因式分解单元测试B卷(含答案)

合集下载

《整式的乘法与因式分解》单元检测卷(含答案)

《整式的乘法与因式分解》单元检测卷(含答案)
9.已知 与一个多项式之积是 ,则这个多项式是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据乘法与除法的互逆关系,可得整式的除法,根据整式的除法,可得答案.
【详解】由7x5y3与一个多项式之积是28x7y3+98x6y5-21x5y5,得
(28x7y3+98x6y5-21x5y5)÷7x5y3=4x2+14xy2-3y2,
二、填空题(每题3分,共18分)
12.计算: =_____________.
【答案】4x2
【解析】
【分析】
根据乘方的运算法则把 化为同底数幂的除法,再计算即可.
【详解】
=
=
=4x2
故答案为4x2.
【点睛】本题考查了同底数幂的除法,熟记同底数幂的除法法则是解题的关键.
13.当 _________时, .
A.1B.-2C.-1D.2
5.已知4x2+4mx+36是完全平方式,则m的值为( )
A. 2B. ±2C. -6D. ±6
6.已知 ,则()
A.a=bB.a>bC.a<bD.a≤b
7.如 与 的乘积中不含x的一次项,则m的值为()
A. B. 3C. 0D. 1
8.已知ab2=﹣1,则﹣ab(a2b5﹣ab3﹣b) 值等于()
A. B.
C. D.
【答案】A
【解析】
【分析】
利用正方形的面积公式可知剩下的面积=a2-b2,而新形成的矩形是长为a+b,宽为a-b,根据两者相等,即可验证平方差公式.
【详解】由题意得:a2-b2=(a+b)(a-b).
故选A.
【点睛】此题主要考查平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.

北师大版初二数学下册第4章《因式分解》单元测试卷 (含答案)

北师大版初二数学下册第4章《因式分解》单元测试卷  (含答案)

北师大版八年级数学下册第4章《因式分解》单元测试题一.选择题(共8小题,满分24分,每小题3分)1.将多项式x﹣x3因式分解正确的是()A.x(1﹣x2)B.x(x2﹣1)C.x(1+x)(1﹣x)D.x(x+1)(x﹣1)2.多项式a2﹣25与a2﹣5a的公因式是()A.a+5B.a﹣5C.a+25D.a﹣253.下列各式中,不能用平方差公式因式分解的是()A.﹣a2﹣4b2B.﹣1+25a2C.﹣9a2D.1﹣a44.下列各式中,能用完全平方公式分解因式的个数是()(1)x2﹣4;(2)x2+6x+9;(3)4x4﹣2x2+;(4)x2+4xy+2y2A.1个B.2个C.3个D.4个5.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2+4x﹣2=x(x+4)﹣2C.x2﹣4=(x+2)(x﹣2)D.x2﹣4+3x=(x+2)(x﹣2)+3x6.将对x2+mx+n分解成(x﹣7)(x+2),则m,n的值为()A.5,﹣14B.﹣5,14C.5,14D.﹣5,﹣14 7.如果(x+4)(x﹣3)是x2﹣mx﹣12的因式,那么m是()A.7B.﹣7C.1D.﹣18.计算(﹣2)100+(﹣2)99的结果是()A.2B.﹣2C.﹣299D.299二.填空题(共7小题,满分28分,每小题4分)9.把多项式m3﹣81m分解因式的结果是.10.在实数范围内分解因式:m4﹣2m2=.11.分解因式:a2﹣9b2+2a﹣6b=.12.已知x2+4mx+16能用完全平方公式因式分解,则m的值为.13.已知a、b满足a+b=5,ab2+a2b=10,则ab的值是.14.若x2+x﹣1=0,那么代数式x3+2x2﹣7的值是.15.232﹣1可以被10和20之间某两个整数整除,则这两个数是.三.解答题(共7小题,满分48分)16.把下列多项式分解因式:(1)x3﹣9x;(2)2a2+4ab+2b217.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+4918.已知a+b=,ab=﹣,求代数式a3b+2a2b2+ab3的值.19.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x ﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.20.待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解:x3﹣1.因为x3﹣1为三次多项式,若能因式分解,则可以分解成一个一次多顶式和一个二次多项式的乘积.故我们可以猜想x3﹣1可以分解成(x﹣1)(x2+ax+b),展开等式右边得:x3+(a﹣1)x2+(b﹣a)x﹣b,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:a﹣1=0,b﹣a=0,﹣b=﹣1可以求出a=1,b=1.所以x3﹣1=(x﹣1)(x2+x+1).(1)若x取任意值,等式x2+2x+3=x2+(3﹣a)x+s恒成立,则a=;(2)已知多项式x3+2x+3有因式x+1,请用待定系数法求出该多项式的另一因式.21.阅读以下材料,根据阅读材料提供的方法解决问题【阅读材料】对于多项式x3﹣5x2+x+10,我们把x=2代入多项式,发现x=2能使多项式的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多项式,能使多项式值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后代入,就可以把多项式x3﹣5x2+x+10因式分解.【解决问题】(1)求式子中m、n的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x3+5x2+8x+4.22.拼图游戏:一天,小嘉在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)则图③可以解释为等式:.(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为3a2+7ab+2b2,并通过拼图对多项式3a2+7ab+2b2因式分解:3a2+7ab+2b2=.(拼图图形画在方框内)(3)如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个长方形的两边长(x>y),结合图案,指出以下关系式:①xy=;②x+y=m;③x2﹣y2=m•n;④x2+y2=其中正确的关系式为.(4)试着用剪拼图形的方法由几何图形的面积来证明:a2﹣b2=(a+b)(a﹣b).参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选:C.2.解:多项式a2﹣25=(a+5)(a﹣5)与a2﹣5a=a(a﹣5)的公因式是:a﹣5.故选:B.3.解:不能用平方差公式分解的是﹣a2﹣4b2.故选:A.4.解:(1)x2﹣1是两项,不能用完全平方公式,故此选项不符合题意;(2)x2+6x+9,符合完全平方公式;故此选项符合题意.(3)4x4﹣2x2+符合完全平方公式;故此选项符合题意;(4)x2+4xy+2y2不符合完全平方公式;故此选项不符合题意.故选:B.5.解:A、(x+2)(x﹣2)=x2﹣4,是整式的乘法运算,故此选项错误;B、x2+4x﹣2=x(x+4)﹣2,不符合因式分解的定义,故此选项错误;C、x2﹣4=(x+2)(x﹣2),是因式分解,符合题意.D、x2﹣4+3x=(x+2)(x﹣2)+3x,不符合因式分解的定义,故此选项错误;故选:C.6.解:∵将对x2+mx+n分解成(x﹣7)(x+2),∴m=﹣7+2=﹣5,n=﹣7×2=﹣14,故选:D.7.解:∵(x+4)(x﹣3)是x2﹣mx﹣12的因式,∴(x+4)(x﹣3)=x2﹣mx﹣12=x2+x﹣12,故﹣m=1,解得:m=﹣1.故选:D.8.解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299,故选:D.二.填空题(共7小题,满分28分,每小题4分)9.解:m3﹣81m=m(m2﹣81)=m(m+9)(m﹣9).故答案为:m(m+9)(m﹣9).10.解:m4﹣2m2=m2(m2﹣2)=m2(m+)(m﹣).故答案为:m2(m+)(m﹣).11.解:a2﹣9b2+2a﹣6b,=(a2﹣9b2)+(2a﹣6b),=(a+3b)(a﹣3b)+2(a﹣3b),=(a﹣3b)(a+3b+2).12.解:∵关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,∴m=±2,故答案为:±2.13.解:∵ab2+a2b=10,∴ab(b+a)=10,∵a+b=5,∴ab=2,故答案为:2.14.解:∵x2+x﹣1=0,∴x2+x=1∴x3+2x2﹣7=x(x2+x)+x2﹣7=x+x2﹣7=1﹣7=﹣6故答案为:﹣6.15.解:原式=(216+1)(216﹣1)=(216+1)(28+1)(24+1)(24﹣1)=(216+1)(28+1)×17×15.则这两个数是15和17.故答案是:15和17.三.解答题(共7小题)16.解:(1)x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3);(2)2a2+4ab+2b2=2(a2+2ab+b2)=2(a+b)2.17.解:(1)3a2(x+y)3﹣27a4(x+y)=3a2(x+y)[(x+y)2﹣9a2]=3a2(x+y)(x+y﹣3a)(x+y+3a);(2)(x2﹣9)2﹣14(x2﹣9)+49=(x2﹣9﹣7)2=(x2﹣16)2=(x+4)2(x﹣4)2.18.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,∵a+b=,ab=﹣,∴原式=ab(a+b)2=﹣×()2=﹣3,即代数式a3b+2a2b2+ab3的值是﹣3.19.解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a=b或a=c或a=b=c,∴△ABC的形状是等腰三角形或等边三角形.20.解:(1)∵x2+2x+3=x2+(3﹣a)x+3,∴3﹣a=2,a=1;故答案为:1;(2)设x3+2x+3=(x+1)(x2+ax+3)=x3+(a+1)x2+(a+3)x+3,a+1=0,解得a=﹣1,多项式的另一因式是x2﹣x+3.21.解:(1)在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5;(2)把x=﹣1代入x3+5x2+8x+4,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,用上述方法可求得:a=4,b=4,所以x3+5x2+8x+4=(x+1)(x2+4x+4)=(x+1)(x+2)2.22.解:(1)图③可以解释为等式:(a+2b)(2a+b)=2a2+ab+4ab+2b2=2a2+5ab+2b2故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.(2)拼图如图⑤所示:3a2+7ab+2b2=(3a+b)(a+2b);故答案为:(3a+b)(a+2b);(3)∵m2﹣n2=4xy∴①正确;∵x+y=m∴②正确;∵x+y=m,x﹣y=n∴(x+y)(x﹣y)=mn,即x2﹣y2=mn,∴③正确;∵m2+n2=(x+y)2+(x﹣y)2=2x2+2y2=2(x2+y2);∴④正确.故答案为:①②③④.(4)剪拼图形如图⑥、⑦;把图⑥中的阴影沿虚线三次剪下来,拼成如图⑦所示的梯形,∴这个梯形的上底长为2b,下底长为2a,高为(a﹣b),∴S阴影(梯形)=(2a+2b)(a﹣b)=(a+b)(a﹣b),∵图⑥中的S阴影=a2﹣b2,∴a2﹣b2=(a+b)(a﹣b).。

八年级数学《因式分解》单元测试题(有答案)

八年级数学《因式分解》单元测试题(有答案)

八年级数学《因式分解》单元测试题(有答案)一、选择题1.下列分解因式正确的是()A. -x2+4x=-x(x+4)B. x2+xy+x=x(x+y)C. x(x-y)+y(y-x)=(x-y)2D. x2-4x+4=(x+2)(x-2)【分析】根据因式分解的步骤:先提取公因式,再用公式法分解即可求得答案,注意分解要彻底。

解:A.-x2+4x=-x(x-4),此项错误;B.x2+xy+x=x(x+y+1),此项错误;C.x(x-y)+y(y-x)=(x-y)2正确;D.x2-4x+4=(x-2)2,此项错误。

【答案】C【点评】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.2. 下列各式由左边到右边的变形,属于因式分解的是()A.(x+1)(x-1)=x2-1 B.x2+2x+1=x(x+2)+1C.a2-4b2=(a+2b)(a-2b) D.a(x-y)=ax-ay【答案】C3.多项式15a3b3+5a2b-20a2b3中各项的公因式是()A.a3b3B.a2b C.5a2b D.5a3b3【答案】C4.已知x2+px+q=(x+5)(x-1),则p,q的值为()A.4,5 B.4,-5 C.-4,5 D.-4,-5【答案】B5.若a为实数,则整数a2(a2-1)-a2+1的值()A.不是负数B.恒为正数C.恒为负数D.不等于0【答案】A6.下列多项式中不能用公式法分解的是()A.-a2-b2+2ab B.a2+a+1 4C.-a2+25b2D.-4-b2【答案】D7.把代数式3x3-12x2+12x分解因式,结果正确的是()A.3x(x2-4x+4) B.3x(x-4)2C.3x(x+2)(x-2) D.3x(x-2)2【答案】D8.已知多项式x+81b4可分解为(4a2+9b2)(2a+3b)(3b-2a),则x的值是()A.16a4B.-16a4C.4a2D.-4a2【答案】B二、填空题9.分解因式:16﹣x2=__________.【解析】16和x2都可写成平方形式,且它们符号相反,符合平方差公式特点,利用平方差公式进行因式分解即可.解:16-x2=(4+x)(4-x).【答案】(4+x)(4﹣x)【点评】本题考查利用平方差公式分解因式,熟记公式结构是解题的关键.10.分解因式:2x3﹣6x2+4x=__________.【解析】首先提取公因式2x,再利用十字相乘法分解因式得出答案.解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).【答案】2x(x﹣1)(x﹣2).【点评】此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.11.分解因式:a2-5a =________.【分析】利用提公因式法,将各项的公因式a提出,将各项剩下的因式写在一起,作为因式。

第8章整式乘法与因式分解单元测试卷(B卷提升篇)(沪科版)(解析版)

第8章整式乘法与因式分解单元测试卷(B卷提升篇)(沪科版)(解析版)

第8章整式乘法与因式分解单元测试卷(B卷提升篇)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019•黄冈校级期中)下列计算正确的是()A.x4•x4=x16B.(a3)2•a4=a9C.(ab2)3÷(﹣ab)2=﹣ab4D.(a6)2÷(a4)3=1【分析】根据同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可.【答案】解:A、x4×x4=x8,原式计算错误,故本选项错误;B、(a3)2•a4=a10,原式计算错误,故本选项错误;C、(ab2)3÷(﹣ab)2=ab4,原式计算错误,故本选项错误;D、(a6)2÷(a4)3=1,计算正确,故本选项正确;故选:D.【点睛】本题考查了同底数幂的乘除、幂的乘方与积的乘方的知识,解答本题的关键是掌握各部分的运算法则.2.(3分)(2019秋•历下区期中)人体内一种细胞的直径约为0.00000156m,数据0.00000156用科学记数法表示为()A.1.56×10﹣5B.1.56×10﹣6C.15.6×10﹣7D.﹣1.56×106【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【答案】解:0.00000156用科学记数法表示为1.56×10﹣6,故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2019春•故城县校级期中)下列各式中,计算结果为9a8b4的是()A.27a10b8÷3a2b2B.﹣(3a6b2)2C.9a10b7÷(a2b)3D.(3a4b2)2【分析】原式各项计算得到结果,即可作出判断.【答案】解:A、原式=9a8b6,不合题意;B、原式=﹣9a12b4,不合题意;C、原式=9a4b4,不合题意;D、原式=9a8b4,符合题意,故选:D.【点睛】此题考查了整式的除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.(3分)(2019春•常州期中)若a3•a m=a5÷a n,则m与n之间的关系是()A.m+n=﹣2B.m+n=2C.mn=D.mn=15【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,可得关于m、n 的方程.【答案】解:a3•a m=a3+m=a5÷a n=a5﹣n,3+m=5﹣n.移项,得m+n=2,故选:B.【点睛】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.(3分)(2019春•历城区期中)将下列多项式因式分解,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2D.x2﹣2x+1【分析】原式各项分解因式得到结果,即可做出判断.【答案】解:A、原式=(x+1)(x﹣1),不合题意;B、原式=(x﹣1)(x﹣2),不合题意;C、原式不能分解,符合题意;D、原式=(x﹣1)2,不合题意,故选:C.【点睛】此题考查了因式分解﹣运用公式法,以及提公因式法,熟练掌握因式分解的方法是解本题的关键.6.(3分)(2019春•海曙区期中)已知xy2=﹣2,则﹣xy(x2y5﹣xy3﹣y)的值为()A.2B.6C.10D.14【分析】先利用单项式乘多项式的法则化简,然后运用积的乘方的逆运算整理结果,使其中含有xy2,再整体代入xy2=﹣2计算即可.【答案】解:∵xy2=﹣2,∴﹣xy(x2y5﹣xy3﹣y)=﹣x3y6+x2y4+xy2=﹣(xy2)3+(xy2)2+xy2=﹣(﹣2)3+(﹣2)2+(﹣2)=8+4﹣2=10;故选:C.【点睛】此题考查了单项式乘多项式,解题的关键是运用积的乘方的逆运算,使化简后的式子中出现xy2的因式.7.(3分)(2019秋•海淀区校级期中)将多项式a2﹣6a﹣5变为(x+p)2+q的形式,结果正确的是()A.A、(a+3)2﹣14B.(a﹣3)2﹣14C.(a+3)2+4D.(a﹣3)2+4【分析】已知多项式配方得到结果,判断即可.【答案】解:根据题意得:a2﹣6a﹣5=(a2﹣6a+9)﹣14=(a﹣3)2﹣14,故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.8.(3分)(2019秋•孟津县期中)M=(a+b)(a﹣2b),N=b(a﹣3b)(其中a≠b),则M,N的大小关系为()A.M>N B.M=N C.M<N D.无法确定【分析】根据多项式乘以多项式表示出M、N,再利用求差法即可比较大小.【答案】解:M=(a+b)(a﹣2b)=a2﹣ab﹣2b2N=b(a﹣3b)=ab﹣3b2a≠b.M﹣N=a2﹣ab﹣2b2﹣ab+3b2=(a﹣b)2>0.所以M>N.故选:A.【点睛】本题考查了多项式乘以多项式,解决本题的关键是求差法比较大小.9.(3分)(2019秋•文登区期中)如果257+513能被n整除,则n的值可能是()A.20B.30C.35D.40【分析】先把把257转化成514,再提取公因式513,最后把513化成512×5,即可求出答案.【答案】解:257+513=514+513=513×(5+1)=513×6=512×30,则n的值可能是30;故选:B.【点睛】此题考查了因式分解的应用,解题的关键是把257转化成514,再提取公因式进行因式分解即可.10.(3分)(2018秋•南昌期中)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.a2﹣b2B.(a﹣b)2C.(a+b)2D.ab【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【答案】解:图1是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵由题意可得,正方形的边长为(a+b),正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故选:B.【点睛】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键.二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2019•连云港校级期中)计算:(2x+1)(x﹣3)=2x2﹣5x﹣3.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【答案】解:原式=2x2﹣6x+x﹣3=2x2﹣5x﹣3.故答案是:2x2﹣5x﹣3.【点睛】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.12.(3分)(2019春•文登区期中)如果等式(2x﹣1)x+2=1,则x的值为x=1,x=﹣2或x=0.【分析】根据非零的零次幂等于1,﹣1的偶数次幂是1,1的任何次幂是1,可得答案.【答案】解:当2x﹣1≠0且x+2=0时,解得x=﹣2;当2x﹣1=1时,解得x=1;当2x﹣1=﹣1,且x+2是偶数时,解得x=0,故答案为:x=1,x=﹣2或x=0.【点睛】本题考查了零指数幂,利用非零的零次幂等于1是解题关键,要分类讨论,以防遗漏.13.(3分)(2019春•巴州区校级期中)若ab=﹣3,a﹣2b=5,则a2b﹣2ab2的值是﹣15.【分析】直接利用提取公因式法将原式变形进而计算得出答案.【答案】解:∵ab=﹣3,a﹣2b=5,∴a2b﹣2ab2=ab(a﹣2b)=﹣3×5=﹣15.故答案为:﹣15.【点睛】此题主要考查了提取公因式法,正确分解因式是解题关键.14.(3分)(2019秋•思明区校级期中)计算:40372﹣8072×2019=1.【分析】把8072×2019变为4038×4036,再套用平方差公式计算得结果.【答案】解:原式=40372﹣2×4036×2019=40372﹣4036×4038=40372﹣(4037﹣1)(4037+1)=40372﹣(40372﹣1)=1故答案为:1【点睛】本题考查了因式分解的提公因式法,把8072×2019变为4038×4036,套用平方差公式是解本题的关键.15.(3分)(2019秋•南安市期中)若a=2019x+2018,b=2019x+2019,c=2019x+2020,则a2+b2+c2﹣ab ﹣ac﹣bc=3.【分析】a2+b2+c2﹣ab﹣ac﹣bc=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=(a﹣b)2+(a﹣c)2+(b ﹣c)2,即可求解.【答案】解:a2+b2+c2﹣ab﹣ac﹣bc=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=(a﹣b)2+(a﹣c)2+(b﹣c)2=3,故答案为3.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式平方差的形式,是解题的关键.16.(3分)(2019秋•枞阳县校级月考)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如图表格,此表揭示了(a+b)n(n为非负整数)展开式的各项系数的规律,例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;…根据以上规律,(a+b)5展开的结果为a5+5a4b+10a3b2+10a2b3+5ab4+b5.【分析】通过观察可得(a+b)n(n为非负整数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系数等于(a+b)n﹣1相邻两项的系数和.因此可得(a+b)5的各项系数分别为1、(1+4)、(4+6)、(6+4)、(4+1)、1,解答即可.【答案】解:根据题意知,(a+b)5的各项系数分别为1、(1+4)、(4+6)、(6+4)、(4+1)、1,即:1、5、10、10、5、1,∴(a+b)5展开的结果为a5+5a4b+10a3b2+10a2b3+5ab4+b5,故答案为:a5+5a4b+10a3b2+10a2b3+5ab4+b5.【点睛】本题考查了完全平方公式的推广,要注意寻找题中的关键着眼点是:首尾两项系数都是1,中间各项系数等于(a+b)n﹣1相邻两项的系数和.三.解答题(共6小题,满分52分)17.(8分)(2018春•龙华区期中)计算:(1)()﹣2×(﹣1)4+|﹣9|×(2018﹣3.14)0;(2)(a+b)(a﹣2b)﹣a(a﹣b)+(3b)2【分析】(1)直接利用负指数幂的性质以及绝对值的性质和零指数幂的性质分别化简得出答案;(2)直接利用多项式的乘法运算法则以及积的乘方运算法则分别计算得出答案.【答案】解:(1)原式=9×1+9×1=18;(2)原式=a2﹣ab﹣2b2﹣a2+ab+9b2=7b2.【点睛】此题主要考查了实数运算以及整式的乘法运算,正确掌握相关运算法则是解题关键.18.(8分)(2019秋•路南区期中)(1)因式分解:9a2(x﹣y)﹣b2(x﹣y)(2)解方程:(x+3)(x﹣5)﹣(x+1)(x﹣1)=2【分析】(1)先变形,再提取公因式,最后根据平方差公式分解即可.(2)先转化为一元一次方程的形式,然后解方程.【答案】解:(1)9a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(9a2﹣b2)=(x﹣y)(3a+b)(3a﹣b).(2)(x+3)(x﹣5)﹣(x+1)(x﹣1)=2x2﹣2x﹣15﹣x2+1=2﹣2x﹣14=2﹣2x=16x=﹣8.【点睛】考查了多项式乘多项式,单项式乘单项式,以及因式分解,属于基础计算题.19.(8分)(2019春•江阴市校级月考)(1)已知10m=2,10n=3,求103m+2n的值;(2)已知9•32x•27x=317,求x的值.【分析】(1)原式利用幂的乘方与积的乘方运算法则变形,将已知等式代入计算即可求出值;(2)已知等式左边变形后,利用幂相等求出x的值即可.【答案】解:(1)∵10m=2,10n=3,∴原式=(10m)3•(10n)2=8×9=72;(2)已知等式整理得:35x+2=317,可得5x+2=17,解得:x=3.【点睛】此题考查了幂的乘方与积的乘方,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.20.(8分)(2019春•常州期中)已知x+y=3,(x+3)(y+3)=20.(1)求xy的值;(2)求x2+y2+4xy的值.【分析】(1)先根据多项式乘以多项式法则展开,再把x+y=3代入,即可求出答案;(2)先根据完全平方公式变形,再代入求出即可.【答案】解:(1)∵x+y=3,(x+3)(y+3)=xy+3(x+y)+9=20,∴xy+3×3+9=20,∴xy=2;(2)∵x+y=3,xy=2,∴x2+y2+4xy=(x+y)2+2xy=32+2×2=13.【点睛】本题考查了多项式乘以多项式的应用,能熟记多项式乘以多项式法则和乘法公式是解此题的关键.21.(10分)(2018秋•浦东新区期中)我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=12,ab+bc+ac=47,求a2+b2+c2的值;(3)小明同学打算用x张边长为a的正方形,y张边长为b的正方形,z张相邻两边长为分别为a、b的长方形纸片拼出了一个面积为(5a+8b)(7a+4b)长方形,那么他总共需要多少张纸片?【分析】(1)直接求得正方形的面积,然后再根据正方形的面积=各矩形的面积之和求解即可;(2)将a+b+c=12,ab+bc+ac=47代入(1)中得到的关系式,然后进行计算即可;(3)长方形的面积xa2+yb2+zab=(5a+8b)(7a+4b),然后运算多项式乘多项式法则求得(5a+8b)(7a+4b)的结果,从而得到x、y、z的值,代入即可求解.【答案】解:(1)∵正方形的面积=各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ca,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.(2)由(1)可知:a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca)=122﹣47×2=50.(3)∵长方形的面积=xa2+yb2+zab=(5a+8b)(7a+4b)=35a2+76ab+32b2,∴x=35,y=32,z=76,∴x+y+z=143.答:那么他总共需要143张纸片.【点睛】本题考查的是多项式乘多项式、完全平方公式的应用,利用面积法列出等式是解题的关键.22.(10分)(2018秋•雨花区校级月考)教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x ﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m﹣5=(m+1)(m﹣5).(2)当a,b为何值时,多项式2a2+3b2﹣4a+12b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2﹣4ab+5b2﹣4a+4b+27有最小值,并求出这个最小值.【分析】(1)根据阅读材料,先将m2﹣4m﹣5变形为m2﹣4m+4﹣9,再根据完全平方公式写成(m﹣2)2﹣9,然后利用平方差公式分解即可;(2)利用配方法将多项式a2+b2﹣4a+6b+18转化为(a﹣2)2+(b+3)2+5,然后利用非负数的性质进行解答;(3)利用配方法将多项式a2﹣2ab+2b2﹣2a﹣4b+27转化为(a﹣b﹣1)2+(b﹣3)2+17,然后利用非负数的性质进行解答.【答案】解:(1)m2﹣4m﹣5=m2﹣4m+4﹣9=(m﹣2)2﹣9=(m﹣2+3)(m﹣2﹣3)=(m+1)(m﹣5).故答案为(m+1)(m﹣5);(2)2a2+3b2﹣4a+12b+18=2(a2﹣2a)+3(b2+4b)+18=2(a2﹣2a+1)+3(b2+4b+4)+4=2(a﹣1)2+3(b+2)2+4,当a=1,b=﹣2时,2a2+3b2﹣4a+12b+18有最小值,最小值为4;(3)∵a2﹣4ab+5b2﹣4a+4b+27=a2﹣4a(b+1)+4(b+1)2+(b﹣2)2+19=(a﹣2b﹣2)2+(b﹣2)2+19,∴当a=6,b=2时,多项式a2﹣2ab+2b2﹣2a﹣4b+27有最小值19.【点睛】此题考查了因式分解的应用,以及非负数的性质,熟练掌握因式分解的方法是解本题的关键.。

初中数学-《因式分解》单元测试卷(有答案)

初中数学-《因式分解》单元测试卷(有答案)

初中数学-《因式分解》单元测试卷一、选择1.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1)D.ax+bx+c=x(a+b)+c2.将多项式﹣6a3b2﹣3a2b2+12a2b3分解因式时,应提取的公因式是()A.﹣3a2b2B.﹣3ab C.﹣3a2b D.﹣3a3b33.下列各式是完全平方式的是()A.x2+2x﹣1 B.1+x2C.x2+xy+1 D.x2﹣x+4.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+95.下列各式中,不含因式a+1的是()A.2a2+2a B.a2+2a+1 C.a2﹣1 D.6.多项式①2x2﹣x,②(x﹣1)2﹣4(x﹣1)+4,③(x+1)2﹣4x(x+1)+4,④﹣4x2﹣1+4x;分解因式后,结果含有相同因式的是()A.①④ B.①② C.③④ D.②③7.下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1 C.m2﹣n D.m2﹣2m+1二、填空8.5x2﹣25x2y的公因式为.9.a2﹣2ab+b2、a2﹣b2的公因式是.10.若x+y=1,xy=﹣7,则x2y+xy2= .11.简便计算:﹣= .12.若|a﹣2|+b2﹣2b+1=0,则a= ,b= .13.若x2+2(m﹣1)x+36是完全平方式,则m= .14.如图所示,根据图形把多项式a2+5ab+4b2因式分解= .三、解答题15.因式分解:(1)20a3﹣30a2(2)16﹣(2a+3b)2(3)﹣16x2y2+12xy3z(4)5x2y﹣25x2y2+40x3y(5)x2(a﹣b)2﹣y2(b﹣a)2(6)(a2+b2)2﹣4a2b2(7)18b(a﹣b)2+12(b﹣a)3(8)x(x2+1)2﹣4x3(9)(x2﹣2x)2﹣3(x2﹣2x)(10)(2x﹣1)2﹣6(2x﹣1)+9 (11)16x4﹣72x2y2+81y4(12)a5﹣a(13)25(x+y)2﹣9(x﹣y)2(14)m2﹣3m﹣28(15)x2+x﹣20.16.利用分解因式计算:(1)2022+202×196+982(2)(﹣2)100+(﹣2)100.参考答案与试题解析一、选择1.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1)D.ax+bx+c=x(a+b)+c【考点】因式分解的意义.【专题】压轴题.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.2.将多项式﹣6a3b2﹣3a2b2+12a2b3分解因式时,应提取的公因式是()A.﹣3a2b2B.﹣3ab C.﹣3a2b D.﹣3a3b3【考点】公因式.【分析】在找公因式时,一找系数的最大公约数,二找相同字母的最低次幂.同时注意首项系数通常要变成正数.【解答】解:系数最大公约数是﹣3,相同字母的最低指数次幂是a2、b2,应提取的公因式是﹣3a2b2.故选A.【点评】本题主要考查公因式的确定,找公因式的要点:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.当第一项的系数为负数时,应先提出“﹣”号.3.下列各式是完全平方式的是()A.x2+2x﹣1 B.1+x2C.x2+xy+1 D.x2﹣x+【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可.【解答】解:x2﹣x+是完全平方式,故选D【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.4.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9【考点】因式分解-运用公式法.【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.【解答】解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.【点评】本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.5.下列各式中,不含因式a+1的是()A.2a2+2a B.a2+2a+1 C.a2﹣1 D.【考点】公因式.【分析】本题需先对每个式子进行因式分解,即可得出不含因式a+1的式子.【解答】解:A、∵2a2+2a=2a(a+1),故本选项正确;B、a2+2a+1=(a+1)2,故本选项正确;C、a2﹣1=(a+1)(a﹣1),故本选项正确;D、=(a+2,故本选项错误.故选D.【点评】本题主要考查了公因式的有关知识,在解题时要能综合应用提公因式法和公式法进行因式分解是本题的关键.6.多项式①2x2﹣x,②(x﹣1)2﹣4(x﹣1)+4,③(x+1)2﹣4x(x+1)+4,④﹣4x2﹣1+4x;分解因式后,结果含有相同因式的是()A.①④ B.①② C.③④ D.②③【考点】公因式.【分析】根据提公因式法和完全平方公式把各选项的多项式分解因式,然后再找出结果中含有相同因式的即可.【解答】解:①2x2﹣x=x(2x﹣1);②(x﹣1)2﹣4(x﹣1)+4=(x﹣3)2;③(x+1)2﹣4x(x+1)+4无法分解因式;④﹣4x2﹣1+4x=﹣(4x2﹣4x+1)=﹣(2x﹣1)2.所以分解因式后,结果中含有相同因式的是①和④.故选:A.【点评】本题主要考查了提公因式分解因式和利用完全平方公式分解因式,熟练掌握公式结构是求解的关键.7.下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1 C.m2﹣n D.m2﹣2m+1【考点】因式分解的意义.【分析】根据多项式特点和公式的结构特征,对各选项分析判断后利用排除法求解.【解答】解:A、m2+n不能分解因式,故本选项错误;B、m2﹣m+1不能分解因式,故本选项错误;C、m2﹣n不能分解因式,故本选项错误;D、m2﹣2m+1是完全平方式,故本选项正确.故选D.【点评】本题主要考查了因式分解的意义,熟练掌握公式的结构特点是解题的关键.二、填空8.5x2﹣25x2y的公因式为5x2.【考点】公因式.【分析】找公因式的方法:一找系数的最大公约数,二找相同字母的最低指数次幂.【解答】解:5x2﹣25x2y的公因式是5x2.【点评】本题主要考查公因式的确定,掌握找公因式的正确方法是解题的关键.9.a2﹣2ab+b2、a2﹣b2的公因式是a﹣b .【考点】公因式.【分析】将原式分解因式,进而得出其公因式即可.【解答】解:∵a2﹣2ab+b2=(a﹣b)2,a2﹣b2=(a+b)(a﹣b),∴a2﹣2ab+b2、a2﹣b2的公因式是:a﹣b.故答案为:a﹣b.【点评】此题主要考查了公因式,正确分解因式是解题关键.10.若x+y=1,xy=﹣7,则x2y+xy2= ﹣7 .【考点】因式分解-提公因式法.【专题】计算题;因式分解.【分析】原式提取公因式,将已知等式代入计算即可求出值.【解答】解:∵x+y=1,xy=﹣7,∴原式=xy(x+y)=﹣7,故答案为:﹣7【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.11.简便计算:﹣= .【考点】平方差公式.【专题】计算题.【分析】根据平方差公式,a2﹣b2=(a+b)(a﹣b),即可解答出;【解答】解:根据平方差公式得,﹣=(+)(﹣),=10×,=;故答案为:.【点评】本题主要考查了平方差公式,熟练应用平方差公式,a2﹣b2=(a+b)(a﹣b),可简化计算过程.12.若|a﹣2|+b2﹣2b+1=0,则a= 2 ,b= 1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题应对方程进行变形,将b2﹣2b+1化为平方数,再根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”来解题.【解答】解:原方程变形为:|a﹣2|+(b﹣1)2=0,∴a﹣2=0或b﹣1=0,∴a=2,b=1.【点评】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.13.若x2+2(m﹣1)x+36是完全平方式,则m= 13或﹣11 .【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+2(m﹣1)x+36是完全平方式,∴m﹣1=±12,解得:m=13或﹣11,故答案为:13或﹣11【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.如图所示,根据图形把多项式a2+5ab+4b2因式分解= (a+b)(a+4b).【考点】因式分解的应用.【分析】根据图形和等积法可以对题目中的式子进行因式分解.【解答】解:由图可知,a2+5ab+4b2=(a+b)(a+4b),故答案为:(a+b)(a+4b).【点评】本题考查因式分解的应用,解题的关键是明确题意,会用等积法解答.三、解答题15.因式分解:(1)20a3﹣30a2(2)16﹣(2a+3b)2(3)﹣16x2y2+12xy3z(4)5x2y﹣25x2y2+40x3y(5)x2(a﹣b)2﹣y2(b﹣a)2(6)(a2+b2)2﹣4a2b2(7)18b(a﹣b)2+12(b﹣a)3(8)x(x2+1)2﹣4x3(9)(x2﹣2x)2﹣3(x2﹣2x)(10)(2x﹣1)2﹣6(2x﹣1)+9(11)16x4﹣72x2y2+81y4(12)a5﹣a(13)25(x+y)2﹣9(x﹣y)2(14)m2﹣3m﹣28(15)x2+x﹣20.【考点】提公因式法与公式法的综合运用.【专题】常规题型.【分析】多项式有公因式时,应先提取公因式,再对余下的多项式进行观察,若2项,考虑平方差公式,若3项,考虑完全平方公式和十字相乘法.【解答】解:(1)20a3﹣30a2=10a2(2a﹣3);(2)16﹣(2a+3b)2=42﹣(2a+3b)2=(4+2a+3b)(4﹣2a﹣3b);(3)﹣16x2y2+12xy3z=﹣4xy2(4x﹣3yz);(4)5x2y﹣25x2y2+40x3y=5x2y(1﹣5y+8x);(5)x2(a﹣b)2﹣y2(b﹣a)2=x2(a﹣b)2﹣y2(a﹣b)2=(a﹣b)2(x+y)(x﹣y);(6)(a2+b2)2﹣4a2b2=(a2+b2)2﹣(2ab)2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(7)18b(a﹣b)2+12(b﹣a)3=18b(b﹣a)2+12(b﹣a)3=6(b﹣a)2(3b+2b﹣2a)=6(b﹣a)2(5b﹣2a);(8)x(x2+1)2﹣4x3=x[(x2+1)2﹣(2x)2]=x(x2+1+2x)(x2+1﹣2x)=x(x+1)2(x﹣1)2;(9)(x2﹣2x)2﹣3(x2﹣2x)=(x2﹣2x)(x2﹣2x﹣3)=(x2﹣2x)(x﹣3)(x+1);(10)(2x﹣1)2﹣6(2x﹣1)+9=(2x﹣1+3)2=(2x+2)2=4(x+1)2;(11)16x4﹣72x2y2+81y4=(4x2﹣9y2)2=(2x+3y)2(2x﹣3y)2(12)a5﹣a=a(a4﹣1)=a(a2+1)(a2﹣1)=a(a2+1)(a+1)(a﹣1);(13)25(x+y)2﹣9(x﹣y)2=[5(x+y)+3(x﹣y)][5(x+y)﹣3(x﹣y)]=(8x+2y)(2x+8y);(14)m2﹣3m﹣28=(m﹣7)(m+4);(15)x2+x﹣20=(x+5)(x﹣4).【点评】本题考查了因式分解的提公因式法、公式法及十字相乘法,需根据题目特点灵活选用各种方法对多项式进行因式分解.一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.16.利用分解因式计算:(1)2022+202×196+982(2)(﹣2)100+(﹣2)100.【考点】因式分解的应用.【分析】(1)通过观察,显然符合完全平方公式.(2)利用提取公因式法进行因式分解.【解答】解:(1)原式=2022+2×202×98+982=(202+98)2=3002=90000.(2)原式=(﹣2)100•(1+1)=2101.【点评】本题考查了因式分解的应用.用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.。

七年级数学下册《因式分解》单元测试卷(附带答案解析)

七年级数学下册《因式分解》单元测试卷(附带答案解析)

七年级数学下册《因式分解》单元测试卷(附带答案解析)一.选择题1.下列多项式不能用平方差分解因式的是()A.0.36a2﹣0.04b2B.x2﹣16C.﹣a2+b2+c2D.﹣x2+y22.多项式4ab2+8ab2﹣12ab的公因式是()A.4ab B.2ab C.3ab D.5ab3.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣44.下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1D.a2﹣1=a(a﹣)5.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形②是直角三角形③是钝角三角形④是等边三角形,其中正确说法的个数是()A.4个B.3个C.2个D.1个6.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值为()A.6B.18C.28D.507.若a=x﹣20,b=x﹣18,c=x﹣16,则a2+b2+c2﹣ab﹣ac﹣bc的值为()A.12B.24C.27D.54二.填空题(共8小题)8.因式分解:a3+2a2b+ab2=.9.已知x2+2x+2y+y2+2=0,则x2022+y2023=.10.若x2+2x﹣3=0,则x3+x2﹣5x+2022=.11.分解因式:25a﹣ab2=.12.若x2+mx﹣n=(x+2)(x﹣5),则m﹣n=.13.若mn=1,m﹣n=2,则m2n﹣mn2的值是.14.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.15.甲乙两人完成因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b分解因式正确的结果为.三.解答题16.分解因式:x(x+4)+4.17.将下列多项式因式分解(1)8x2﹣4xy(2)3x4+6x3y+3x2y2(3)a2﹣ab+ac﹣bc18.因式分解:(1)2a3﹣8a(2)3x2y﹣18xy2+27y319.因式分解:(1)x2(a﹣b)+9(b﹣a)(2)(a2+4)2﹣16a2.20.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法.请你完成下列各题:(1)因式分解:1﹣2(x﹣y)+(x﹣y)2(2)因式分解:25(a+2)2﹣10(a+2)+1(3)因式分解:(y2﹣6y)(y2﹣6y+18)+81.21.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)若F(a)=且a为100以内的正整数,则a=(2)如果m是一个两位数,那么试问F(m)是否存在最大值或最小值?若存在,求出最大(或最小)值以及此时m的取值并简要说明理由.参考答案与解析一.选择题1.解:A、0.36a2﹣0.04b2=(0.6a+0.2b)(0.6a﹣0.2b),能分解因式,本选项不符合题意B、x2﹣16=(x+4)(x﹣4),本选项不合题意C、﹣a2+b2+c2无法分解因式,本选项符合题意D、﹣x2+y2=(y+x)(y﹣x),本选项不合题意故选:C.2.解:多项式4ab2+8ab2﹣12ab的公因式4ab故选:A.3.解:A、原式不能分解B、原式=(x+y)2﹣2=(x+y+)(x+y﹣)C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4)D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2)故选:A.4.解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选:B.5.解:∵a2+b2+c2=ab+bc+ca∴2a2+2b2+2c2=2ab+2bc+2ca即(a﹣b)2+(b﹣c)2+(a﹣c)2=0∴a=b=c∴此三角形为等边三角形,同时也是锐角三角形.故选:C.6.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2将a+b=3,ab=2代入得,ab(a+b)2=2×32=18故代数式a3b+2a2b2+ab3的值为18故选:B.7.解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]∵a=x﹣20,b=x﹣18,c=x﹣16∴a﹣b=﹣2,a﹣c=﹣4,b﹣c=﹣2则原式=×(4+16+4)=12故选:A.二.填空题8.解:原式=a(a2+2ab+b2)=a(a+b)2故答案为a(a+b)29.解:∵x2+2x+2y+y2+2=0∴(x2+2x+1)+(y2+2y+1)=0∴(x+1)2+(y+1)2=0∴x+1=0,y+1=0解得:x=﹣1,y=﹣1∴x2022+y2023=(﹣1)2022+(﹣1)2023=1+(﹣1)=0故答案为0.10.解:∵x2+2x﹣3=0∴x2=3﹣2x∴x3+x2﹣5x+2022=x(3﹣2x)+x2﹣5x+2022=3x﹣2x2+x2﹣5x+2022=﹣3+2x﹣2x+2022=2019 11.解:25a﹣ab2=a(25﹣b2)=a(5+b)(5﹣b)故答案为a(5+b)(5﹣b)12.解:∵x2+mx﹣n=(x+2)(x﹣5)=x2﹣3x﹣10∴m=﹣3,n=10∴m﹣n=﹣3﹣10=﹣13.故答案为﹣13.13.解:∵mn=1,m﹣n=2∴m2n﹣mn2=mn(m﹣n)=1×2=2故答案为2.14.解:∵x2+2(3﹣m)x+25可以用完全平方式来分解因式∴2(3﹣m)=±10解得:m=﹣2或8.故答案为﹣2或8.15.解:因式分解x2+ax+b时∵甲看错了a的值,分解的结果是(x+6)(x﹣2)∴b=6×(﹣2)=﹣12又∵乙看错了b的值,分解的结果为(x﹣8)(x+4)∴a=﹣8+4=﹣4∴原二次三项式为x2﹣4x﹣12因此,x2﹣4x﹣12=(x﹣6)(x+2)故答案为(x﹣6)(x+2).三.解答题16.解:原式=x2+4x+4=(x+2)217.解:(1)原式=4x(2x﹣y)(2)原式=3x2(x2+2xy+y2)=3x2(x+y)2(3)原式=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c).18.解:(1)原式=2a(a2﹣4)=2a(a+2)(a﹣2)(2)原式=3y(x2﹣6xy+9y2)=3y(x﹣3y)2 19.解:(1)原式=x2(a﹣b)﹣9(a﹣b)=(a﹣b)(x2﹣9)=(a﹣b)(x﹣3)(x+3)(2)原式=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)220.解:(1)设x﹣y=m原式=1﹣2m+m2=(1﹣m)2=[1﹣(x﹣y)]2=(1﹣x+y)2(2)设a+2=m原式=25m2﹣10m+1=(5m﹣1)2=[5(a+2)﹣1]2=(5a+9)2(3)设y2﹣6y=m原式=m(m+18)+81=m2+18m+81=(m+9)2=(y2﹣6y+9)2=(y﹣3)4.21.解:(1)2×3=6,4×6=24,6×9=54,8×12=96 (2)F(m)存在最大值和最小值.当m为完全平方数,设m=n2(n为正整数)∵|n﹣n|=0∴n×n是m的最佳分解∴F(m)==1又∵F(m)=且p≤q∴F(m)最大值为1此时m为16,25,36,49,64,81当m为最大的两位数质数97时,F(m)存在最小值,最小值为.故答案为6,24,54,96.。

第四章 因式分解单元提升测试B卷(含解析) - 副本

第四章 因式分解单元提升测试B卷(含解析) - 副本

第四章因式分解单元测试(B 卷提升篇)一、选择题(共10小题,满分30分,每小题3分)1.若多项式x 2+px +12可分解为两个一次因式的积,则整数p 可能的取值有( ) A .3个 B .4个 C .5个 D .6个 2.下列多项中,能用完全平方公式分解的是:( )①x 2−4x +4②③④⑤ A .①② B .①③ C .②③ D .①⑤ 3.已知多项式2x 2-bx+c 分解因式为2(x-3)(x+1),则b+c 的值为( ) A .-10 B .-4 C .-2 D .2 4.因式分解21a -的结果是A .(1)(1)a a +-B .2(1)a -C .(1)(1)a a +-D .(1)a a - 5.下列因式分解中错误的是( ).A .()()25414x x x x ++=++B .()()2623m m m m +-=-+C .()()292045y y y y +-=+-D .()()291836x x x x -+=-- 6.113-11不能被下列哪个数整除?( )A .13B .12C .11D .10 7.下面式子从左边到右边的变形中是因式分解的是( )A .()2212x x x x --=--B .()()22a b a b a b +-=-C .()()2422x x x -=+-D .()2222a b a b ab +=++ 8.802﹣1能被( )整除.A .76B .78C .79D .82 9.已知a 、b 、c 是ABC 的三条边,且满足22a bc b ac +=+,则ABC 是() A .锐角三角形 B .钝角三角形C .等腰三角形D .等边三角形10.两个连续的奇数的平方差总可以被 k 整除,则k 等于( )A .4B .8C .4或-4D .8的倍数二、填空题(共7小题,满分28分,每小题4分)11.因式分解:a 2+3ab = .12.多项式x 3+x 2,x 2+2x +1,x 2-1的公因式是______ .13.因式分解:x 2+x= .14.因式分解:244ax ax a -+=______.15.分解因式:4=ab a -2_________16.已知 x 2 + x +1 = 0 ,则 x 3 - x 2 - x + 7 = (______) 17.已知多项式22x ax +-可分解为两个整系数的一次因式的积,则a =________________..三、解答题(共6小题,满分42分,每题7分)18.化简:()()()223+10x y x y x y y +---.19.分解因式:22x y x y --+20.4m +与221n n -+互为相反数,把多项式()()224x y mxy n +-+分解因式.21.分解因式:(1) 12abc -2bc 2 (2) 2a 3-12a 2+18a(3)(a ﹣b )2-a+b (4) ()()229a b a b +--22.因式分解:(1)4x³-8x²+4x (2)44x y -23.先因式分解,再求值:12a 3b +a 2b 2+12ab 3,其中a =2,b =3.。

北师大版八年级下数学第四章《因式分解》单元测试(含答案)

北师大版八年级下数学第四章《因式分解》单元测试(含答案)

第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2]该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解单元测试(B卷)
班级姓名成绩
一、选择题(3′×10=30′)
1.下列各题中,分解因式正确的是().
A.b(a-4)-c(4-a)=(a-4)(b-c)
B.x2(x-2)2+2x(x-2)2=(x-2)2(x2+2x)
C.(a-b)(a-c)+(b-a)(b-c)=(a-b)(a+b-2c)
D.5a(x-y)+10b(y-x)=5(x-y)(a-2b)
2.分解2x(-x+y)2-(x-y)3应提取的公因式是().
A.-x+y B.x-y C.(x-y)2D.以上都不对
3.若多项式(a+b-c)(a+c-b)+(b-a+c)(b-a-c)=M·(a-b+c),则M=().A.2(b-c)B.2a C.2b D.2(a-c)
4.下列因式分解中正确的是().
A.-0.01+9x2=(0.1+3x)(0.1-3x)B.x2+x+1=(x+1)2
C.1-
2
16
a
=(1+
1
4
a)(1-
1
4
a)D.-
1
9
x+
9
4
x2=(
1
3
+
3
2
x)2
5.已知x=1125
,
7522
y ,则(x+y)2-(x-y)2的值等于().
A.1
6
B.
1
3
C.
2
3
D.
5
8
6.下列等式一定成立的是().
A.b2-a2=(a+b)(a-b)B.a2+b2=(a+b)2
C.(a-b)2=(b-a)2D.4x3+6x2+2x=2x(2x2+3x)
7.把(a-b)(a2+ab+b2)+ab(b-a)分解因式的结果是().
A.(a-b)(a2+b2)B.(a-b)(a+b)2
C.(a-b)3 D.(a-b)(a+b)
8.式子x2+9x,x2+18x+81与x2-81的公因式是().
A.x+9 B.x-9 C.(x+9)2D.以上都不对
9.若4x2+mx+9是完全平方式,则m的值为().
A.12 B.-12 C.±12 D.以上都不对10.将多项式x2+2xy+y2-2x-2y+1分解因式,正确的是().
A.(x+y)2B.(x+y-1)2C.(x+y+1)2D.(x-y-1)2
二、填空题(3′×10=30′)
11.-12a4-24a3+36a2的公因式是_______.
12.分解因式:3(x-2y)2-9(2y-x)=________.
13.分解因式:m(a-b)(b-c)-(b-a)(c-b)=_______.
14.已知:x+y=-3,xy=2,x2y+xy2=________.
15.(-2)101+(-2)100=_________(用幂的形式表示)
16.已知m2+2km+16是完全平方式,则k=________.
18.分解因式:36a 2-(9a 2+1)2=________.
19.多项式m (m -3)+2(3-m ),m 2-4m+4,m 4-16中,它们的公因式是_______.
20.若正方形的面积是9x 2+6x+1(x>0),则边长为_______.
三、解答题(共60′)
21.因式分解.(4′×6=24′)
(1)-4a 3b 2+10a 2b -2ab (2)6(x+y )2-2(x+y )
(3)-7ax 2+14axy -7ay 2 (4)25(a -b )2-16(a+b )2
(5)(x 2+y 2)2-4x 2y 2 (6)a 2+2ab+b 2-1
22.利用因式分解计算.(4′×2=8′)
(1)416×4.2+4.16×370+41.6×21 (2)(22287)()1515 +492-502
23.(5′)化简求值:已知x+y=2,xy=
34
,求x 3y+xy 3+2x 2y 2的值.
24.(5′)已知a2+a=1,求多项式a4+a3+a-6的值.
25.(5′)证明题
证明:当n为正整数时,n3-n的值,必是6的倍数.
26.(5′)已知,a,b,c是△ABC的三边,求证:(a2+b2-c2)2-4a2b2<0.
答案:
一、1.D 2.C 3.D 4.B 5.C 6.C 7.A 8.A 9.C 10.B
二、11.-12a212.3(x-2y)(x-2y+3)13.(a-b)(b-c)(m-1)14.-6 15.-2100•16.±4 17.2 -3 18.-(3a+1)2(3a-1)219.m-2 20.3x+1 三、21.(1)-2ab(2a2b-5a+1)(2)2(x+y)(3x+3y-1)(3)-7a(x-y)2(4)(9a-b)(a-9b)(5)(x+y)2(x-y)2(6)(a+b+1)(a+b-1)
22.(1)4160 (2)-924
5
23.(1)x1=0,x2=-
2
5
(2)x1=-4,x2=
2
3
24.3 25.-5
26.n3-n=n(n2-1)=n(n+1)(n-1),
当n为正整数时,n-1,n,n+1是三个连续的自然数,其中必有一个为偶数,必有一个为3的倍数,
故必是2×3=6的倍数
27.∵(a2+b2+c2)2-4a2b2
=(a2+b2-c2+2ab)(a2+b2-c2-2ab)
=[(a2+2ab+b2)-c2][•(a2-2ab+b2)-c2]
=[(a+b)2-c2][(a-b)2-c2]
=(a+b+c)(a+b-c)(a-b+c)(a-b-c),
∵a,b,•c•是△ABC的三边,
∴a+b+c>0,a+b-c>0,a-b-c<0,
∴(a2+b2-c2)2-4a2b2<0.。

相关文档
最新文档