小数系数的一元一次方程练习题

合集下载

一元一次方程练习题

一元一次方程练习题

3.1.1 一元一次方程练习题考点一.方程的概念1、含有的等式叫方程。

考点二.一元一次方程的概念1.只含有个未知数,未知数的次数都是次的方程,叫做一元一次方程。

考点三.列方程遇到实际问题时,要先设字母表示 ,然后根据问题中的 ,最后写出含有未知数的 ,就能列出方程.归纳:列方程解实际问题的步骤:第一步: ,第二步: ,第三步: .考点四.解方程及方程的解的含义解方程就是求出使方程中等号左右两边的的值,这个值就是方程的 .问题1:判断下列数学式子X+1, 0.5x-x, 2x-3=7, 3x+2=2x-5 , 2x2+3x-8=0,x+2y=7.是方程有_______________________________________ ,是一元一次方程有_______________________________【同步测控】1.自己编造两个方程: , .2.自己编造两个一元一次方程:, .问题2.根据问题列方程:1.用一根长24cm的铁丝未成一个正方形,正方形的变长是多少?2.一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间他到规定的检修时间2450小时?3.某校女生占全体学生数的52%,比男生多80人,这个学校有多少人?【同步测控】根据下列问题,设未知数,列出方程1.环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?2.甲种铅笔每只0.3元,乙种铅笔铅笔每只0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?【同步测控】1.一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底.2.x的2倍于10的和等于18;3.比b的一半小7的数等于a与b的和;4.把1400元奖学金按照两种奖项将给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生多少人?问题三、判断方程的根1.判断下列各数X=1,x=2,x=-1,x=0.5.那个是方程2x+3=5x-3的解?2.当x=?时,方程3x-5=1 两边相等?3.1.2 等式的性质练习考点一.等式的基本性质11.等式两边 (或减)同一个数(或式子),结果仍 ;2.可以用数学语言表述为:如果a=b ,那么a b= ;2.用数字验证等式的基本性质1:如① ,② 。

分母含有小数的一元一次方程

分母含有小数的一元一次方程

分母含有小数的一元一次方程一元一次方程是指一个未知数的最高次数为一的方程。

通常表示为ax + b = 0,其中a和b是已知的实数,x是未知数。

在一元一次方程中,分母含有小数的情况可以表示为以下形式:(dx + e)/f + g = 0,其中d、e、f和g是已知的实数,x是未知数。

这种方程可以通过一些步骤来求解。

解这种方程的一种方法是通过消去分母。

为了消去分母,可以取两边的公共倍数作为新的等式。

例如,如果分母f是一个分数,可以将等式两边乘以f的分母的最小公倍数,这样就可以消去分母,得到一个通常的一元一次方程。

然后,可以依次进行移项、合并同类项和解方程的步骤,最终得到x的解。

例如,考虑方程(2x + 1)/3 + 2 = 0。

我们可以将等式两边乘以3,得到2x + 1 + 6 = 0。

然后,可以合并同类项,得到2x + 7 = 0。

最后,将7移到等式的另一边,得到2x = -7,然后除以2,得到x = -7/2,这是方程的解。

另一种解这种方程的方法是通过分数的特性来处理。

在这种方法中,我们可以通过移项和合并同类项的方式将方程转化为形式为ax +b = 0的方程。

然后,我们可以将方程两边的分数化成整数。

为了将一个分数化成整数,我们可以将分子和分母同时除以一个公因子。

例如,对于方程(2x + 1)/3 + 2 = 0,我们可以将(2x + 1)/3化成(2x +1)/1,然后将分子2x + 1除以公因子3,得到(2/3)x + 1/3 = 0。

然后,我们可以移项和合并同类项,得到(2/3)x = -1/3,最后将分子和分母同时乘以3,得到2x = -1,然后除以2,得到x = -1/2,这是方程的解。

解一元一次方程时,需要考虑一些特殊情况。

首先,如果方程中的分母为零,则方程无解。

例如,方程(1/x) - 1 = 0是无解的,因为分母x不能为零。

其次,如果方程中的分子和分母都为零,则方程有无限多解。

例如,方程x/0 = 0是有无限多解的,因为分子和分母都为零。

一元一次方程应用题专项练习(含答案)

一元一次方程应用题专项练习(含答案)

一元一次方程应用题专项练习宇文皓月1.种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵.有多少人种树有多少棵树?2.某中外合资企业,按外商要求承做一批机器,原计划13天完成,科技人员采取一种高新技术后,每天多生产10台,结果用12天,不单完成任务,而且逾额了60台,问原计划承做多少台机器?3.心连心艺术团在世纪广场组织了一场义演为“灾区”募捐活动,共售出3000张门票,已知成人票每张15元,学生票每张6元,共收入票款34200元,问:成人票和学生票各多少张?4.甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3.6千米∕时,这列火车有多长?5.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际依照他的设计,鸡场的面积是多少?6.甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增加了10%,这样两厂共完成的产值为400万元,求去年两厂各逾额完成产值多少万元?7.(1)某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(2)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?8.某工厂加强节能措施,2008年下半年与上半年相比,月平均用电量减少了0.5万度,全年用电39万度,问这个工厂2008年上半年每月平均用电多少万度?9.某周日小明在家门口搭乘出租车去观赏博物馆,出租车的收费尺度是:不超出3公里的付费7元;超出3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算.小明乘出租车到距家6.2公里远的博物馆的车费为18.4元(其中含有1元的燃油附加税),问超出3公里的,每公里加收多少元?10.下边横排有12个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x的值.12.某商场一种品牌的服装标价为每件1000元,为了介入市场竞争,商场按标价的8.5折(即标价的85%)再让利40元销售,结果每件服装仍可获利20%,这种服装每件的进价是多少元?13.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?14.某同学打算骑自行车到野生动物园去观赏,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才干到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?15.一副羽毛球拍在进价的基础上提高40%后标价,再按标价的8折售出,仍然获利15元,那么羽毛球拍的进价是多少?16.2010年南非“世界杯”期间,中国球迷一行36人从酒店乘出租车到球场观看角逐.球迷领队安插车辆若干,若每辆坐4人,车不敷,每辆坐5人,有的车未坐满.问领队安插的车有多少辆?17.某校三年共购买电脑160台,去年购买数量是前年的3倍,今年购买数量是前年的4倍,求这个学校前年购买了多少台电脑?18.某种出租汽车的车费是这样计算的:路程在4千米以内(含4千米)为10元4角;达到4千米以后,每增加1千米加1元6角;达到15千米后,每增加1千米加2元4角,缺乏1千米按四舍五入法计算.(1)乘座15千米该出租车应交费多少元?(2)某乘客乘座该种出租车交了95元2角,则这个乘客乘该出租车行驶的路程最多为多少千米?19.七年级(1)班数学兴趣小组的同学一起去租车秋游,预计租车费人均分摊1 8元,后来又有4名非兴趣小组同学要求加入,但租车费不变,结果每人可少摊3元,求七(1)班有多少名数学兴趣小组成员?20.某城市按以下规定收取每月的水费:用水量如果不超出6吨,按每吨1.2元收费;如果超出6吨,未超出的部分仍按每吨1.2元收取,而超出部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.8元.问:(1)该用户5月份用去多少水?(2)该用户5月份应交水费多少元?21.甲、乙两人同时从A地出发去B地,甲骑自行车,速度是10km/h,乙步行,速度为6km/h.若甲出发后在路上遇到熟人交谈了半小时后,仍以原速度前往B地,结果甲、乙两人同时到达B地,问A、B两地的路程是多少?22.一件服装先按成本提高60%标价,再以9折出售,结果获利66元,这件服装的标价是多少元?23.某校七(1)班学生步行去介入课外劳技活动,速度为5千米/时,走了48分钟的时候,学校要将一个紧急通知传给班长,通讯员从学校出发,骑摩托车以35千米/时的速度按原路追上去,通讯员用多少时间可以追上七(1)班学生队伍?24.某车间有60名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件10个或乙种零件25个,应分配多少人生产甲种零件,多少人生产乙种零件才干使每天生产的甲种零件和乙种零件刚好配套?(2个甲种零件和1个乙种零件配成一套)25.A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?26.甲、乙两人同时从A地到B地去介入一个会议,甲每分钟走80米,他走到B地等了5分钟.会议才开始,乙每分钟走60米,等他到B地会议已经开始了3分钟,问A、B两地之间的距离有多远?27.甲、乙两根绳子,甲绳长56米,乙绳长25米,两根绳子剪去同样的长度后,甲绳所剩的长度是乙绳所剩长度的3倍还少1米,每根绳子剪去的长度是多少米?28.某工人每天早晨在同一时刻从家里骑车去工厂上班,如果以16千米/时的速度行驶,则可在上班时刻前15分钟到达工厂;如果以12千米/时的速度行驶,则在工厂上班时刻后15分钟到达工厂.(1)求这位工人的家到工厂的路程;(2)这位工人每天早晨在工厂上班时刻前多少小时从家里出发?29.一列列车通过隧道,从车头进隧道到车尾出隧道共用了1分30秒.已知列车的速度为1500米/分,列车的长为150米,那么隧道长为多少米?30.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应分别调往甲、乙两处各多少人?31.一项工程,甲队单独做20天完成,乙队单独做12天完成,现在由甲队先做4天,剩下的部分由甲队和乙队合作完成,则剩下的部分需要几天完成?32.某校准备到旅游公司租若干辆汽车组织初一学生外出春游,每辆汽车可坐45人,按原计划,就有11人没有座位;如果每辆车放上加座后多坐8人,那么可以少租一辆汽车.问原计划租几辆汽车初一学生共有多少人?33.列方程解应用题:某人从家里骑自行车到学校.若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?34.甲、乙两船在静水中的速度相同,都不超出每小时60千米.甲船从A 港顺流而下,3小时到达B港,乙船从B港逆流而上,4小时到达C港,如果水流速度为每小时10千米,请你通过计算说明A港在C港的上游还是下游.35.从甲地到乙地的长途汽车原需行驶3.5个小时,开通高速公路后,路程缩短了30千米,而车速平均每小时增加了30千米,只需2个小时即可到达.求甲乙两地之间高速公路的路程.36.甲乙两地相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),经过多长时间两车相距300千米?37.电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车速度的5倍还快20千米/时,半小时后两车相遇.两车的速度各是多少?38.粗蜡烛和细蜡烛的长短一样,粗蜡烛可以点5小时,细蜡烛可以点4小时,如果同时点燃这两支蜡烛,过了一段时间后,剩余的粗蜡烛长度是细蜡烛长度的2倍,问这两支蜡烛已点燃了多少时间?39.一队学生从学校步行去博物馆,他们以5km/h的速度行进需要40分钟,他们出发24分钟后,一名教师骑自行车以15km/h的速度按原路追赶学生队伍,问这名教师能否在学生到达之前追上他们?40.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超出部分每千克按飞机票价的1.5%购买行李票.一名旅客带了45千克行李乘机,机票连同行李费共付1485元,求该旅客的机票票价.41.某城区居民用水实行阶梯收费、每户每月用水量如果未超出20吨,按每吨1.9元收费;如果超出20吨,未超出部分按每吨1.9元收费,超出部分按每吨2.8元收费,若该城市某户11月份水费平均每吨2.2元,求该户11月份用水多少吨?42.甲、乙两站相距360千米,一列慢车从甲站开出,每小时行50千米,一列快车从乙站开出,每小时行70千米,两车同时开出,相向而行,多长时间相遇?43.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的八折出售将赚70元,问:(1)每件服装的标价和成天职别是多少元?(2)为使销售该品牌服装每件获得20%的利润率,应按标价的几折出售?44.某班在绿化校园的活动中共植树130棵,有5位学生每人种树2棵,其余学生每人种树3棵,问这个班共有多少学生?45.郑州市某停车场的收费尺度如下:大型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场停有大、小型汽车共50辆,这些车辆共缴纳了210元停车费,问其中大、小型汽车各缴纳了多少元停车费?46.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓1200个或螺母1800个,每天生产的螺栓和螺母按1:2配套,应各分配多少名工人生产螺栓和生产螺母?47.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?48.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?49.某地居民生活用电基本价格为0.5元/度,并规定了每月基本用电量,超出部分的电量每度电价比基本用电量的每度价格增加0.05元,某户8月份用电量为240度,应缴电费为122元,求每月的基本用电量.50.经测算,海拔高度每增加100米,气温下降0.6℃,已知高空中一气球所在的位置的温度是﹣4℃,此时地面温度是5℃,求该气球与地面的距离.51.有粗细两支蜡烛,粗蜡烛长是细蜡烛的三分之一,粗蜡烛点完用3个小时,细蜡烛点完用1小时.一次停电后同时点燃两支蜡烛,来电时发现两支蜡烛剩余部分刚好一样长,问停电的时间是多长?52.运动场的环形跑道一圈长400米,甲乙二人角逐跑步,甲每分钟跑300米,乙每分钟跑200米;两人同地同方向,同时出发,经过多少时间两人第一次相遇?53.根据我省“十二五”铁路规划,徐州至连云港的客运专线项目建成后,两地间列车的最短客运时间将由现在的2小时18分钟缩短为36分钟,速度每小时将提高260km,求提速后的列车速度.(精确到1km/h)54.一项工程,甲队单独施工15天完成,乙队单独9天完成,现在由甲、乙两队合作3天,剩下的由甲队单独完成,还需几天可以完成?55.为了减少库存,盘活资金,某商厦决定将某款玩具打5折销售,小莹爸爸用了300元买到的玩具比打折前花同样多的钱买到的玩具多3个,求每个玩具的原价是多少元?56.整理一批图书,由一人做要40小时完成.先安插一批人整理,2小时后其中两人因有其它任务离开,然后由余下的人又整理了4小时,完成了这项工作.假设每个人的工作效率相同,则先安插了多少人整理图书?57.一个长方形的场地,长是宽的2.5倍,现根据需要将长方形的场地进行扩建,若把它的长和宽各加长20m后,则此时它的长是宽的2倍,求扩建前长方形场地的长与宽.58.某中学要搬运一批图书,由甲班单独搬运需要9小时完成,由乙班单独搬运需要6小时完成.现在计划由甲班先单独搬运4小时,剩下的由乙班辅佐和甲班一起搬运,则甲、乙两班合作几小时后可完成任务?59.A、B两地相距50千米,一人从A地以每小时5千米的速度向B地行走,另一人从B地以每小时10千米的速度向A地运动.若两人恰好在中点相遇,那么从B地运动的人比从A地运动的人慢多少小时出发呢?60.某厂要加工一批零件,若6人加工,每人每天生产10个,则需100天才干完成任务.现在为了赶进度,用20人加工,每人每天生产12个,需要多少天才干完成任务?61.学校部分师生到离校28千米的地方观赏学习.开始一段路是步行,速度是4千米/小时,余下的路程乘汽车,汽车的速度是40千米/小时,全程共用了1小时.求步行和乘车各用了多少时间.62.某商店推销了一批节能灯,每盏灯20元,在运输过程中损坏了2盏,然后以每盏25元售完,共获利150元,问该商店共进了多少盏节能灯.63.某学校教学楼需装修,若甲工程队单独完成需8周,若乙工程队单独完成需12周,现在投标结果是由乙工程队先做7周后,再由甲、乙两队合作,求合作几周可以完成任务?64.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少1500度,全年用电12万度.这个工厂去年上半年每月平均用电多少度?65.早上8点钟,甲、乙、丙三人在一条笔挺的公路上同时从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人的速度分别为每分钟120米、100米、90米.问经过多少分钟甲和乙、甲和丙的距离相等?66.某同学在A、B两家超市发现他看中的两款随身听的单价相同,两种分歧颜色的书包的单价也相同.已知随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.求该同学看中的随身听和书包的单价各是多少元?67.有一项工程,若由一人做需要20小时完成,现在先由若干人做2小时,然后增加2人再共同做4小时,完成了这项工程,假设这些人的工作效率相同,问开始时介入做这项工程的有多少人?68.小明的妈妈从商店给小明买回一条裤子,小明问妈妈:“这条裤子多少钱?”妈妈说:“按标价给我打七折,又让了我4元钱,是94元.”你知道这条裤子的标价吗?69.一轮船航行于两个码头之间,逆水需10小时,顺水需6小时.已知水流速度为3千米/时,求该船在静水中的速度和两码头间的距离.70.甲乙两书店共有数学练习册300本,某日甲店卖掉20本,乙店卖掉56本,此时甲乙两店剩余的数学练习册相等.求原先甲乙两店各有数学练习册多少本.71.某学校组织七年级学生去春游,计划租用若干辆车.若增加一辆车,每车正好坐40人,若减少一辆车,则每辆车坐50人,有一辆车还空着10人座位,问七年级共有多少名学生?72.某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损40%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?73.一列火车匀速行驶,经过一条长720米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是6秒,求这列火车的速度和火车的长度.74.格子们是白族人民智慧的结晶,是剑川木雕的代表作品之一.一个格子们是由一块中板和两块腰板组构而成的.剑川县民族木雕厂有22名木雕工人在生产格子们,每人每月平均雕12块中板或20块腰板,为了使每个月的产品配套,应该分配多少名工人雕中板?多少名工人雕腰板?75.小明、小杰两人在400米的环形跑道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.(1)出发几分钟后,小明、小杰第一次相遇?(2)出发几分钟后,小明、小杰第二次相遇?(3)出发几分钟后,小明、小杰的路程第三次相差20米?76.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?77.从甲站到乙站原需16小时.采取“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.78.某工作甲单独做需15小时完成,乙单独做需12小时完成,若甲先单独做1小时,之后乙再单独做4小时,剩下的工作由甲乙两人合作,请问再做几小时可完成全部工作的十分之七?79.现加工一批机器零件,甲单独完成需4天,乙单独完成需6天.现由乙先做1天,然后两人合做,完成后共得酬报600元.若按个人完成的工作量给付酬报,你应如何分配呢?80.某文件需要打印,小李独立做需要6小时完成,小王独立做需要8小时完成.如果他们俩共同做,需要多长时间?81.王先生计划骑车以每小时10千米的速度由A地到B地,这样即可在规定时间到达B地,但他因事将原计划的出发时间推迟了10分钟,便只好以每小时12千米的速度前进,结果比规定时间早5分钟到达B地,求A、B两地间的路程.82.七年级学生在会议室开会,每排坐12人,则有11人无处坐,每排坐14人,则余1人独坐1排,问有多少学生?座位有多少排?83.小明周六去昌平图书馆查阅资料,他家距昌平图书馆35千米.小明从家出发先步行20分钟到车站,紧接着坐上一辆公交车,公交车行驶40分钟后到达图书馆.已知公交车的平均速度是步行的平均速度的7倍,求公交车平均每小时行驶多少千米?84.A、B两地相距90千米.甲从A地骑自行车去B地.1小时后乙骑摩托车也从A地去B地.已知甲每小时行12千米.乙每小时行30千米.(1)乙出发后多少时间追上甲?(2)若乙到达B地后立即返回,则在返回路上与甲相遇时距乙出发多少时间?85.某文艺团体为希望工程组织了一场募捐义演,共售出1 000张票,筹得票款6 950元,已知成人票每张10元,学生票每张5元.(1)问成人票和学生票各售出多少张?(2)如果票价和售出的总票数不变,所得票款能为6932元吗?说明你的理由.(3)如果票价和售出的总票数不变,若想筹得票款8 000元,问至少要售出多少张成人票?86.在暖气管线中装有甲、乙两种水管共25根,总长为155米,甲种水管每根长5米,乙种水管每根长8米,请问甲、乙两种水管各有多少根?87.某铁路由于沿线多为山壑,需修建桥梁和隧道共300个,桥梁和隧道的长度约占这条铁路全长的五分之四,其中桥梁数量(座)又比隧道数量(条)多50%.这条铁路工程总投资约135亿元,平均每千米造价约4500万元.(1)求该铁路隧道数量.(2)若该铁路平均每条隧道长度大约是平均每座桥梁长度的6倍.求该铁路隧道的总长度.88.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?89.现有一个内直径为6厘米的圆柱形烧杯,里面有高2厘米的液体.将这些液体倒入一个内直径是2厘米的圆柱形量筒内,这个量筒内液体的液面高度是多少厘米?90.老师想为希望小学四年级(1)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.每个书包和每本词典的价格各是多少元?91.一架飞机在两城市之间飞行,顺风需4小时20分,逆风需要4小时40分,已知风速是每小时30千米,求此飞机自己的飞行速度.92.为了从小培养学生的足球兴趣,给国家培养并输送少年足球人才.在县教体局的大力建议和有力推进下,全县各个学校都组建了学校足球队.某校队在练球时发现,若每人领一个少6个球,若每二人领一个则余6个球.校足球队又添新队员5人,为了包管训练时一人一球,还需新购多少个足球?93.某文艺团体为“希望工程”募捐义演,成人票8元,学生票5元.如果本次义演共售出1 000张票,筹得票款为6 950元.求成人票和学生票各售出多少张?94.水果店有一种5千克一袋装的苹果,如果小明单独买一袋,那么所带的钱还差5元;如果小杰单独买一袋,那么所带的钱还差3元;如果两人所带的钱合在一起买一袋,那么就多余8元.试问苹果每千克多少元?95.某车间安插甲、乙两人共加工400个零件,甲与乙一起加工了4小时后,又由甲单独加工了6小时才完成任务,已知甲比乙每小时少加工2个零件,求甲、乙两人每小时各加工多少零件?96.一家商店将一件西装按成本价提高50%后标价,后因节日促销按标价的8折优惠出售,每件以960元卖出,则这件西装的成本价是多少元?97.列方程解应用题:一架飞机在两城之间飞行,风速为24千米/小时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程.98.某书店在促销活动中,推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.有一次,小明到该书店购书,到收银台付款时,他先买优惠卡再凭卡付款,结果节省了12元,求小明不凭卡购书的书价为多少元?99.一条地下管线,甲工程队单独铺设需12天,乙工程队单独铺设需要18天,若果现有甲工程队铺设2天后再由甲、乙两个工程队共同铺设,还需要多少天可以铺好这条管线?100.某种商品的进价为400元,标价为600元,打折出售的利润率为5%,那么,此商品是按几折销售的?101.某商场进了一批豆浆机,按进价的180%标价,春节期间,为了能吸引消费者,打7折销售,此时每台豆浆机仍可获利52元,请问每台豆浆机的进价是多少元?102.某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款6950元,已知成人票8元一人,学生票5元一人,问成人票与学生票各售出多少张?103.两船从长江同一港口同时出发反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h,若2小时后甲船比乙船多行驶了80km,那么水流的速度是多少?104.足球循环赛中,A队胜B队,比分为3:1(即A队进3球,B队进1球);B队胜C队,比分为2:0,C队胜A队,比分为1:0;计算各队在这轮循环中的净胜球数.105.一艘船从甲码头到乙码头顺流行驶,用了3小时;从乙码头返回甲码头逆流行驶,用了4.5小时.已知船在静水中的平均速度为25千米/时,求水流的速度与两个码头之间的距离.。

新浙教版七年级上册数学第五章一元一次方程知识点及典型例题

新浙教版七年级上册数学第五章一元一次方程知识点及典型例题

新浙教版七年级上册数学第五章《一元一次方程》知识点及典型例题知识框图朱国林定义:方程两边都是整式,只含有一个未知数,未知数的指数是一次的方程一元一次方程等式的性质1:等式的两边加上(或都减去)同一个数或式,所得的结果仍是等式等式的基本性质等式的性质2:等式的两边都乘或都除以同一个数或式(除数不能为0),所得的结果仍是等式解方程:求方程解的过程一元一次方程的解法分母为小数的方程:先将小数变为整数,然后再去分母一元一解方程的步骤去分母→去括号→移项→合并同类项→两边同除以未知数的系数次方程>重和叠差问倍题分:问借题助:可于以韦从恩题图目列中方看程出,明主确要的有等人量数关重系叠或面积重叠课外拓展应用题类型审题:分析题意,找出数量关系,尤其是等量关系!列方程解实际问题的一般过解方程:求出未知数的值程检验:检查求得的值是否正确和符合实际情形,这是在草稿纸上完成或心里完成的,并写出答案以及答,这是在试卷上完成的关于一元一次方程概念的拓展教材中的概念:方程两边都是整式,只含有一个未知数,未知数的指数是一次的方程是一元一次方程,那么 x+2=x+3 是一元一次方程吗从概念上来看,是一元一次方程,但稍作变形,就是 2=3,是不是觉得很可笑因此, 一元一次方程的概念应该是:方程两边都是整式,只含有一个未知数,未知数的指数是一次,并且能变形为 ax=b (a ≠0,a 、b 均为常数)的方程是一元一次方程,也就是说,一元一次方程一定只有一个解。

-关于用方程解应用题的秘诀:相关条件设未知数,剩余条件列方程考点一、判断方程是不是一元一次方程及一元一次方程概念的简单应用 考点二、关于在解方程过程中的某些变形问题,只能以选择题的形式出现 考点三、解一元一次方程考点四、列一元一次方程解与实际生活无关的题目(可以是选择题、填空题、解答题) 考点五、列一元一次方程解与实际生活有关的题目(可以是选择题、填空题、解答题)"将考点与相应习题联系起来考点一、判断方程是不是一元一次方程及一元一次方程概念的简单应用 1、下列等式中是一元一次方程的是( )12(x 1) 2x 1x 1 A .3x=y -1B .C .3(x -1)= -2x -3D .3x 2-2=3E . x1 12 12 3x y 2 x2 0 x x 2 2x3 0 , 中一元一次方程的个数为(2、在方程 A .1 个 , , )x B .2 个 C .3 个 D .4 个 3x6 0是一元一次方程,那么a3、如果 a2 1,方程的解为。

一元一次方程100题含答案

一元一次方程100题含答案

3.一元一次方程100题含答案(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--解一元一次方程专项练习100题1..2.=﹣2;3.﹣2=.4.5..6.x ﹣=2﹣.7.8..9.10.11. ﹣6x=﹣x+1;12. y ﹣(y﹣1)=(y﹣1);13. [(x ﹣)﹣8]=x+1;14..15.﹣=1.16.17.2﹣=﹣.18.﹣1=﹣.19..20..21.22..23.;24..25..26.27..28. 2﹣=x ﹣;29. ﹣1=.30..31.(x﹣1)=2﹣(x+2).32..33.34.35. ;36. .37..38.39.40.41.42. x ﹣43.;44..45.(x﹣1)﹣(3x+2)=﹣(x﹣1).46.47. ;48. .49.+1=;50. 75%(x﹣1)﹣25%(x﹣4)=25%(x+6)51.52.53.54.55.56.57. ;58. .59. 2x ﹣(x﹣3)=[x ﹣(3x+1)].60.61.62.x+=1﹣63..64. 65. ﹣=.66.=67.68.69.70.=;71. 3(x+2)﹣2(x ﹣)=5﹣4x.72. 2x ﹣73.74.[(﹣1)﹣2]﹣x=2.75.﹣1=.76.,77..78.79.80. ;81. .82.83.84.85. ﹣=.86.=1﹣.87.88..89..90..91.92. ;93..94..95.;96. .97..98. ;99. [(x﹣1)﹣3]=2x﹣5;100..解一元一次方程100题难题解析1.去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得: 6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣32.去分母得,3(x﹣1)=4(2x﹣1)﹣24,去括号得,3x﹣3=8x﹣4﹣24,移项、合并同类项得,5x=25,系数化为1得,x=5;3. 原方程变形为:﹣2=,去分母得,4(2x﹣1)﹣24=3(10x﹣10),去括号得,8x﹣4﹣24=30x﹣30,移项、合并同类项得,22x=2,系数化为1得,x=4.去分母得,7(1.7﹣2x)=3x﹣2.1去括号,11.9﹣14x=3x﹣2.1移项合并同类项得,﹣17x=﹣14系数化为1得,x=.5.原方程变形成5(3x+1)﹣20=3x﹣2﹣2(2x+3)15x﹣15=﹣x﹣816x=7∴6.去分母得:6x﹣3(x﹣1)=12﹣2(x+2)去括号得:6x﹣3x+3=12﹣2x﹣4移项得:6x﹣3x+2x=12﹣4﹣3合并得:5x=5系数化为1得:x=1.7.去分母得:5(4﹣x)=3(x﹣3)﹣15,化简可得: 2x=11,系数化1得: x=8.原式可变形为:3(3y﹣1)﹣12=2(5y﹣7)去括号得: 9y﹣3﹣12=10y﹣14 移项得: 9y﹣10y=﹣14+12+3合并得:﹣y=1系数化1得: y=﹣19.原方程分母化整得:去分母,得 5(x+4)﹣2(x﹣3)=1.6,去括号,得 5x+20﹣2x+6=1.6,移项、合并同类项,得 15x=﹣122,系数化1,得 x=10.去分母得:4(x+1)=5(x+1)﹣6,去括号得: 4x+4=5x+5﹣6,移项、合并得:﹣x=﹣5,系数化为1得: x=5.11. 移项,合并得x=,化系数为1,得x=;12. 去分母,得6y﹣3(y﹣1)=4(y﹣1),去括号,得 6y﹣3y+3=4y﹣4,移项,合并得 y=7;13. 去括号,得(x ﹣)﹣6=x+1,x ﹣﹣6=x+1,移项,合并得x=;14. 原方程变形为﹣1=,去分母,得2(2﹣10x)﹣6=3(1+10x),去括号,得 4﹣20x﹣6=3+30x,移项,合并得﹣50x=5,化系数为1,得 x=﹣.15.去分母得:3(x﹣7)+4(5x﹣6)=12,去括号得: 3x﹣21+20x﹣24=12,移项得: 3x+6x=12+21+24,合并同类项得: 9x=57,化系数为1得: x=16.去分母:6(x﹣3)+4(6﹣x)=12+3(1+2x),去括号:6x﹣18+24﹣4x=12+3+6x,移项:6x﹣4x﹣6x=12+3+18﹣24,化简:﹣4x=9,化系数为1:x=﹣.17.去分母得:12﹣2(2x﹣4)=﹣(x﹣7),去括号得: 12﹣4x+8=﹣x+7,移项得:﹣4x+x=7﹣20,合并得:﹣3x=﹣13,系数化为1得: x=.18.去分母得:3(2x+1)﹣12=4(2x﹣1)﹣(10x+1),去括号得: 6x+3﹣12=8x﹣4﹣10x﹣1,移项合并同类项得: 8x=4,系数化为得: x=19.去分母得:2(5x﹣7)+12=3(3x﹣1)去括号得: 10x﹣14+12=9x﹣3移项得: 10x﹣9x=﹣3+14﹣12 系数化为1得: x=﹣120.去分母得:3(3x+4)﹣2(6x﹣1)=6 去括号得: 9x+12﹣12x+2=6移项、合并同类项得:﹣3x=﹣8系数化为1得: x=21.去分母得:6(x+4)﹣30x+150=10(x+3)﹣15(x﹣2)去括号得: 6x+24﹣30x+150=10x+30﹣15x+30移项、合并得:﹣19x=﹣114化系数为1得: x=6.22.去分母得:4(2x﹣1)﹣3(3x﹣1)=24,去括号得: 8x﹣4﹣9x+3=24,移项合并得:﹣x=25,化系数为1得: x=﹣2523. 原方程可以变形为:5x﹣10﹣2(x+1)=3, 5x﹣10﹣2x﹣2=3, 3x=15, x=5;24. 原方程可以变形为[x ﹣(x ﹣x+)﹣]=x+,(x ﹣x+x ﹣﹣)=x+,(x ﹣)=x+,,,x=﹣25.﹣=﹣12(2x﹣1)﹣(5﹣x)=3(x+3)﹣62x=10x=526.去括号得:x ﹣﹣8=x,移项、合并同类项得:﹣x=8,系数化为1得: x=﹣8.27.,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得: 2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得: x=528. 12﹣(x+5)=6x﹣2(x﹣1)12﹣x﹣5=6x﹣2x+2﹣x﹣6x+2x=2﹣12+5﹣5x=﹣5x=1;29.4(10﹣20x)﹣12=3(7﹣10x)40﹣80x﹣12=21﹣30x﹣80x+30x=21﹣40+12﹣50x=﹣7.30.去分母得:3(2x+1)﹣12=12x﹣(10x+1),去括号得:6x﹣9=2x﹣1,合并得: 4x=8,化系数为1得: x=2.31.去分母得:5(x﹣1)=20﹣2(x+2),去括号得: 5x﹣5=20﹣2x﹣4,移项合并得: 7x=21,系数化为1得: x=3.32.原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得: 40x=﹣15,系数化为1得: x=33.原方程变形为:50(0.1x﹣0.2)﹣2(x+1)=3,5x﹣10﹣2x﹣2=3,3x=15, x=5.34.去分母得:2(2x﹣1)=6﹣3x,去括号得: 4x﹣2=6﹣3x,移项得: 4x+3x=8,系数化为1得: x=35. 方程两边同乘15,得3(x﹣3)﹣5(x﹣4)=15,整理,得 3x﹣9﹣5x+20=15,解得﹣2x=4,x=﹣2.36. 方程两边同乘1,得50(0.1x﹣0.2)﹣2(x+1)=3,整理,得 5x﹣10﹣2x ﹣2=3,解得: 3x=15,∴x=5 37.去分母得:3y﹣18=﹣5+2(1﹣y),去括号得:3y﹣18=﹣5+2﹣2y,移项合并得: 5y=15,系数化为1得: y=3.38..解:去括号得:12﹣2y﹣2﹣3y=2,移项得:﹣2y﹣3y=2﹣12+2,合并同类项得:﹣5y=﹣8,系数化为1得:.39. 解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=2x﹣2x﹣3,移项得:﹣3x﹣2x+2x=﹣3﹣6+18(或﹣3x=﹣3﹣6+18),合并同类项得:﹣3x=9,系数化为1得:x=﹣340.去分母得:3x(x﹣1)﹣2(x+1)(x+6)﹣(x+1)(x﹣1)=6去括号得:3x2﹣3x﹣2x2﹣14x﹣12﹣x2+1=6合并得:﹣17x=17化系数为1得:x=﹣141. 原式通分得:,整理得:,将其变形得:﹣x+3=6,∴x=﹣3.42. 原式变形为:x+3=,将其通分并整理得:10x﹣25+3x﹣6=15x+45,即﹣2x=76,∴x=﹣38 43. 解:去分母得,3(x﹣7)﹣4(5x+8)=12,去括号得,3x﹣21﹣20x﹣32=12,移项合并同类项得,﹣17x=65,系数化为1得,x=;44. 解:去括号得,2x ﹣x+x ﹣=x ﹣,去分母得,24x﹣6x+3x﹣3=8x﹣8,移项合并同类项得,13x=﹣5,系数化为1得,x=﹣45.去分母得:15(x﹣1)﹣8(3x+2)=2﹣30(x ﹣1),∴21x=63,∴x=346.去括号,得a ﹣﹣2﹣a=2,去分母,得a﹣4﹣6﹣3a=6,移项,合并得﹣2a=16,化系数为1,得a=﹣8;47. 去分母,得5(x﹣3)﹣2(4x+1)=10,去括号,得5x﹣15﹣8x﹣2=10,移项、合并得﹣3x=27,化系数为1,得x=﹣9;48. 把分母化为整数,得﹣=2,去分母,得5(10x+40)﹣2(10x﹣30)=20,去括号,得50x+200﹣20x+60=20,移项、合并得30x=﹣240,化系数为1,得x=﹣849. +1=解:去分母,得3x+6=2(2﹣x);去括号,得3x+6=4﹣2x移项,得3x+2x=4﹣6合并同类项,得5x=﹣2系数化成1,得x=﹣;50. 75%(x﹣1)﹣25%(x﹣4)=25%(x+6)解:将原方程等价为:0.75(x﹣1)﹣0.25(x﹣4)=0.25(x+6)去括号,得0.75x﹣0.75﹣0.25x+1=0.25x+1.5 移项,得0.75x﹣0.25x﹣0.25x=1.5﹣1+0.75合并同类项,得0.25x=1.25系数化成1,得x=551. 去分母得:5(x﹣3)﹣2(4x+1)=10,去括号得:5x﹣15﹣8x﹣2=10,移项、合并得:﹣3x=27,系数化为1得:x=﹣9.52. 去括号得:2x﹣4﹣x+2=4,移项、合并得:x=6.53. 去分母得:12x﹣(2x+1)=12﹣3(3x﹣2),去括号得:12x﹣2x﹣1=12﹣9x+6,移项、合并得:19x=19,系数化为1得:x=154. 去括号得:x﹣1﹣3﹣x=2,移项,合并同类项得:﹣x=6,系数化为1得:x=﹣8.55 去分母得:18x+3(x﹣1)=18﹣2(2x﹣1),去括号得:18x+3x﹣3=18﹣4x+2,移项,合并得:25x=23,系数化为1得:x=.56. 去分母得:3x﹣7﹣2(5x+8)=4,去括号得:3x﹣7﹣10x﹣16=4,移项、合并得:﹣7x=27,系数化为1得:x=﹣.57. 去分母得:3(3x+5)=2(2x﹣1),去括号得:9x+15=4x﹣2,移项合并得:5x=﹣17,系数化为1得:;58. 去分母得:(5x+2)﹣2(x﹣3)=2,去括号得:5x﹣2x=﹣6+2﹣2,移项合并得:3x=﹣6,系数化为1得:x=﹣259.去小括号得:2x ﹣x+2=[x ﹣x ﹣],去中括号得:2x ﹣x+2=x ﹣x ﹣,去分母得:12x﹣4x+12=2x﹣3x﹣1,移项、合并得:9x=﹣13,系数化为1得:x=﹣60. ,去分母得3(x﹣15)=﹣15﹣5(x+7),∴3x﹣45=﹣15﹣5x﹣35,∴x=;61. ,方程变形为,去分母得20x﹣20x+30=﹣2x+6,∴x=﹣1262.去分母得:15x+5(x+2)=15﹣3(x﹣6)去括号得:15x+5x+10=15﹣3x+18移项得:15x+5x+3x=15+18﹣10合并得:23x=23系数化为1得:x=163.原方程可化为:﹣=,去分母得:4x+8﹣2(3x+4)=2(x﹣1),去括号得:4x+8﹣6x﹣8=2x﹣2,移项合并同类项得:﹣4x=﹣2,系数化为1得:x=64.原方程可化为:,去分母得:3(7x﹣1)=4(1﹣2x)﹣6(5x+1)去括号得:21x﹣3=4﹣8x﹣30x﹣6移项合并同类项得:59x=1系数化为1得:x=65.去分母得:4(3x﹣2)﹣6=7x﹣4.去括号得:12x﹣8﹣6=7x﹣4.移项、合并同类项得:5x=10.系数化为1得:x=2.66.原方程可以化为:=+1去分母得: 2(2x﹣1)=3(x+2)+6去括号得: 4x﹣2=3x+6+6即 x=1467 去分母得:4(2x﹣1)﹣3(2x﹣3)=12,整理得:2x﹣7=0,解得:x=3.5.68. 去括号,,∴,∴x+1=2,解得:x=169.去分母得:6(4x+9)﹣15(x﹣5)=30+20x 去括号得:24x+54﹣15x+75=30+20x移项,合并同类项得:﹣11x=﹣99化系数为1得:x=970. 去分母得:7(5﹣7x)=8(5x﹣2),去括号得:35﹣49x=40x﹣16,移项合并同类项得,﹣89x=﹣51,系数化为得:x=;71. 去括号得:3x+6﹣2x+3=5﹣4x,移项合并同类项得:5x=﹣4,系数化为得:x=﹣.72..去分母得:12x﹣2(5x﹣2)=24﹣3(3x+1),去括号得:12x﹣10x+4=24﹣9x﹣3,移项、合并得:11x=17,系数化为1得:x=.73.去分母得:6x﹣2(1﹣x)=(x+2)﹣6,去括号得:6x﹣2+2x=x+2﹣6,移项得:6x+2x﹣x=2﹣6+2,合并同类项得:7x=﹣2,系数化为得:x=74.去中括号得:(﹣1)﹣3﹣x=2,去括号、移项、合并得:﹣x=6,系数化为1得:x=﹣875. 去分母得:(2x+5)﹣24=3(3x﹣2),去括号得:8x+20﹣24=9x﹣6,移项得:8x﹣9x=﹣6﹣20+24,合并同类项得:﹣x=﹣2,系数化为1得:x=2.76.去括号得:x+++=1去分母得: x+1+6+56=64移项得: x=177.去分母得:3﹣(x﹣7)=12(x﹣10),去括号得:3﹣x+7=12x﹣120,移项、合并得:﹣13x=﹣130,系数化为1得:x=1078.去分母得:8﹣(7+3x)=2(3x﹣10)﹣8x 去括号得: 8﹣7﹣3x=6x﹣20﹣8x移项合并得:﹣x=﹣21系数化为1得: x=2179.去括号,得3(x ﹣)+1=5x,3x ﹣+1=5x,6x﹣3+2=10x,移项、合并同类项得:﹣4x=1,系数化为1得: x=80.4(2x﹣1)﹣12=3(5x﹣3)8x﹣4﹣12=15x﹣9﹣7x=7x=﹣1;81.5(3x﹣1)=2(4x+2)﹣1015x﹣5=8x+4﹣107x=﹣1x=﹣.82.去括号得,2(﹣1)﹣4﹣2x=3,x﹣2﹣4﹣2x=3,移项合并同类项得,﹣x=9,系数化为得, x=﹣983. 去括号得:x﹣2﹣3x+1=1﹣x,解得:x=﹣2.84. 原方程可化为:=﹣,去分母得:3(7x﹣1)=4(1﹣0.2x)﹣6(5x+1),去括号得:21x﹣1=4﹣0.8x﹣30x﹣6,移项、合并同类项得:51.8x=﹣1,系数化为1得:x=85.原方程化为:﹣=,整理得: 12x=6,解得: x=86.原式变形为:+=1,把小数化为分数、整理得:,去分母得:4(4﹣x)=12﹣(2x﹣6),去括号得16﹣4x=12﹣2x+6,移项、合并得:﹣2x=2,系数化为1得:x=﹣187.去大括号,得:,去中括号得:,去小括号得:=0,移项得:y=3,系数化1得:y=6 88..原方程化为:(1分)去分母得:3(5x+9)+5(x﹣5)=5(1+2x)化简得:10x=3解得:.89.去分母得:5(3x+2)﹣15=3(7x﹣3)+2(x ﹣2)去括号得:15x+10﹣15=21x﹣9+2x﹣4移项合并得:﹣8x=﹣8系数化为1得:x=190.去分母得:2(2x﹣5)+3(3﹣x)=12,去括号得:4x﹣10+9﹣3x=12,移项、合并得:x=1391. 解:,,6x﹣3x+3=8x﹣8,6x﹣3x﹣8x=﹣8﹣3,﹣5x=﹣1,.92. 解:3(2x﹣1)=4(x﹣5)+12,6x﹣3=4x﹣20+12,6x﹣4x=﹣20+12+3,2x=﹣5,93.去分母得:4×3x﹣5(1.4﹣x)=2去括号得:12x﹣7+5x=0.2移项、合并得:17x=9系数化为1,得x=94.去分母得:2(3x﹣2)+10=5(x+3),去括号得:6x﹣4+10=5x+15,移项、合并同类项得:6x﹣5x=15﹣6,化系数为1得:x=995. 去分母,得3(x﹣3)﹣4(5x﹣4)=18,去括号,得3x﹣9﹣20x+16=18,移项、合并同类项,得﹣17x=11,系数化为1,得x=﹣;96. 去分母,得3(x+1)﹣12=2(2x﹣1),去括号,得3x+3﹣12=4x﹣2,移项、合并同类项,得﹣x=7,系数化为1,得x=﹣797.原方程可化为:(8x﹣3)﹣(25x﹣4)=12﹣10x,去括号得:8x﹣3﹣25x+4=12﹣10x,移项、合并同类项得:﹣7x=11,系数化为1得:x=98. 去分母得:4(2x+4)﹣6(4x﹣3)=3,去括号得:8x+16﹣24x+18=3,移项,合并同类项得:﹣16x=﹣31,系数化为1得:x=;99. 去中括号得:(x﹣1)﹣2=2x﹣5,去小括号得:x﹣1﹣2=2x﹣5,移项、合并同类项得:x=2100..把中分子,分母都乘以5得:5x﹣20,把中的分子、分母都乘以20得:20x﹣60.即原方程可化为:5x﹣20﹣2.5=20x﹣60.移项得:5x﹣20x=﹣60+20+2.5,合并同类项得:﹣15x=﹣37.5,化系数为1得:x=2.5。

《一元一次方程》练习题4(有答案)

《一元一次方程》练习题4(有答案)

《一元一次方程》练习题学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上1、已知a、b互为相反数,x、y互为倒数,c是最小的正整数,d的绝对值等于2,−2019xy+2018cd的值是()则(a+b)20202020A. 2017B. -2017C. -6055D. 2017或-6055参考答案: D【思路分析】这道题是考查相反数,倒数、正整数、绝对值与乘方的综合应用,根据相反数、绝对值、倒数、正整数的概念,以及有理数乘方运算求解即可.【解题过程】解:由题意可知:a+b=0,xy=1,c=1,d=2或-2,−2019xy+2018cd=0-2019×1+2018×1×2=2017.当d=2时,(a+b)20202020−2019xy+2018cd=0-2019×1-2018×1×2=-6055.当d=-2时,(a+b)20202020故选:D。

2、以下说法中不正确的有()。

A. 小数都是有理数B. 存在既不是正数又不是负数的数C. 向北走100m是具有相反意义的量D. 0是有理数参考答案: AC【思路分析】根据有理数的概念和分类,0的特殊性,以及正负数可以表示具有相反意义的量,即可解答。

【解题过程】小数都是有理数。

说法错误,有限小数、无限循环小数是有理数,无限不循环小数不是有理数;存在既不是正数又不是负数的数。

说法正确,这个数就是0;向北走100m是具有相反意义的量。

说法错误,具有相反意义的量,指的是两个量,“向北走100m”只是一个简单描述,够不成具有相反意义的量的条件;0是有理数。

说法正确,有理数可以分为正有理数、负有理数和0.故选项中不正确的是AC.3、判断对错某商店把一商品按标价的九折出售(即优惠10%),仍可获利20%,若该商品的标价为每件2 8元,则该商品的进价为每件21元。

一元一次方程解法练习题

一元一次方程解法练习题

一元一次方程一、主要概念1、方程:含有未知数的等式叫做方程。

2、一元一次方程:只含有一个未知数,并且含有未知数的式子都是整式,未知数的指数都是1的方程叫做一元一次方程。

3、方程的解:使方程左右两边相等的未知数的值叫做方程的解。

4、解方程:求方程的解的过程叫做解方程。

二、方程的变形规则1.方程两边都加上(或都减去)同一个数或同一个整式,方程的解不变;2.方程两边都乘以(或都除以)同一个不等于0的数,方程的解不变。

三、解一元一次方程的一般步骤及根据1、去分母-------------------方程的变形规则22、去括号-------------------分配律、去括号的法则3、移项----------------------方程的变形规则14、合并----------------------合并同类项法则5、系数化为1--------------方程的变形规则26、验根----------------------把解分别代入方程的左右两边看是否相等四、解一元一次方程的注意事项1、分母是小数时,根据分数的基本性质,把分母转化为整数;2、去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;3、去括号时,不要漏乘括号内的项,不要弄错符号;4、移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;5、系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;6、不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法。

五、列方程解应用题的一般步骤1、审题2、设未数3、找相等关系4、列方程5、解方程6、检验7、写出答案3x-2=2x+13-x=2-5(x-1)3x=5(32-x)2+3(8-x)=2(2x-15) 5-3x=8x+12x+5=3x+127(2x-1)-3(4x-1)=4(3x+2)-1(5x+1)+(1-x)=(9x+1)+(1-3x) 2(x-2)+2=x+12(x-2)-3(4x-1)=9(1-x) 11x+64-2x=100-9x15-(8-5x)=7x+(4-3x) 3(x-7)-2[9-4(2-x)]=2212-2(2x-4)=x-55x-2(x-1)=175x+15-2x-2=1015x+863-65x=543x+5(138-x)=540 3x-7(x-1)=3-2(x+3)18x+3x-3=18-2(2x-1)3(20-x)=6x-4(x-11)6(x-3)+7=5x+8 4(x-9)=7x+3x+3(3x-1)=x+3 2(x+4)-3(5x+1)=2-x3x+(7-x)=17 3(20-x)=6x-4(x-11)3(x-1)-7(x+5)=30(x+1)5 x - 122x+5=5x-74-3(2-x)=5x3(x-2)=2-5(x-2)3(x - 2) + 1 = x - (2 x - 1)x =3x-122x -1 x+23 = 2 +11 x - 13 - 2 = 1x + 83 = - x3 - 1.2 x = 4- 6 x = - 7 2- 3 - 3m3 11 1 1x - 0.4 = x + 0.3 x - 1 = x + x + x4 22 4 83 y + 12 5 y - 74 = 2 - 353 2 x + 11 -m 4 = 1 x2 = 2。

含小数分母的一元一次方程

含小数分母的一元一次方程

方法一
x -1 2 x - 3 x4 例题. 解方程: 0 .5 0 .6
解:由分数的性质得:
( 2 x -1 ) ( 5 2 x - 3) x4 2 0.5 5 0.6
5(2 x - 3) x4 方程化为: 2( x 1) 3
方法二
x -1 2 x - 3 x4 例题. 解方程: 0 .5 0 .6
x -1 2x - 3 3 3 ( 3 x 4) 0.5 0.6
方程化为:
( 6 x 1) 5(2 x 3) ( 3 x 4)
归纳小结 应对含小数分母的一元一次方程的方法
方法一 方法二 方法三
自我检测
将下列一元一次方程的小数分母整数化:
x -1 x2 (1) 2; 0.2 0.5
x 0.17 0.2 x ( 2) 1 0 .7 0.03
自我检测
将下列一元一次方程的小数分母整数化:
x -1 x2 (1) 2; 0.2 0.5
x 0.17 0.2 x ( 2) 1 0 .7 0.03
提示: (1)由分数的基本性质得: (2)根据分数的基本性质得:
( 5 x - 1) 2( x 2) 2; 5 0.2 2 0.5
北师版七年级数学上册
分母中含有小数的 一元一方程
旧知复习
解一元一次方程的一般步骤:
去分母 去括号
移 项
合并同类项 系数化为1
挑战新知
例题. 解方程:
x -1 2 x - 3 x4 0 .5 0 .6
首先将小数分母化为整数,然后 再按照解一元一次方程的一般步骤 解方程。
如何将小数分母化为整数呢?
解:将方程变形得:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档