1-4复变函数及其极限与连续

合集下载

复变函数的极限和连续

复变函数的极限和连续

场在空间某方向上是均匀的,则只需要在垂直于该方
向的平面上研究它,这样的场便称为平面场。本节对
解析函数在平面场研究中的应用作一简单介绍。
解析函数,实、虚部是共轭调和函数,曲线族u=常数
与v=常数是正交曲线族。 1. 平面静电场
在无电荷区,静电场电势满足拉普拉斯方程,电场所
在区域上的某一解析函数的实部(或虚部)就可以用
来表示该区域上的静电场的电势。这个解析函数称为
平面静电场的复势。其实部或虚部就是电势。
为叙述方便,这里说u是电势。u=常数,是等势线族。
曲线族v(x,y)=常量,垂直于等势线族,因而v=常量,
是电场线族。
数学物理方法 第一章
30
例1. 已知平面电场的电势为u=x2-y2,求电场线方程
分析:等势面与电力线相互正交,对应的函数组成一个解析函数 的实部与虚部,满足C-R条件
例22.已知解析函数的虚部 v(x,y) x x2y2,求实部
和这个解析函数
方法三d提u 示 :u d u d
u
u
d
(
)
2 cos ( )
2
u sin ( )
22
( ) 0, ( ) C
数学物理方法 第一章
29
1.5 平面标量场
场在物理上和工程技术上得到广泛应用。当所研究的
满足C-R条件。
x y x y
证明(板书):
数学物理方法 第一章
13
作业:试推导极坐标系中的C-R条 件
数学物理方法 第一章
14
数学物理方法 第一章
15
1.点解析
解析z 0 ;
2.区域解析 若函数在区域B内处处可导,则称f(z)在 区域B内解析;

复变函数1-4章

复变函数1-4章

(三) 复变函数的积分(8学时)
内容:复变函数积分的定义、性质和计算;柯西-古萨(Cauchy-Goursat) 基本定理及其推广-复合闭路定理;Cauchy积分公式及解析函数的高阶导数; 解析函数与调和函数的关系。 1.基本要求 (1) 理解复变函数积分的概念,掌握复变函数积分的基本性质及一般计算 方法。 (2) 理解柯西-古萨基本定理及其推论。 (3) 熟练掌握用柯西积分公式及高阶导数公式计算积分的方法。 (4) 了解摩勒拉(Morera)定理。 (5) 了解调和函数与解析函数的关系,会从解析函数的实(虚)部求 其虚(实)部。; 2.重点、难点 重点:柯西-古萨基本定理及柯西积分公式。 难点:摩勒拉(Morera)定理。 3.说明:本章内容是整个复变函数理论的基础。
3
复变函数发展的三个节点:
1、Euler公式 在复数域 下把三角函数、双曲函数和指数函数统一起来; 2、Cauchy-Riemann条件 u ; u
x y y x
eix cos x i sin x
定义出最重要的解析函数,其函数与方向无关,即 f (z)dz 0 3、幂函数闭路积分
(conjugate)
( 2) z z
(4) z z 2 Re (z ) z z 2i Im (z )
1 z z | z |2
18
z1 z1 ( ) z2 z2
2 2
( 3 ) z z R e ( z ) Im ( z ) x y
2
2
例1 : 设z1 5 5i , z 2 3 4i , z1 z1 求 , ( )及 它 们 的 实 部, 虚 部 . z2 z2
Complex Analysis

复变函数总复习资料

复变函数总复习资料

总结词
导数与微分在解决实际问题中具有广泛的应 用。
详细描述
导数与微分的应用包括求函数的极值、判断 函数的单调性、求函数的拐点、近似计算等 。这些应用在物理学、工程学、经济学等领 域都有广泛的应用,如波动方程、热传导方 程、弹性力学等领域的研究都需要用到复变
函数的导数与微分。
04
复变函数的积分
积分的定义与性质
解析性是实变函数的导数的定义基础,因此解析性在实变函数中有 着广泛的应用。
在复变函数中的应用
解析性是复变函数的导数的定义基础,因此解析性在复变函数中有 着广泛的应用。
在物理中的应用
解析性在物理中也有着广泛的应用,例如在电磁学、光学等领域中, 解析性可以帮助我们更好地理解物理现象。
THANKS
感谢观看
总结词
复数与复变函数在物理、工程等领域有广泛应用。
详细描述
复数与复变函数在物理、工程等领域有广泛的应用。例如,在电路分析中,电压和电流可以用复数表示,方便计 算;在信号处理中,复数可以用于表示和处理信号;在量子力学中,波函数通常用复数表示。此外,许多数学问 题也可以通过复数和复变函数得
总结词
复变函数是定义在复数域上的函数,具有连续性、可微性等 性质。
详细描述
复变函数是定义在复数域上的函数,其定义与实数域上的函 数类似,但具有更丰富的性质。复变函数可以具有连续性、 可微性、解析性等性质,这些性质在研究复变函数的积分、 微分、级数等数学问题中具有重要作用。
复数与复变函数的应用
幂级数的概念与性质
定义
幂级数是无穷多个形如$a_n x^n$的项按照一定的顺 序排列的数列,其中$a_n$是常数,$x$是变量。
性质
收敛半径,幂级数的展开式,幂级数的加减乘除等。

复变函数的极限与连续性

复变函数的极限与连续性

z z0
z z0
z z0
lim f (z)g(z) lim f (z) lim g(z)
z z0
z z0
z z0
lim
f (z)
lim
z z0
f (z) (lim g(z) 0)
zz0 g(z) lim g(z) zz0
z z0
以上定理用极限定义证!
3.函数的连续性
定义
若 lim z z0
故不连续。
(2)在负实轴上 P( x,0)( x 0)
y (z) z
lim arg z y0
而 lim arg z y0
P( x,0)
ox
z
arg z 在负实轴上不连续。
定理4 连续函数的和、差、积、商、(分母不为0) 仍为连续函数; 连续函数的复合函数仍为连续函数。
由以上讨论 P(z) a0 a1z anzn在整个复平面内是连续的; R(z) P(z) 在复平面内除分母为0点外处处连续.
z0
一个预先给定的
A
ε邻域中 定义中 的方式是任意的. 与一元实变函数相比较要求更高. (2) A是复数.
2. 运算性质
复变函数极限与其实部和虚部极限的关系: 定理1
定理2
若 lim f (z) A lim g(z) B
z z0
z z0
lim f (z) g(z) lim f (z) lim g(z)
Q(z)
有界性:
设 曲 线C为 闭 曲 线 或 端 点 包 括 在内 的 曲 线 段 若f (z)在C上连续 M 0 f (z) M(z C )
1. 函数的极限
定义 设 w f (z) z O(z0 , ),若数A,

复变函数的基本概念及运算

复变函数的基本概念及运算
定义了一个复变函数实际上定义了二个相关联的实二 元函数,因此复函数将具有独特的性质。
三 邻域、内点、外点、境界点
1 邻域:以 z 0 为中心,任意小正实数 为半径
的圆内所有点的集合,称为 z 0 点的邻域。 2 内点、外点、境界点:若 z 0 及其邻域均属于点
集 E ,则称 z 0 为 E 的内点;若 z 0 及其邻域均不属于 E ,则称 z 0 为 E 的外点;若 z 0 的每个邻域内,既有 属于 E 的点,也有不属于 E 的点,则称 z 0 为 E 的境
一 解析函数的定义
若函数 f (z) 在 z0 点及其邻域上处处可导,则称 f (z) 在 z0 解析,在区域 B 上每一点都解析,则称 f (z) 是区域
上的解析函数。
二 解析函数的性质
1 解析函数的实部与虚部通过C — R 方程互相联系,知
其中一个函数,可求另一个函数。
例:已知解析函数 f (z) 的虚部 v(x, y) x x2 y 2
2k
i( )
方根: n z n e n n , k 0,1,, n 1, n ∈N
五 共轭复数
若 z x iy ei , 则 z 的 共 轭 复 数 定 义 z* x iy ei 为复数 z 的共轭复数, z 2 zz * 。
欧拉公式 ei cos i sin 的证明
lim
z 0
w z

lim
0
u(

, )

iv(
,) ( )e i

u(,)

iv( , )

lim
u(

x0

,)

u(,)

复变函数的极限和连续性

复变函数的极限和连续性
三、举例
例1(见教材P20T16)试证 arg(z)在原点和负实轴上不连续。
证明 arg(0)无意义 ,w arg(z)在z 0点不连续 ;
对负实轴上任一点z0
当z沿平行于y轴正向趋于z0时,zlimz0 arg(z)
而当z沿平行于y轴负向趋于z0时,
lim
z z0
arg(

对任何z z0的方式路径,f (z)趋近于同一个

确定的复数A
掌握 判别 lim f (z)不存在的方法

z z0
张 长 华
复变函数与积分变换
Complex Analysis and Integral Transform
2、存在判别法 转化为实函数极限存在性判别
在复变函数中,不再区分函数、映射和变换,将其统 一看作是z平面上集合G与w平面上集合G*之间的一种对应。
张 长 华
z
)


lim arg(z)不存在,函数arg(z)在负实轴上不连续。 zz0
张 长 华
复变函数与积分变换
Complex Analysis and Integral Transform
本章难点与重点
难点复复杂杂函函数数的的极几限何概描念述————理映解射。;
复数的辐角主值范围(- arg(z) )及其确定;
f (z)在z0点连续 实、虚部函数 u(x, y) 、v(x, y) 均在点(x0 , y0 )处连续。
3、四则运算性质及复合函数的连续性。见教材P17Th 1.4.4
4、有界闭区域 D上连续函数的最大小模存在定理。
张 长 华
复变函数与积分变换
Complex Analysis and Integral Transform

复变函数及连续性

复变函数及连续性

第三节复变函数的极限与连续一、复变函数的概念二、复变函数的极限三、复变函数的连续性一、复变函数的概念1. 复变函数的定义定义1.1 设E 是复平面上的点集, 若对任何z ∈E , 都存在惟一确定的复数w 和z 对应, 称在E 上确定了一个单值复变函数,用w =f (z )表示.E 称为该函数的定义域.在上述对应中, 当z ∈E 所对应的w 不止一个时, 称在E 上确定了一个多值复变函数.(){()|}() A f E f z z E w f z ==∈=称为复函的值域数.2. 复变函数与自变量之间的关系:() :w z w f z =复变函数与自变量之间的关系相当于两个实函数),,(),,(y x v v y x u u ==例3 , 2z w =函数,, iv u w iy x z +=+=令2)( iy x iv u +=+则,222xyi y x +−= : 2数对应于两个二元实变函于是函数z w =,22y x u −=.2xy v =,,z x iy w u iv =+=+因为,若记则()Re ()Im ()(,)(,).w f z f z i f z u x y iv x y ==+=+例4解,, iv u w iy x z +=+=令2)( iy x iv u +=+则,222xyi y x +−=,22y x u −=.2xy v =所以222424 4.w z z x y xy w u v =−====于是将平面上的双曲线与分别映为平面上直线和222,42w z z x y xy w =−== 设复函数试问它将平面上的双曲线 与 分别映为平面上的何种曲线?7函数w =z 2对应于两个二元实变函数: u =x 2−y 2, v =2xy 把z 平面上的两族双曲线x 2−y 2 = c 1 , 2xy = c 2 分别映射成w 平面上的两族平行直线u =c 1 , v =c 2 .101−1−1−10−8−6−4−2x 2468v =101y −10−8−6−4−2u =02468uv 1010−10−10⎯⎯→⎯=2z w θr ϕρ二、复变函数的极限1.复变函数极限的定义定义1.200000,()0,0,,0|||()|,()lim(),lim ().z z z E z z w f z E C z E C z E z z f z z z f z f z f z αεδδαεααα→∈→=⊂∈∀>∃>∈<−<−<== 设复函数在点集上有定义,为的一个聚点, 。

复变函数的极限与连续

复变函数的极限与连续
§1.3 复变函数的极限与连续
一、 复变函数 二、 复变函数的极限 三、 复变函数的连续性
1
一、 复变函数
x 实变量, y f ( x) 为实变函数, x 的值一旦确定,
y 只有一个数和它对应. 高等数学中的实变函数,
都是单值函数. 可用平面上的一条曲线表示一个实变函数.
z 复变量, w f (z) 为复变函数, z 的值一旦确定,
x
u
9
例2(3) 函数 w 1
z
把z平面上的直线 y kx
映射成 怎样的曲线?

w
1
x i kx
1 ik
x (1 k 2 )
u 1 , x (1 k 2 )
v k , x (1 k 2 )
ku v 0
y
w1 z

y kx 映射成 ku v 0
v
把 y x 映射成 u v 0
0x
yc y 1
v2 4c2(c2 u) v2 4(1 u)
y 2 y
v2 16(4 u) v
x
u
证 zz xc iyc w (cxiiyc))22cx2 2yc2222ccyxi i
uu xc2 cy22 v 2cxy
xy v 2c
u
v2 c42c2
vc22 4c2
v22 4c22(c22 u) u c2 u c72
z z 2 t (2ti 0) w (2 2i)2 8i
2
0 arg(w)
5
例1.14续 考察 w z2 的映射性质 z x iy
w ( x iy)2 x2 y2 i2xy
3) w z2 将z平面上的
w平面上的
双曲线 xy a 映射成 v 2a 直线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数值集 w平合 面为 上的 G*,那 集末 G 合 *中的 每一个 w必 点将对G中 应的 着(一 或个 几)点 个 . 于是G在 *上就确定了一 (或个 多)单 函 值值 数
z(w),它称为w函 f数 (z)的反函 ,也数 称
为映w射 f(z)的逆映 . 射
15
根据反函数的定义,
wG*,wf[(w)],
解 令 z x i,y w u i,v
映射w z 1 z
uivxiyxx 2 iyy 2,
于是 uxx2 xy2,
v
y
x2
y
y2
,
圆周 z2的参数方: 程为
x2cos y2sin,
02π
34
所以象的参数方程为
u
5cos
2
v
3sin
,
2
0 2π

示 w平面上的:椭 u522圆 2
证 设 f( z ) u ( x ,y ) i( x v ,y ), 则 f(z ) u (x ,y ) i(v x ,y ), 由f(z)在 z0连,续 知 u (x ,y)和 v(x ,y)在 (x 0,y 0)处都 , 连 于 u ( x ,y 是 ) 和 v ( x ,y ) 也 ( x 0 ,y 0 在 ) 处 , 连 故f(z)在z0连.续
直线 x的象的参数: 方程为
u2y2, v2 y. (y为参 ) 数 消去参y数 得: v24 2(2u ),
以原点为焦点,开口相左的抛物线.(图中红色曲线)
同理y 直 的 线 象 : 为
v24 2(2u ),
以原点为焦点,开口相右的 抛物线.(图中蓝色曲线)
14
6. 反函数的定义: 设wf(z)的定义集 z平合 面为 上的 G, 集
有 uu 02,
vv02,
22
f ( z ) A ( u u 0 ) i ( v v 0 )
uu 0vv0
故 0 当 z z 0时 , f(z)A,
所l以 im f(z)A . z z0
说明
[证毕]
该定理将求复 f(z)变 u(函 x,y)数 iv(x,y) 的极限,转 问化 题为求两个 函二 数 u(元 x,y)实变 和v(x,y)的极限. 问题
的 w 点 a i.b
y
A
B z123i
C
o
x
z212i
C A
v
w 212i
o
u
B w 123i
z1w1, z2w2, A B A B C C .
8
如果把z平面和w平面 重叠在一,不 起难看w出z 是关于实轴的一个 映对 射. 称
且是全同图形.
w z21
o
z 2w1
y
A
B z123i
x2y2
x0 x2 (kx)2
36
lim x
1 ,
x0 x2(1k2)
1 k2
随k值的变化而变, 化
所以 limu(x,y)不存, 在 limv(x,y)0,
xx0 yy0
xx0 yy0
根据定理一可知, limf(z)不存. 在 z0
证 (二) 令 z r(c oiss i)n,
则f(z)rcoscos,
它把 z平面上的两族 线分 y别 x和 以坐 直 标轴为渐近线 曲的 线等轴双
x2y2c1, 2xyc2,
分别映射w成 平面上的两族平行直线
uc1, vc2.
(如下页图)
12
(2)函数 wz2构成的. 映射
将第一图中两块阴影部分映射成第二图中
同一个长方形.
y
y
o
x
o
x
13
(2)函数 wz2构成的. 映射
26
定理四 (1在 )z0连续的f两 (z)和 个 g(z)的 函和 数、 积、 (分商 母 z0不 在为 )在 z零 0处仍 . 连续 (2如 ) 果 h 函 g(z)在 数 z0连,函 续w 数 f(h)在 h 0g(z0)连,那 续末复 w合 f[g(z)函 在 ] z0处 数 连. 续
27
y
zz3 1o z 2
x
w2
v
w
o
1
w3
u
10
(2)函数 wz2构成的. 映射
根据复数的乘法公式可知,
映射 wz2将z的辐角增. 大一倍
y
v
o
x
2
o
u
将 z平面上与实 的轴 角交 形角 域 w为 映 平面上与2实 的 轴 角 交 .形 角 域 为
11
(2)函数 wz2构成的. 映射
函数 wz2对应于两个二数 元: 实变函 ux2y2, v2x.y
29
argz 在z=-2处连续否?

2
结论:不连续
四、小结与思考
复变函数以及映射的概念是本章的一个重点.
注意:复变函数与一元实变函数的定义完全一样, 只要将后者定义中的“实数”换为“复数”就行 了. 通过本课的学习, 熟悉复变函数的极限、连 续性的运算法则与性质.
注意:复变函数极限的定义与一元实变函数 极限的定义虽然在形式上相同, 但在实质上有很 大的差异, 它较之后者的要求苛刻得多.
23
定理二
设 lim f (z) A, limg(z) B, 那末
zz0
zz0
(1) lim[ f (z) g(z)] A B; zz0
(2) lim[ f (z)g(z)] AB; zz0
(3) lim f (z) A (B 0). zz0 g(z) B
与实变函数的极限运算法则类似.
24
C
o
x
z212i
C A
v
w 212i
o
u
B w 123i
z1w1, z2w2, A B A B C C .
9
(2)函数 wz2构成的. 映射
显z然 平将 面 z 1 i,上 z 2 1 2 的 i,z 3 1 点 映w 射 平成 面 w 1 上 1 ,w 2 的 3 4 i,w 3 点 1 .
31
思考题
1. “函数”、“映射”、“变换”等名词有 无区别?
32
思考题答案
在复变函数中, 对“函数”、“映射”、 “变换”等名词的使用, 没有本质上的区别. 只 是函数一般是就数的对应而言, 而映射与变换 一般是就点的对应而言的.
放映结束,按Esc退出.
33
例2 对于 w z映 1,求 射 圆 z2的 周 . 象 z
连续的充 :u(x,y 要 )和 v(条 x,y)在 件 (x0,y 是 0) 处连 . 续
例如, f(z ) ln x 2 y (2 ) i(x 2 y 2 ), u(x, y)lnx(2 y2)在复平面内除原点外 处连,续v(x,y)x2y2在复平面内处, 处连 故f(x,y)在复平面内除原 处点 连外 .续处
4 0r 2映射为
w z2
0π,04,
2
仍是扇形域.
19
二、复变函数的极限
1.函数极限的定义:
设函数 w f(z)定义在 z0的去心邻域
0zz0 内,如果有一确定A存 的在 数 , 对于任意给定 0的 ,相应地必有一(正) 数 使得当 0zz0 (0 )时,有f(z)A
那末称 A为f(z)当z趋向于 z0时的极. 限 记 lif 作 ( m z ) A .( 或 f( z ) z z 0 A )
r
37
当 z沿不同 ar z的 g 趋 射于 线 , 零时
f (z)趋于不同的.值 例z如 沿正 ar 实 z g 0趋 轴于 , f(零 z)1,时
沿arzgπ趋于零 , f时 (z)0, 2
故lim f(z)不存. 在 z0
38
例5 证明f函 (z)z数 (z0)当 z 0时的极 z
限不. 存在
5
5.映射的概念
引入: 对于复变函 ,由数 于它反映了两u对,v变量
和x, y之间的对应,因 关而 系无法用同一平面 的几何图形表示 ,必出须来看成是两个上 复平面 的点集之间的对.应关系
6
映射的定义: 如果用z 平面上的点表示自变z的量值,
而用另一个平w面平面上的点表示函w数的 值,那末函数w f (z)在几何上就可以看作 是把z 平面上的一个点G集(定义集合)变到 w 平 面 上 的 一 个 点G集* (函 数 值 集 合 )的 映 射 (或变换).
当反函数为单值函数时, z[f(z)]z ,G .
如果函 (映数射 )wf(z)与它的反函数
(逆映)射 z(w)都是单,值 那的 末称(函 映数
射)wf(z)是一一对 .也 应可 的称G 集与合集 合G*是一一对 . 应的
今后不再区别函数与映射.
16
例1 在映w射 z2下求下列平w面 平点 面集
上的: 象
(1)线0段 r2,π;
4
解 设z rei ,
y
还是线段.
v
w ei ,
w z2
则 r2, 2 , o
x
o
u
故0 线 r 2 , 段 π 映 0 射 4 , 为 π ,4217
例1 在映w射 z2下求下列平w面 平点 面集
上的: 象
(2)双曲 x2线 y24;
解 令 z x i,y w u i,v
故 x l x i0u m (x ,y ) u 0 , x l x i0v m (x ,y ) v 0 .
y y 0
y y 0
(2) 充分性. 若 x l x i0u m (x ,y ) u 0 , x l x i0v m (x ,y ) v 0 ,
y y 0
y y 0
那 0 么 ( x x 0 ) 2 当 ( y y 0 ) 2 时 ,
相关文档
最新文档