、如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,点B、B′的坐标分别为(3,1)、(6,2)若点A的坐标为(,3),则点A′的坐标为________.25、如图,从不同方向看下面左图中的物体,右图中三个平面图形分别是从哪个方向看到的?①________;②________;③________.三、解答题(共5题,共计25分)26、由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).27、如图,路灯(P点)距地面8米,身高1.6米的小明从距离路灯的底部(O 点)20米的A点,沿OA所在的直线行走14米到B点(B点在A点的左边)时,身影的长度是变长了还是变短了?变长或变短了多少米?28、综合实践活动课,某数学兴趣小组在学校操场上想测量汽车的速度,利用如下方法:如图,小王站在点处A(点A处)和公路(l)之间竖立着一块30m 长且平行于公路的巨型广告牌(DE).广告牌挡住了小王的视线,请在图中画出视点A的盲区,并将盲区内的那段公路记为BC.已知一辆匀速行驶的汽车经过公路BC段的时间是3s,已知小王到广告牌和公路的距离是分别是40m和80m,求该汽车的速度?29、如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB是多少?30、如图,分别从正面、左面、上面观察这个立体图形,请画出你看到的平面图形.参考答案一、单选题(共15题,共计45分)1、C2、D3、C4、A5、B6、A7、B8、C9、B10、B11、C12、B13、D14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、30、。
北师大版九年级上册数学《投影》投影与视图说课教学课件

2. 平行投影与中心投影的联系与区别:
知1-讲
项目
定义
类型
平行投影
平行光线所形成的投 影
中心投影 从一个点发出的光线的投影
光源
太阳等
点光源(如电灯等)
区别
投影线 投影方向
联系
平行 相同
相交于一点
由点光源与物体的相对位置确 定
都是投影现象,都是物体在光线照射下形成影子
知1-讲
例1 某校墙边有甲、乙两根木杆,已知乙木杆的高度为1.5 m.
1. 中心投影的定义:从一个点(点光源)发出的光线形成的投知2-讲
影称为中心投影.
2.中心投影的性质:
(1)光源、物体边缘上的点以及它在影子上的对应点在同一
条直线上,根据同一灯光下两个不同物体及它们的影
子,可以确定灯(点光源)所在的位置;
(2)若物体相对于光源的方向改变,则该物体的影子的方向
也发生变化,但光源、物体的影子始终分居在物体的两
(来自《点拨》)
知2-练
1 下列现象属于中心投影的有( ) ①小孔成像;②皮影戏;③手影;④放电影.
2 A.1个 B.2个 C.3个 D.4个 小华自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与 屏幕平行,光源到幻灯片的距离是30 cm,幻灯片到屏幕的距离 是1.5 m,幻灯片上小树的高度是10 cm,则屏幕上小树的高度 是( ) A.50 cm B.60 cm C.500 cm D.600 cm
知识点 2 中心投影
知2-导
做一做
取一些长短不等的小棒和三角形、矩形纸片,用手电筒 (或台灯)等去照射这些小棒和纸片,观察它们的影子. (1)固定手电筒(或台灯),改变小棒或纸片的摆放位置
和方向,它们的影子分别发生了什么变化? (2)固定小棒或纸片,改变手电筒(或台灯)的摆放位置
九年级数学 投影与视图

投影与视图一、中心投影1.定义:从一个点发出的光线形成的投影称为中心投影。
2.性质:(1)图形中的两个三角形相似;(2)物体上的点,影子上的对应点及光源在一条直线上。
3.特点:(1)等高物体垂直地面放置:①离点光源越近,影子越短;②离点光源越远,影子越长。
(2)等长物体平行地面放置:①离点光源越近,影子越长;②离点光源越远,影子越短4.作图方法:(1)物体上的点和影子上的对应点的连线交于同一点,这点即为光源;(2)过光源和物体的顶端作一条直线与投影面的交点与物体底端的线段就是影长。
二、平行投影1.定义:平行光线形成的投影称为平行投影。
当平行光线与投影面垂直时,这种投影称为正投影2.一天中影子移动方向:正西到正北到正东三、视图1.三视图包括:主视图、左视图、俯视图。
注:在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线;用尺子准确量出长度画图.2.三视图的排列规则:俯视图放在主视图的下面,长度与主视图的长度一样;左视图放在主视图的右面,高度与主视图的高度一样,宽度与俯视图的宽度一样,可简记为“长对正;高平齐;宽相等”。
注意:在画物体的三视图时,对看得见的轮廓线用实线画出,而对看不见的轮廓线要用虚线画出。
在三种视图中,主视图反映的是物体的长和高、俯视图反映的是物体的长和宽、左视图反映的是物体的宽和高.因此,在画三视图时,对应部分的长要相等。
一.中心投影定义1.中心投影的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的2.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化3.下列投影中,是中心投影的是()4.同一灯光下两个物体的影子可以是()A.同一方向B.不同方向C.相反方向D.以上都有可能5.下列结论正确的有( )①同一时刻,同一公园内的物体在阳光照射下,影子的方向是相同的;②物体在任何光线照射下影子的方向都是相同的;③物体在路灯照射下,影子的方向与路灯的位置有关;④物体在光线照射下,影子的长短仅与物体的长短有关.A.个B.个C.个D.个6.某舞台的上方共挂有a,b,c,d四个照明灯,当只有一个照明灯亮时,一棵道具树和小玲在照明灯光下的影子如图所示,则亮的照明灯是()A.a灯B.b灯C.c灯D.d灯7.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向上远移时,圆形阴影的大小的变化情况是( )A. 越来越小 B .越来越大 C .大小不变 D .不能确定二.中心投影相关求长度1. 身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子________(填“长”或“短”)2. 如图,小芸用灯泡O 照射一个矩形相框ABCD ,在墙上形成影子''''D C B A .现测得 OA=20cm ,cm OA 50' ,相框ABCD 的面积为 80cm 2,则影子''''D C B A 的面积为_______.3. 小明在晚上由路灯A 走向路灯B ,当他走到P 处时,发现身后影子顶部正好触到路灯A 底部,当他再向前步行12米到达Q 时,发现影子的顶点正好接触到路灯B 的底部.已知小明的身高是1.6米,两个路灯的高度都是9.6m ,且AP=BQ=x 米.(1) 求两个路灯之间的距离;(2) 小明在两个路灯之间行走时,在两个路灯下的影长之和是否为定值?如果是定值,直接写出此定值,如果不是定值,求说明理由.4. 如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.三.中心投影相关作图1.路灯下站着小赵、小芳、小刚三人,小芳和小刚的影长如图,确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.2.学习投影之后,小刚、小雯利用灯光下自己的影子长度来测量一路灯的高度,如图,在同一时间,身高为1.6m的小刚(AB)的影子BC长3m,而小雯(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.(1) 请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G.(2) 求路灯灯泡的垂直高度GH.(3) 如果小刚沿线段BH向小雯(点H)走去,当小明走到BH中点'B处时,求其影子''CB的长.3.如图,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他在某一灯光下的影子为DA,继续按此速度行走2秒到达点F,此时他在同一灯光下的影子落在其身后的线段DF上,测得此时影长MF为1.2米;然后他将速度提高到原来的1.5倍,再行走2秒到达点H,他在同一灯光下的影子恰好是HB,图中线段CD,EF,GH表示小明的身高.(1)请在图中画出小明的影子MF;(2)若A,B两地相距12米,则小明原来的速度为.四.灯光下影子变化情况1.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子().A. 逐渐变短B. 逐渐变长C. 先变短后变长D. 先变长后变短2.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定3.小强的身高和小明的身高一样,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长4.如图所示,在一条笔直的小路上有一盏路灯,晚上小雷从点B处直走到点A处时,小雷在灯光照射下的影长y与行走的路程x之间的函数图象大致是()A.B. C.D.5.我们常用“y随x的增大而增大(或减小)”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A 经过路灯C 的正下方沿直线走到点B ,他与路灯C 的距离y 随他与点A 之间的距离x 的变化而变化.下列函数中y 与x 之间的变化关系,最有可能与上述情境类似的是( )A. y=x B .y=x+3 C .x y 3 D .y=(x-3)2+3 6.如图,路灯(P 点)距地面9米,身高1.5米的小云从距路灯的底部(O 点)20米的A 点,沿OA 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?五.平行投影定义及性质1.下列光线所形成是平行投影的是( )A .太阳光线B .台灯的光线C .手电筒的光线D .路灯的光线2.如图的Rt △ABC 绕直角边旋转一周,所得几何体的正投影是( )A .直角三角形B .等腰三角形C .等边三角形D .圆3.(五育月考)在一个晴朗的上午,乐乐拿着一块长方形木板在地面上形成的投影中不可能的是( )4.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是( )A .与窗户全等的矩形B .平行四边形C .比窗户略小的矩形D .比窗户略大的矩形5.圆形的物体在太阳光的投影下是( )A .圆形B .椭圆形C .线段D .以上都有可能6.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.7.把一个正六棱柱如右图水平放置,一束水平方向的平行光线照射此正六棱柱时的正投影是()六.阳光下影子变化情况1.在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为()A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律2.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③3.小华在上午8时,上午9时,上午10时,上午12时四次到室外的阳光下观察向日葵影子的变化情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时C.上午10时D.上午12时4.(12月志达月考)6.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④B.④①③②C.④②③①D.④③②①5.如图:公路旁有两个高度相等的路灯AB、CD.数学老师杨柳上午上学时发现高1米的木棒的影子为2米,此时路灯B在太阳光下的影子恰好落到里程碑E处,他自己的影子恰好落在路灯CD的底部C处.晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在里程碑E处.(1)在图中画出杨老师的位置,并画出光线,标明(太阳光、灯光).(2)杨老师身高为1.5米,他离里程碑E恰5米,求路灯高.6.如图(1)中间是一盏路灯,周围有一圈栏杆,图(2)(3)表示的是这些栏杆的影子,但没有画完,请你把图(2)(3)补充完整.七.与平行投影有关作图与计算1.如图,AB和DE是直立在地面上的两根立柱.AB=4m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为8m,请你计算DE的长.2. 某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上,(1)你在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=6米,CB=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.3.(17-18期末)花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们影子的规律。
(北师大版数学九上)第五章 投影与视图讲义

第五章投影与视图第4讲投影与视图一.知识梳理(一)投影【一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面】1.中心投影(1)定义:由同一点(点光源)发出的光线形成的投影叫做中心投影,如物体在灯泡发出的光照射下形成影子就是中心投影.【在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化;固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化】(2)中心投影具有以下特点:①中心投影的投影线交于一点;②一个点光源把一个图形照射到一个平面上,这个图形的影子就是它在这个平面上的中心投影;③平面为投影面,各射线为投影线;④空间图形经过中心投影后,直线变成直线,但平行线可能变成了可以相交的直线;⑤中心投影后的图形与原图形相比虽然改变较多,但直观性强,看起来与人的视觉效果一致;⑥如果一个平面图形所在的平面与投射面平行,那么中心投影后得到的图形与原图形也是平行的,并且中心投影后得到的图形与原图形相似.名师点金:中心投影的三个特点:(1)等高物体垂直地面放置:①离点光源越近,影子越短;②离点光源越远,影子越长.(2)等长物体平行地面放置:①离点光源越近,影子越长;②离点光源越远,影子越短,但不会小于物体本身的长度.(3)点光源、物体边缘的点以及其在物体的影子上的对应点在同一条直线上.2.平行投影(1)定义:在一束平行光线(如阳光)照射下形成的投影叫做平行投影。
【在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化】(2)分类平行投影法又分为斜投影法和正投影法。
①斜投影法:投射线倾斜于(<90°)投影面,所得投影称为斜投影,如图所示.②正投影法:投射线垂直于投影面,所得投影称为正投影,如图所示.(3)性质①不垂直于投影面的直线或线段的正投影仍是直线或线段;②垂直于投影面的直线或线段的正投影是点;倾斜于投影面的线段,其正投影仍为线段,但比实际长度要短.③垂直于投影面的平面图形的正投影是直线或线段的一部分.(4)特点①平行直线的投影仍是平行或重合直线.②平行于投射面的线段,它的投影与这条线段平行且相等.③与投影面平行的图形,它的投影与这个图形全等;倾斜于投影面的平面图形,其投影仍为一平面图形.④在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.名师点金:平行投影的特征及画法:(1)特征:①平行投影中,形成影子的光线是平行的,平行物体在地面上形成的影子平行或在同一直线上;②同一时刻,太阳光下,物高与影长成正比例;(2)画法:连接物体顶端与影子顶端得到形成影子的光线,过物体顶端作已知光线的平行线得到物体的影子.补充:在北半球,太阳一天中的朝向变化:东→东南→南→西南→西;在北半球,影子一天中的朝向变化和长短变化:朝向变化:西→西北→北→东北→东;长短变化:长→较长→短→较长→长.(二)三视图【能够正确反映物体长、宽、高尺寸的正投影工程图(主视图,俯视图,左视图三个基本视图)为三视图】•主视图—从正面看到的图左视图—从左面看到的图俯视图—从上面看到的图•画物体的三视图时,要符合如下原则:大小:长对正,高平齐,宽相等.•虚实:在画图时,看的见部分的轮廓通常画成实线,看不见部分的轮廓线通常画成虚线.二.实战演练考点一中心投影与平行投影(一)中心投影例1:(1)小刚走路时发现自己的影子越走越长,这是因为()A.从路灯下走开,离路灯越来越远B.走到路灯下,离路灯越来越近C.人与路灯的距离与影子长短无关D.路灯的灯光越来越亮(2)如图,一球吊在空中,当发光的手电筒由远及近时,落在竖直木板上的影子会逐渐______.例2:某公司的外墙壁贴的是反光玻璃,晚上两根木棒的影子如图(短木棒的影子是玻璃反光形成的),请确定图中路灯灯泡所在的位置.例3:如图所示,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米.求路灯A的高度AB.典例分析(二)平行投影例1:如图:(A)(B)(C)(D)是一天中四个不同时刻的木杆在地面上的影子,将它们按时间先后顺序进行排列,为______.例2:已知两个电线杆在太阳光下形成两条不同的线段,那么这两条线段可能______,也可能______.例3:春分这一天,小彬上午9:00出去,测量了自己的影长,出去一段时间后回来时,发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为______小时.例4:某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆影长时,因旗杆靠近一幢楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21米,留在墙上的影高为2米(如图),求旗杆的高度.例5:如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长2米,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),有一部分落在斜坡上(CD),他测得落在地面上影长为10米,留在斜坡上的影长为2米,∠DCE为45°,则旗杆的高度约为多少米?(参考数据:2≈1.4,3≈1.7)例6:如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12m,塔影长DE=18m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为____m.考点二视图例1:(1)如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是()(2)如图,图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则下列选项图是图2的俯视图是()例2:画出如图所示几何体的三视图.例3:根据如图所示的三种视图,画出相应的几何体.例4:如图,给出的是一个由若干相同的小正体搭成的立体图形的主视图和左视图,则图中最少有___个小正方体,最多有___个小正方体.1.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.变长B.变短C.先变长后变短D.先变短后变长2.某一同学在上午上学路上和下午放学路上都看不到自己的影子,则该同学的家在学校的() A.东边 B.南边 C.西边 D.北边3.正方形纸片在阳光下的投影不可能是下列那些?①正方形②矩形③菱形④梯形⑤线段⑥平行四边形4.下列图中是在太阳光下形成的影子的是()5.如图,是由三个相同的小正方体组成的几何体,该几何体的俯视图是()课后作业6.由若干个小正方体构成的几何体的主视图和左视图都是如图所示,则该几何体最多有_____个小正方体,最少有_____个小正方体.7.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()A.11.5米 B.11.75米C.11.8米D.12.25米8.画出如图所示几何体的三视图.9.根据如图所示的三种视图,你能想象出相应几何体的形状吗?(画出几何体的草图)10.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高,于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长,已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ,请你根据以上信息,求出小军身高BE的长(结果精确到0.01米)11.“未爱广场”旗杆AB旁边有一个半圆的时钟模型,如图,时钟的9点和3点的刻度线刚好和地面重合,半圆的半径2米,旗杆的底端A到钟面9点刻度C的距离为5米,一天小明观察到阳光下旗杆顶端B的影子刚好投到时钟的11点的刻度上,同时测得一米长的标杆的影长1.6米,求旗杆AB的高度?1.在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是()A.两竿都垂直于地面 B.两竿平行斜插在地上C.两根竿子不平行D.一根竿倒在地上2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长3.(1)如图,是一个由相同小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置上的小正方体的个数,则这个几何体的左视图是()(2)如图,正四棱锥的俯视图是选项中的()直击中考4.一个几何体的三视图如图所示,它的俯视图为菱形,,该几何体的侧面积是____cm².5.画出下列几何体的三视图6.已知某立体图形的三视图如下,请你画出这个立体图形.7.一天晚上,李明和张龙利用灯光下影子的长来测量一路灯D高度,如图,当李明走到点A 处时,张龙测得李明直立时身高AM与其影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m.求路灯的高CD的长.(结果精确到0.1m)。
投影与视图(知识点+题型分类练习)

投影与视图知识梳理【知识网络】【考点梳理】一、投影1.投影用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在平面叫做投影面.2.平行投影和中心投影由平行光线形成的投影是平行投影;由同一点(点光源)发出的光线形成的投影叫做中心投影.(1)平行投影:平行光线照射形成的投影(如太阳光线)。
当平行光线垂直投影面时叫正投影。
投影三视图都是正投影。
(2)中心投影:一点出发的光线形成的投影(如手电筒,路灯,台灯)3.正投影投影线垂直投影面产生的投影叫做正投影.要点诠释:正投影是平行投影的一种.二、物体的三视图1.物体的视图当我们从某一角度观察一个物体时,所看到的图象叫做物体的视图.我们用三个互相垂直的平面作为投影面,其中正对我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.要点诠释:三视图就是我们从三个方向看物体所得到的3个图象.2.画三视图的要求(1)位置的规定:主视图下方是俯视图,主视图右边是左视图.(2)长度的规定:长对正,高平齐,宽相等.画图时,看得见的轮廓线画成实线,看不见的轮廓线画成虚线。
三个图的位置展示:要点诠释:主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽.(1)主视图:三视图(2)左视图:(3)俯视图:投影与视图专题练习类型一:平行投影1.有两根木棒AB、CD在同一平面上竖着,其中AB这根木棒在太阳光下的影子BE如图(1)所示,则CD这根木棒的影子DF应如何画?2.如图所示,某居民小区内A、B两楼之间的距离MN=30米,两楼的高都是20米,A楼在B楼正南,B楼窗户朝南.B楼内一楼住户的窗台离小区地面的距离DN=2米,窗户高CD=1.8米.当正午时刻太阳光线与地面成30°角时,A楼的影子是否影响B楼的一楼住户采光若影响,挡住该住户窗户多高若不影响,请说明理1.414 1.73252.236)由.3.如图所示,在一天的某一时刻,李明同学站在旗杆附近某一位置,其头部的影子正好落在旗杆脚处,那么你能在图中画出此时的太阳光线及旗杆的影子吗4.已知,如图所示,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m. (1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下时投影长为6m.请你计算DE的长.类型二:中心投影1.如图所示,小明在广场上乘凉,图中线段AB表示站在广场上的小明,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小明在照明灯P照射下的影子.(2)如果灯杆高PO=12m,小明身高AB=1.6m,小明与灯杆的距离BO=13m,请求出小明影子的长度.2.确定图中路灯灯泡所在的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
投影与视图一、选择题1.(2011福建泉州,4,3分)下面左图是一个圆柱体,则它的正视图是()【答案】A2. (2011广东河源,3,3分)下面是空心圆柱在指定方向上的视图,正确的是()A.B.C.D.【答案】C3. 下面四个几何体中,主视图是四边形的几何体有圆锥圆柱球正方体A1个B2个C3个D4个【答案】B4. (2011广西桂林,7,3分)如图,图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则图2的俯视图是().图1 图2 A B C D第7题图【答案】C5. (2011贵州毕节,3,3分)将下图所示的Rt△ABC绕直角边AB旋转一周,所得几何体的主视图为( )A B C D 【答案】C6. (2011海南省,6,3分)图1所示几何体的俯视图是图1A.B.C.D.【答案】A7. (2011黑龙江省哈尔滨市,6,3分)如图所示的几何体是由五个小正方体搭建而成的,它的主视图是()A.B.C.D.【答案】C8. (2011湖北十堰,3,3分)下面几何体的主视图是()【答案】C9. (湖南湘西,13,3分)图中几何体的左视图是()【答案】C正面10.(2011江苏常州,3,2分)已知某几何体的三个视图(如图),此几何体是( )A.正三棱柱B. 三棱锥C. 圆锥D. 圆柱【答案】C11.(2011辽宁大连,4,3分)图1是由四个完全相同的正方体组成的几何体,这个几何体的左视图是A. B. C.D.【答案】C12. (2011广东深圳,2,3分)如图1所示的物体是一个几何体,其主视图是()【答案】C13. (2011陕西,2,3分)下面四个几何体中,同一几何体的主视图和俯视图相同的共有()A.1个B.2个C.3个D.4个【答案】B14. (2011天津,7,3分)右图是一支架(一种小零件),支架的两个台阶的高度和宽度都同一长度,则它的三视图是()答案:A15. (2011湖北襄阳,8,3分)有一些相同的小立方块搭成的几何体的三视图如图2所示,则搭成该几何体的小立方块有A.3块B.4块C.6块D.9块【答案】B16. (2011广东佛山,9,3)如图,一个由小立方块所搭的几何体,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小立方块的个数),不正确的是ABCD【答案】B17. (2011山东莱芜,6,3分)如右图所示是由几个相同的小正方形搭成的几何体的三视图,则搭成这个几何体的小正方体的个数()A.3B.4C.5D.6(第6题图)俯视图左视图主视图【答案】C18. (2011贵州遵义,2,3分)如图是一个正六棱柱,它的俯视图是【答案】C19. (2011广东清远,3,3分)图1中几何体的主视图是()图2主视图左视图俯视图【答案】C20.(2011四川达州,3,3分) 图1是由几个相同的小正方体搭成的一个几何体,它的俯视图是【答案】D21.(2011福建莆田,6,4分)如图所示的是某几何体的三视图,则该几何体的形状是()A.长方体B.三棱柱C.圆锥D.正方体【答案】B22.(2011广东肇庆,3,3分)如图是一个几何体的实物图,则其主视图是【答案】C23.(2011广西南宁,2,3分)如右图l,三视图描述的实物形状是:(A)棱柱(B)棱锥(C)圆柱(D)圆锥【答案】C24.(2011黑龙江省哈尔滨市,6,3分)如图所示的几何体是由五个小正方体搭建而成的,它的主视图是()DCBAA .B .C .D .【答案】C25. (2011黑龙江绥化,16,3分)下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示的数字为该位置小正方体的个数,则这个几何体的左视图是( )【答案】A26. (2011湖北潜江天门仙桃江汉油田,2,3分)如图所示,该几何体的俯视图是( )【答案】A27. (2011湖北省随州市,4,4分)一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为( )A .2πB .21π C .4π D .8π主视图 左视图 俯视图 第4题图 【答案】C28. (2011江西b 卷,3,3分)如图,是一个实物在某种状态下的三视图,与它对应的实物图应是( ).【答案】A29. (2011吉林长春,3,3分)右图是由4个相同的小正方体组成的几何体,其俯视图为【答案】(C )30. (2011吉林,12,3分)如图所示,小华看到桌面上的几何体是由五个完全相同的小正方体组成的,他看的几何体的主视图是( )【答案】A31. (2011辽宁沈阳,2,3分)左下图是由五个相同的小立方体五搭成的几何体,这个几何体的主视图是【答案】 C32. (2011福建龙岩,5,4分)如图,该几何体的主视图是( )BADC正面【答案】BAB C D正面第2题图33.(2011四川广元,6,3分)如图,下列四个几何体中,其各自的主视图、左视图、俯视图中有两个相同,而另一个不同的是(D)①正方体②球③圆锥④圆柱A.①② B.②③ C.②④D.③④【答案】D34.(2011四川眉山,9,3分)如图所示的物体的左视图是【答案】D35.(2011福建三明,3,4分)由5个大小相同的正方体组成的几何体如图所示,其主视图是()正面(第3题)A B C D【答案】A36.(2011云南省昆明市,2,3分)如图是一个由相同的小正方体组成的立体图形,它的主视图是( )【答案】D37.(2011昭通,4,3)图1所示是一个由4个相同的正方体组成的立体图形,它的三视图为()图1 A.B.C.D.【答案】B38.(2011内蒙古包头,8,3分)下列几何体各自的三视图中,只有两个视图相同的是()A.①③B.②③C.③④D.②④【答案】D39.(2011内蒙古赤峰,5,3分)在下面四个几何体中,主视图、俯视图、左视图都相同的几何体的个数是()A.1个B.2个C.3个D.4个【答案】B40.(2011吉林长春,3,3分)右图是由4个相同的小正方体组成的几何体,其俯视图为【答案】(C)41.(2011•泸,10,2分)如图是一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A、8B、10C、12D、14【答案】C.42.(2011四川自贡,5,3分)由七个大小相同的正方体组成的几何体如图所示,则它的左视图是()【答案】D(第3题)(D)(C)(B)(A)①正方体②圆锥④圆柱③球43.(2011四川自贡,11,3分)李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A. 37B. 33C. 24D. 21【答案】B44. (2011四川雅安4,3分)由4个大小相同的正方体组成的几何体如图所示,那么它的俯视图是()【答案】B45.(2011山东青岛,2,3分)如图,空心圆柱的主视图是().A. B. C. D.【答案】A46.(2011年青海,14,3分)如图5,是一个水管的三叉接头,它的左视图是()图5 A B C D【答案】B47.(2011广西崇左,17,3分)一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()【答案】B48. (2011广西柳州,4,3分)某几何体得三视图如图所示,则这个几何体是A.正方体B.圆锥体C.圆柱体D.球体【答案】B49. (2011广西玉林、防港,7,3分)如图,你能看出这个倒立的水杯的俯视图是()【答案】B50. (2011广西百色,3,3分)下列四个立体图中,它的几何体的左视图是圆的是【答案】:A51. (2011广西贵港,3,3分)如图所示是一个几何体的三视图,则该几何体是主视图 左视图 俯视图(A)三棱锥 (B)三棱柱 (C)正方体 (D)长方体【答案】B52.(2011湖南岳阳,3,3分)下面给出的三视图表示的几何体是( ) DC B AA .圆锥B .正三棱柱C .正三棱锥D .圆柱【答案】B53. (2011张家界,10,3分)如图是一个几何体的三视图,则这个几何体的名称是 .【答案】圆锥54. (2011湖南郴州市,3,3分)图中所给的三视图表示的物体是( )【答案】B55. (2011福建漳州,4,3分)如图是由若干个小正方体堆成的几何体的主视图(正视图),这个几何体是()【答案】C56. (2011辽宁本溪,2,3分)如图是某几何体的三视图,则这个几何体是( )A .球B .圆锥C .圆柱D .三棱柱【答案】B57. (2011青海西宁,6,3分)一节电池如图2所示,则它的三视图是2题图【答案】D58. (2011黑龙江黑河,16,3分)下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是 ( )【答案】A59.60.二、填空题1. (2011广西梧州,17,3分)图9是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm ),计算出这个立体图形的表面积是________mm 2.【答案】2002. (2011山东枣庄,14,4分)如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是 .【答案】左视图A B CDA B C D 图2主视图 左视图 俯视图图9【答案】球体或正方体.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.40.41.42.43.44.45.46.50.51.52.53.54.55.56.57.58.59.60.三、解答题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.26.27.28.29.30.31.32.33.34.35.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51. 52.53.54.55.56.57.58. 59.60.。