5.5希望工程义演

合集下载

“希望工程”义演演示文稿

“希望工程”义演演示文稿

1.通过对“希望工程”的了解,我们
要更加珍惜自己的学习时光,并尽力去帮助 那些贫困地区的失学儿童. 2.遇到较为复杂的实际问题时,我们 可以借助表格分析问题中的等量关系,借此列 出方程,并进行方程解的检验. 3. 同样的一个问题,设未知数的方法 不同,所列方程的复杂程度一般也不同,因此在 设未知数时要有所选择.
如果票价不变,那么售出 如果票价不变,那么售出1000张票 张票 票款可能是6930元吗?为什么? 元吗? 所得 票款可能是 元吗 为什么?
答:不可能
设售出的学生票为x张 则根据题意得: 解: 设售出的学生票为 张,则根据题意得: 8(1000-x)+5x=6930 ( ) 解得: 解得: X =1070/3 票的张数不可能是分数, 票的张数不可能是分数,所以不可能
资料来源:/view/6016.htm 资料来源:/view/6016.htm
图片来源/show/1/14/ca6168e7422306ba.html 图片来源/show/1/14/ca6168e7422306ba.html
习题5-9 习题 数学理解: 数学理解 问题解决: 问题解决
1题 题 2题 题
一些和希望工程有关的网站
中国青少年发展基金会 / 新中国档案——希望工程 新中国档案——希望工程 中国青年网——完美青年公益 中国青年网——完美青年公益 /xwgc/
40瓦的灯泡个数+60瓦的灯泡个数= 40瓦的灯泡个数+60瓦的灯泡个数=5个 ① 瓦的灯泡个数 瓦的灯泡个数 40瓦灯泡总瓦数+60瓦灯泡总瓦数=260瓦 40瓦灯泡总瓦数+60瓦灯泡总瓦数=260瓦 ② 瓦灯泡总瓦数 瓦灯泡总瓦数 设40瓦的灯泡瓦数为y瓦, 40瓦的灯泡瓦数为

北师大版七年级数学上册第5章 5.5 应用一元一次方程—“希望工程”义演 培优训练(含答案)

北师大版七年级数学上册第5章  5.5 应用一元一次方程—“希望工程”义演    培优训练(含答案)

北师版七年级上册第五章一元一次方程5.5应用一元一次方程——“希望工程”义演培优训练卷一.选择题(共10小题,3*10=30)1.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为( )A.54+x=80%×108B.54+x=80%(108-x)C.54-x=80%(108+x)D.108-x=80%(54+x)2.某公路收费站的收费标准如下:中型汽车为20元/辆,小型汽车为10元/辆.一天上午的某个时段内,该收费站共通过了50辆车,这些车共缴费700元,那么该时段内共通过小型汽车( )A.20辆B.25辆C.30辆D.10辆3. 某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.22x=16(27-x)B.16x=22(27-x)C.2×16x=22(27-x)D .2×22x =16(27-x)4.某车间有20名工人生产螺栓和螺母,每人每天能生产螺栓12个或螺母18个.如果分配x 名工人生产螺栓,其余的工人生产螺母,要恰好使每天生产的螺栓和螺母按1∶2配套.求x 所列的方程是( )A .12x =18(20-x)B .18x =12(20-x)C .2×18x =12(20-x)D .2×12x =18(20-x)5.某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再参加合作,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是( ) A.x +312+x 8=1 B.x +312+x -38=1 C.x 12+x 8=1 D.x 12+x -38=1 6.在甲处工作的有272人,在乙处工作的有196人,如果要使乙处工作的人数是甲处工作人数的13,应从乙处调多少人到甲处?若设从乙处调x 人到甲处,则下列方程正确的是( ) A .272+x =13(196-x) B.13(272-x)=196-x C.13×272+x =196-x D.13(272+x)=196-x7.在一农场,鸡的只数与猪的头数的和是70,而鸡的脚数和猪的脚数的和是196,则鸡比猪多( )A.14只B.16只C.22只D.42只8.某工人若每小时生产38个零件,在规定时间内还有15个不能完成,若每小时生产42个零件,则可以超额5个,问规定时间是多少.设规定的时间为x小时,则有( ) A.38x-15=42x+5B.38x+15=42x-5C.42x+38x=15+5D.42x-38x=15-59.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为( )A.6名B.7名C.8名D.9名10.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场二.填空题(共8小题,3*8=24)11.某服装厂有工人54人,每人每天可加工上衣8件或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x人做上衣,则做裤子的人数为______人,根据题意,可列方程为________________,解得___________.12.根据图中提供的信息,可知一个杯子的价格是________.13.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x 小时,完成了任务.根据题意,可列方程为______________,解得________.14.一件工程,甲队单独做要8天完成,乙队单独做要9天完成,甲队做3天后,乙队来支援,两队合做x 天完成任务的34,则由此条件可列出的方程是_______________________. 15.甲能在12天内完成某项工作,乙的工作效率比甲高20%,那么乙完成这项工作的天数为_________.16. 已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为________岁.17.打印一份材料,甲要16小时,乙要20小时,甲打印6小时,乙接着打印,乙还要_________小时完成.18.我市围绕“科学节粮减损,保障粮食安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分是农户实际出资的三倍还多30元,则购买一套小粮仓农户实际出资是___________.三.解答题(共7小题,46分)19. (6分) 某校为创建“书香校园”,现有图书5600册,计划创建大小图书角共30个.其中每个小图书角需图书160册,大图书角所需图书比小图书角的2倍少80册.问该校创建的大小图书角各多少个?20. (6分)) 将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?21. (6分) 世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.22. (6分)某县中学生足球联赛共赛10轮(即每队需比赛10场),其中胜一场得3分,平一场得1分,输一场得0分,向明中学足球队在这次联赛中所负场数比踢平场数少3场,结果共得19分,向明中学足球队在这次联赛中胜了几场?23. (6分)某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?24. (8分)甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?25. (8分) ) 公园门票价格规定如下表:某校七(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)若两班联合起来,作为一个团体购票,可省多少钱?(3)如果七(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?参考答案1-5BCDDD 6-10DABAC11. (54-x),8x =10(54-x),x =3012.8元13. (16+14)x =1,x =12514. x +38+x 9=3415.10天16. 1217. 12.518.80元19. 解:设创建小图书角x 个,则创建大图书角(30-x)个,根据题意可得160x +(30-x)×(2×160-80)=5600,解得x =20,则30-20=10,答:创建小图书角20个,则创建大图书角10个20. 解:设甲、乙一起做还需x 小时才能完成工作.根据题意,得16×12+(16+14)x =1, 解这个方程,得x =115,115小时=2小时12分, 答:甲、乙一起做还需2小时12分才能完成工作21. 解:设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150-x)元, 依题意得50%x +60%(150-x)=80,解得x =100,150-100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元22. 解:设该足球队平x场,依题意得3[10-x-(x-3)]+x=19,解得x=4,所以[10-x-(x-3)]=5,答:向明中学足球队在这次联赛中胜5场23. 解:设应安排x天精加工,则有(15-x)天粗加工.依题意得6x+16(15-x)=140.所以x=10,15-x=15-10=5答:该公司应安排10天精加工,5天粗加工24. 解:(1)能履行合同.设甲、乙合做x天完成,则有(130+120)x=1,解得x=12<15,因此两人能履行合同(2)由(1)知,二人合作完成这项工程的75%需要的时间为12×75%=9(天),剩下6天必须由某人做完余下的工程,故他的工作效率为25%÷6=1 24,因为130<124<120,故调走甲更合适25. 解:(1)设七(1)班有x人,则13x+11(104-x)=1240或13x+9(104-x)=1240,初中数学解得x=48或x=76(不合题意,舍去).答:七(1)班48人,七(2)班56人(2)1240-104×9=304(元).答:可省304元钱(3)要想享受优惠,由(1)可知七(1)班48人,只需多买3张,51×11=561,48×13=624>561,所以48人买51人的票可以更省钱11/ 11。

5.5 应用一元一次方程—“希望工程”义演

5.5 应用一元一次方程—“希望工程”义演

5.5 应用一元一次方程—“希望工程”义演一.解答题(共20小题)1.(2020秋•雁塔区校级期末)某公园门票价格规定如下表:购票张数1﹣50张51﹣100张100张以上单张票价13元11元9元某校七年级两个班共104人去游园,其中(1)班有40多人,不足50人,经估算,如果两个班各以班为单位购票,则一共应付1240元.问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?2.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?3.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:购票张数1~30张31~60张60张以上每张票的价格15元12元10元原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?4.(2020秋•吉林期末)公园门票价格规定如下表:购票张数1~50张51~90张90张以上每张票的价格13元11元9元某校七年级一、二两个班共100人去游园,七年一班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1196元.问:(1)两个班各有多少学生;(2)如果两个班联合起来,作为一个团体购票,可省多少元;(3)如果七年一班单独组织去游园,作为组织者的你如何购票才最省钱.5.(2020秋•武都区期末)非遗园的门票价格规定:购票人数1~40人,票价120元;购票人数41~80人,票价100元;购票人数80人以上,票价80元.(1)蚌埠路小学六(1)班36人、六(2)班46人一起去游非遗园.①如果两班都以班为单位分别购票,那么一共需多少钱?②如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)现又来了两个旅游团,甲团人数少于乙团人数,如果两团都以团为单位分别购票,则一共需付8080元.如果两团作为一个团体购票则需付7600元.问:两个旅游团各有多少人?6.(2020秋•兖州区期末)公园门票价格规定如表:购票张数1~50张51~100张100张以上每张票的价格15元13元11元某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1422元.问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可比两个班都以班为单位购票省多少元钱?(2)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?7.(2020秋•南岗区期末)某公园门票价格规定如下表:购票张数1﹣50张51﹣100张100张以上单张票价13元11元9元某校七年级两个班共104人去游园,其中(1)班有40多人,不足50人,经估算,如果两个班以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?8.(2020秋•兰州期末)某校科技小组的26名学生在1名生物老师的带领下准备前往国家森林公园考察标本,森林公园的票价是每人5元,一次性购满30张,每张票可少收1元.当老师准备到售票处买27张票时,平时爱动脑筋的聪聪喊住了老师,提议买30张票.(1)请你回答,买30张票合算还是买27张合算,为什么?(2)当少于30人进入森林公园,入园人数为多少时,按实际人数购票和买30张票,两种方法付款相同?9.(2020秋•丹江口市期中)近期电影《我和我的家乡》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为n,购买张数1≤n≤5051≤n≤100n>100每张票的价格40元35元30元家长沟通后决定两个班的同学在期中考试结束后去观看.两个班共有102人,其中1班人数多于40不足50人.经过估算,如果两个班都以班为单位购买,则一共应付3815元.(1)求两个班各有多少个同学?(2)如果两个班联合起来,作为一个团体购票,可以节省多少钱?(3)如果七年级1班同学作为一个团体购票,你认为如何购票才最省钱?可以节省多少钱?10.(2019秋•彭水县期末)为了丰富老年人的晚年生活,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位退休职工共102人,其中乙单位人数少于50人,且甲单位人数不够100人.经了解,该风景区的门票价格如表:数量(张)1~5051~100101张及以上单价(元/张)605040如果两单位分别单独购买门票,一共应付5500元.(1)甲、乙两单位各有多少名退休职工准备参加游玩?(2)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?11.(2019秋•高明区期末)研学基地高明盈香生态园的团体票价格如表:数量(张)30~5051~100101及以上单价(元/张)806050某校七年级(1)、(2)班共102人去研学,其中(1)班人数较少,不足50人,两个班相差不超过20人.经估算,如果两个班都以班为单位购票,则一共应付7080元,问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可省多少钱?12.(2019秋•琼中县期末)列方程解应用题我县某校七年级师生共60人,前往海口电影公社参加“研学”活动,商务车和快车的价格如下表所示:(教师技成人票购买,学生按学生票购买)运行区间成人票价(元/张)学生票价(元/张)出发站终点站商务车快车商务车快车营根海口42353830若师生均乘坐商务车,则共需2296元.问参加“研学”活动的教师有多少人?学生有多少人?13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:购票张数1~50张51~100张100张以上每张票的价格12元10元8元原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?14.(2019秋•贵阳期末)2019第九届贵阳汽车文化节.在贵阳国际会展竟中心设置了室外展馆和室内展馆.某单位组织150名员工参观,每名员工只参观一个展馆,共支付票款2000元,票价信息如下:地点票价室外展馆10元/人室内展馆20元/人(1)参观室外展馆和室内展馆的人数各是多少人?(2)若举办方针对100人以上的团体给予所有票价八折优惠,在总人数与总支付票款不变的情况下,参观室内展馆的人数是多少?15.(2019秋•江岸区期中)近期电影《少年的你》受到广大青少年的喜爱,某校七年级1班、2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为n:购买张数1≤n≤5051≤n≤100n>100每张票的价格38元30元26元家长沟通后决定两个班的同学在期中考试结束后去观看.两个班共有104人,其中1班人数多于40不足50人.经过估算,如果两个班都以班为单位购买,则一共应付3504元.(1)求两个班各有多少同学?(2)如果两个班联合起来,作为一个团体购票,可以节省多少钱?(3)如果七年级1班同学作为一个团体购票,你认为如何购票才最省钱?可以节省多少钱?16.(2020秋•肃州区期末)为准备联合韵律操表演,甲、乙两校共100名学生准备统一购买服装(一人买一套)参加表演,(其中甲校人数多于乙校人数,且甲校学生不够99人)下面是服装厂给出的演出服装的价格表:购买服装的套数1套至49套50套至99套100套及以上每套服装的价格60元50元40元如果两所学校分别单独购买服装,一共应付5420元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加表演?(3)如果甲校有9名同学被抽调去参加书法比赛不能参加韵律操演出,请你为两校设计一种最省钱的购买服装方案.17.(2019秋•岐山县期末)2016年春节即将来临,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位共102人,其中甲单位人数多于乙单位人数,且甲单位人数不够100人.经了解,该风景区的门票价格如下表:数量(张)1﹣5051﹣100101张及以上单价(元/张)60元50元40元如果两单位分别单独购买门票,一共应付5500元.(1)如果甲、乙两单位联合起来购买门票,那么比各自购买门票共可以节省多少钱?(2)甲、乙两单位各有多少名退休职工准备参加游玩?(3)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?18.(2019秋•武昌区校级期中)公园的门票价格规定如下表:购票张数1到50张51到100张101到150张150张以上每张票的价格12元10元8元超过150张的部分7元某校七年级(1)(2)两个班共104人,其中(1)班40多人,不足50人,经估算,如果两个班都以班为单位购票,则一共应付1136元,问:(1)若两班联合起来作为一个团体购票,可省多少钱?(2)两班学生各有多少人?(3)若七年级(3)班有n人(46<n<55)与(1),(2)班一起去游园,某商家赞助,支付三个班的所有门票费,则该商家最少花费元(用含n的式子表示).19.(2019秋•海淀区校级月考)学校组织游学活动,去往北京市某公园,公园门票价格规定如下表:购票张数1﹣50张51﹣100张100张以上单张票价13元11元9元北京线路共有104人参加本次游园,分两车出发,编号为1号和2号.其中1号车有40多人,不足50人.经估算,如果两辆车以车为单位购票,则一共应付1240元.(1)1号车与2号车各有多少学生?(2)若两车联合起来,作为一个团体购票,可省多少钱?(3)若1号车单独组织去游园,如何购票才最省钱,并说明理由.20.(2018秋•下陆区期末)某城市开展省运会,关心中小学生观众,门票价格优惠规定见表.某中学七年级甲、乙两个班共86人去省运会现场观看某一比赛项目,其中乙班人数多于甲班人数,甲班人数不少于35人.如果两班都以班级为单位分别团体购买门票,则一共应付8120元.购票张数1~40张41~80张81张(含81张)以上平均票价(元/张)1009080(1)如果甲、乙两个班联合起来作为一个团体购买门票,则可以节省不少钱,联合起来购买门票能节省多少钱?(2)问甲、乙两个班各有多少名学生?(3)如果乙班有m(0<m<20,且m为整数)名学生因事不能参加,试就m的不同取值,直接写出最省钱的购买门票的方案?。

辽宁省辽阳市第九中学北师大版七年级数学上册教案:5.5应用一元一次方程(“希望工程”义演)

辽宁省辽阳市第九中学北师大版七年级数学上册教案:5.5应用一元一次方程(“希望工程”义演)
五、教学反思
在今天的课堂中,我们探讨了一元一次方程在实际问题中的应用,特别是结合“希望工程”义演的情境。我发现学生们对于将现实问题转化为数学方程这一过程感到有些挑战,这是我们需要重点关注和加强的地方。
首先,我注意到在导入新课的时候,通过提问的方式引起了学生们的兴趣,他们开始积极思考日常生活中可能遇到的一元一次方程问题。这种引导式的提问对于激发学生的好奇心和学习动机非常有效。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了应用一元一次方程的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在理论介绍和案例分析环节,我尽量用简洁明了的语言解释了一元一次方程的概念,并通过具体的案例让学生看到了方程的实际应用。然而,我也意识到在讲解过程中,可能需要更多的互动和示例来帮助学生更好地理解方程的构建和解法。
实践活动和小组讨论环节,学生们表现出了很高的参与度。他们通过分组讨论和实验操作,不仅加深了对一元一次方程的理解,还提升了团队协作和解决问题的能力。但我观察到有些小组在讨论时可能会偏离主题,这需要我在今后的教学中更加明确讨论的界限和方向。
a.义演门票价格问题:根据门票单价和总收入,列出一元一次方程,求解门票数量。
b.义演捐款问题:根据捐款总额和捐款人数,列出一元一次方程,求解平均捐款金额。
c.义演支出问题:根据总支出和各项支出占比,列出一元一次方程,求解各项具体支出金额。

应用一元一次方程---“希望工程”义演

应用一元一次方程---“希望工程”义演
A.5(x-2)+3x=14 B.5(x+2)+3x=14 C.5x+3(x+2)=14 D.5x+3(x-2)=14
3.某校学生为灾区积极捐款.已知第二次捐款总数 是第一次捐款总数的3倍少95元,两次共捐款3025元, 则第一次捐款___7_8_0___元.
4.某车间有28名工人,每人每天能生产螺栓12个或螺母18个,
(2)若学生都去参观历史博物馆,则能节省票款___5_0_0___元.
一个实际问题可以有多个等量关系,列表格是一种 能明显表示出等量关系的方法.
某地为了打造风光带,将一段长为360 m的河道整治任 务交给甲、乙两个工程队先后接力完成,共用时20天, 已知甲工程队每天整治24 m,乙工程队每天整治16 m, 求甲、乙两个工程队分别整治了多长的河道.
2.可以采用列表格的方法搞清较复杂问题中的各个 量之间的关系.
3.选择恰当的设未知数的方法.
如果票价不变(学生票5元/张,成人票8元/张), 那么售出1 000张票所得票款可能是6 930元吗?
因为:
不可能. 5x ( 8 1 000 - x) 6 930.
解方程得: x 1 070 . 3
票数必须为正整数.
设有x名工人生产螺栓,每天生产的螺栓和螺母按1∶2配套,
则所列方程正确的是( C )
A.12x=18(28-x)
B.18x=12(28-x)
C.2×12x=18(28-x) D.2×18x=12(28-x)
5.小明花了30元买了两种书,共5本,单价分别为3元/本和8 元/本,则每种书各买了多少本? 解:设3元/本的书买了x本,则8元/本的书买了__(5_-__x_)__本. 根据题意,得__3_x_+__8_(_5_-__x)_=__3_0_. 解这个方程,得x=____2____. 因此,3元/本的书买了____2____本,8元/本的书买了____3____ 本.

5.5一元一次方程应用(3)

5.5一元一次方程应用(3)
3.某同学在暑假里给同学寄了2封信和一些明信片,一共花了4.6元,已知每封信的邮费为0.8元,每张明信片的邮费为0.6元。他寄了多少明信片?
4.学校文艺部组织文艺委员观看演出.共购得8张甲票,4张乙票,总计用112元,赛中,小林一人独得28分(不含罚球得分),已知他投中的2分球比3分球多4个,他一共投中了多少个2分球?多少个3分球?
我的疑惑:
二、合作探究:
某文艺团体为“希望工程”募捐义演,本次义演共售出1000张票,筹得票款6950元,成人票与学生票各售出多少张?
学生
成人
票数(张)
票款(元)
三、当堂检测:
1.初三·1班举办了一次集邮展览,展出的邮票数若以平均每人3张则多24张,以平均每人4张则少26张,这个班级有多少学生?一共展出了多少张邮票?
2.某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半还少1人,三个车间各有多少人?
四、总结反思:
可以借助“列表格”的方法来帮助我们解决一些较复杂的问题
五、课后练习:
1.今有雉兔同笼,上35头,下94足,问今有雉兔几何?
2.一班有40位同学,新年开晚会,班主任到超市花了115元买果冻与巧克力共40个,若果冻每2个5元巧克力每块3元,问班主任分别买了多少果冻和巧克力?
课题:5.5一元一次方程应用(3)---“希望工程”义演
教师个性化设计、学法指导或学生笔记
学习目标:
1、借助表格分析复杂问题中的数量关系和等量关系,体会间接设未知数的解题思路,从而建立方程解决实际问题,并进一步明确检验方程的解是否符合题意.
2、通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力.增强学生探究、推理数学的能力;培养学生的数学兴趣,协助学生发展逻辑思维的能力,并能应用数学解决日常生活中的问题.

北师大版七年级上册数学5.5《应用一元一次方程——希望工程义演》教案

北师大版七年级上册数学5.5《应用一元一次方程——希望工程义演》教案

北师大版七年级上册数学5.5《应用一元一次方程——希望工程义演》教案一. 教材分析《应用一元一次方程——希望工程义演》这一节内容,主要让学生学会运用一元一次方程解决实际问题。

通过希望工程义演的问题情境,引导学生理解并掌握一元一次方程的解法及其应用。

教材通过具体的问题,让学生体会数学与生活的紧密联系,培养学生的数学应用能力。

二. 学情分析学生在学习了《方程》这一章的内容后,对一元一次方程的概念、解法已经有了初步的了解。

但部分学生可能对实际问题转化为数学方程还有一定的困难,因此在教学过程中,需要关注学生的这一情况,引导学生正确地将实际问题转化为数学方程。

三. 教学目标1.知识与技能:让学生掌握一元一次方程的解法,并能运用一元一次方程解决实际问题。

2.过程与方法:通过解决希望工程义演的问题,培养学生将实际问题转化为数学方程的能力,提高学生的数学应用能力。

3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的社会责任感。

四. 教学重难点1.重点:一元一次方程的解法及其应用。

2.难点:将实际问题转化为数学方程。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置具体的问题情境,引导学生独立思考、合作交流,培养学生的解决问题的能力。

六. 教学准备1.准备希望工程义演的相关背景材料和问题情境。

2.准备一元一次方程的解法教学课件。

七. 教学过程1.导入(5分钟)–向学生介绍希望工程义演的相关背景,激发学生的学习兴趣。

–提出问题:如何合理安排演出现金收入与支出,使希望工程受益最大?引出本节课的主题。

2.呈现(10分钟)–呈现希望工程义演的具体问题情境,引导学生观察、分析问题。

–提出问题:如何用数学方程来表示这个问题?让学生独立思考,尝试列出方程。

3.操练(10分钟)–引导学生讨论如何将实际问题转化为数学方程,展示不同的解题思路。

–分组进行练习,让学生动手解一元一次方程,体会解题过程。

4.巩固(5分钟)–对学生进行解答情况进行总结,指出解题的关键步骤。

第五章 5.5应用一元一次方程-“希望工程”义演同步练习-2021-2022学年北师大版数学七年级上

第五章 5.5应用一元一次方程-“希望工程”义演同步练习-2021-2022学年北师大版数学七年级上

初中数学北师大版七年级上学期第五章 5.5应用一元一次方程——“希望工程”义演一、单选题1.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树。

设男生有x人,则( )A. 3x+2(30-x)=72B. 3x+2(72-x)=30C. 2x+3(30-x)=72D. 2x+3(72-x)=302.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设A 种饮料单价为x元/瓶,那么下面所列方程正确的是A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=133.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x人,则()A. B. C. D.4.2016年9月28日﹣12月31日,山东临沂灯展中千万盏彩灯点亮300亩天然花海.某日,从晚上17时开始每小时进入灯展的人数约为900人(之前该灯展有游客400人),同时每小时走出灯展的人数约为600人,已知该灯展的饱和人数约为1600人,则该灯展人数饱和时的时间约为()A. 21时B. 22时C. 23时D. 24时5.某公园门票的价格为:成人票10元/张,儿童票5元/张.现有x名成人、y名儿童,买门票共花了75元.据此可列出关于x、y的二元一次方程为()A. 10x+5y=75B. 5x+10y=75C. 10x﹣5y=75D. 10x=75+5y二、填空题6.有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.设大和尚有x人,则可列一元一次方程为________.7.鸡兔同笼是我国古代著名趣题之一,书中是这样叙述的:“今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何?意思是有若干只鸡兔在同一个笼子里从上面数有35个头,从下面数有94只脚,则笼子中鸡________只,兔________只。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据题意列方程为().
x=( ).
∴3元的买了()本,8元的买了()本.
2.某公园成人票价20元,儿童票价8元,某旅行团共有60人,买门票共花了960元,问:成人与儿童各多少人?
解:设有儿童x人,则成人()人.
根据题意列出方程:
()
x=( )
因此,成人有()人,儿童有()人。
二、课本190页随堂练习
布置作业:
课本190页,问题解决1、2题
补充、修正、体会
补充、修正、体会
四、教学反思
宝鸡市列电中学七年级数学电子课时教案
课题
5.5应用一元一次方程——“希望工程”义演
共_1_课时
第课时
课型
备课时间
上课时间
备课人
使用人
有无课件
1、教学目标
1、情感目标:体会方程是刻画现实世界的一个有效的数学模型
2、知识目标:进一步了解用一元一次方程解决实际问题的一般步骤,初步学会用一元一次方程解决有多个未知量的简单的实际问题。
已知量:成人票单价,学生票单价,售出的总票数,筹得的总票款。
未知量:成人票数,学生票数,成人票款,学生票款。
已知量与未知量之间的等量关系:成人票数+学生票数=1000张,成人票款+学生票款=6950元
(8元×成人票数=成人票款,5元×学生票数=学生票款)
3、寻找解决问题的方法:
师:想一想,你能求出这个问题中的四个未知量吗?选用其中
3、能力目标:树立用方程去解决实际问题的思想,发展分析问题、解决问题的能力。.
2、教学重、难点
教学重点:
学会用一元一次方程解决有多个未知量的实际问题。
教学难点:
分析等量关系,正确选择适当的未知量设元,列出方程。
3、教学过程
1、引入课题:
上节课我们尝试用一元一次方程解决打折销售中遇到的一些问题,今天我们来研究一项公益事业“希望工程”义演中所包含的数学问题。
学生思考后,让一位学生作答:
设学生票售出X张,根据题意,得:
5X+8(1000-X)=6932
解得:X=356
1000-356=644
644-356=288
因此可见,成人票比学生票多售出288张。
巩固练习:
一、读题填空
1.小明花了30元买了两种书,共5本,单价分别为3元和8元,每种书各买了多少本?
解:设3元的买了x本,则8元的买()本.
2、设置实际情景,分析数量关系:
某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款6950元,已知成人票每张8元,学生票每张5元。(最好能像课文170页那样图文并茂的形式出现)
师问:在以上提供的信息中,有哪些已知量?哪些未知量?这些已知量与未知量之间包含哪些等量关系?
教师组织学生互相讨论后,交流看法:
成人
合计
票数(张)
350
650
1000
票款(元)
1750
5200
6950
(2)设所得学生票款为Y元,则得:
学生
成人
票数(张)
票款(元)
Y
6950-Y
根据等量关系得: + =1000
解得Y=1750,同样可获得(1)的结果。
4、归纳总结解决以上问题的思想方法:(学生讨论后,师总结)
(1)弄清题意,分析其包含的数量关系;
的一个未知量设为X,试一试。
补充、修正、体会
学生尝试后交流(教师选其中两种板演)
(1)(1)设售出的学生票为X张,则可得(空白表格事先制好)
学生
成人
票数(张)
X
1000-X
票款(元)
5X
8(1000-X)
根据等量关系得方程:5X+8(1000-X)=6950
解得:X=350
根据上面的等量关系可得:
学生
学生思考后,让一位学生作答:
设学生票售X张,则可得方程:5X+8(X+300)=6950
解得:X=3Biblioteka 0350+300=650
因此,售出成人票650张,学生票350张。
变式2:在开始的“希望工程”义演的问题中,如果票价和售出的总票数都不变,所得票款可能是6932元呢?如果可能,成人票比学生票多售出多少张?
(2)选择一个未知量设为未知数X(或Y等)根据相互关系,用含未知数的代数式表示其余的未知量;
(3)根据在(2)中尚未用到的等量关系列出方程,并解方程;
(4)验证所求得的解是否符合实际情形,最后得出结论。
5、变式练习:
变式1:将开始的实际问题中的“共售1000张票”改为“成人票比学生票多300张”,成人票与学生票各售出多少张?
相关文档
最新文档