近代概率论基础答案2

合集下载

概率论基础(第2版)李贤平 全部习题解答

概率论基础(第2版)李贤平 全部习题解答

即得 Cn 2Cn 3Cn nCn n2
1 2 3 n
n 1
(2)在上式中令 x=-1 即得 Cn 2Cn 3Cn (1)
1 2 3 n 1 n nCn 0
(3)要原式有意义,必须 0 r a 。由于 Cab Cab , Cb Cb
m
~m
这个公式的证明思路是,把 n 个不同的元素编号为1,2, ,n,再把重复组合的每一组中 数从小到大排列,每个数依次加上 0,1,, m 1 ,则这一组数就变成了从 1,2,, n m 1 共
m
m

3 10 7 6 15 9 207 . 25 25 25 25 25 25 625
14.由盛有号码 1,2, ,N 的球的箱子中有放回地摸了 n 次球,依次记下其号码,试求这些 号码按严格上升次序排列的概率。 解:若取出的号码是按严格上升次序排列,则 n 个号码必然全不相同, n N 。N 个不同号 码可产生 n ! 种不同的排列,其中只有一个是按严格上升次序的排列,也就是说,一种组 合对应一种严格上升排列, 所以共有 C N 种按严格上升次序的排列。 总可能场合数为 N n , 故题中欲求的概率为 P
解: (1) ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};
ABC ={抽到的是男同学,又爱唱歌,又是运动员}。
(2) ABC A BC A ,当男同学都不爱唱歌且是运动员时成立。 (3)当不是运动员的学生必是不爱唱歌的时, C B 成立。 (4)A=B 及 A C A B C ,当男学生的全体也就是不爱唱歌的学生全体,也就不是 运动员的学生全体时成立。也可表述为:当男学生不爱唱歌且不爱唱歌的一定是男学生,并 且男学生不是运动员且不是运动员的是男学生时成立。 5.用摸球模型造一例,指出样本空间及各种事件运算。 解: 设袋中有三个球,编号为 1,2,3,每次摸一个球。样本空间共有 3 个样本点(1) , ( 2) , 1,2, B 1,3, C 3, (3)设 A 则 A {3}, A B 1,2,3, A B 1 , A B {2},

概率答案二

概率答案二

第二章 随机变量及其分布人的思想是了不起的,只要专注于某一项事业,就一定会做出使自己感到吃惊的成绩来。

——马克·吐温导 学——引微入概工程之一维篇人们不可能仅仅满足于只用排列组合和加减乘除来计算概率,而这正是第一章的局限所在。

本章成功的实现了两大“空间站”:《概率论》与《微积分》的大对接。

随着求导、求积分等工具的介入,《概率论》发生了脱胎换骨的大变化。

本章引进了一元微积分,下章将引进多元微积分。

第二、三章的主题:引《微积分》的“水”来解《概率统计》的“渴”——简称引微入概工程。

本章从§1介绍随机变量,到出现《微积分》的基本公式:F (x 1)-F (x 2)=及()F x '=()f x ,“红旗渠”通水了!这一杰出工作的完成,以人们认识到随机变量这一概念为前提条件。

当Ω={正,反}时,(正)或∫(反)均毫无意义。

于是,人们试图用指定实数来标识样本点的方法,使Ω与R 相关联,终于找到了随机变量这个重要概念。

随机变量是现代概率论中最重要的概念。

随机变量的定义:由样本空间Ω到实数集R 的任一单值映射X =X (e),均可称作一个随机变量。

只要符合定义,随机变量可以随意构造。

由于事先不能确定Ω中哪一个元素一定出现,因而也不能事先确定X =X (e)一定取哪个实数,但是,一旦给定一个具体的随机变量X =X (e)后,这种对应关系本身是确定的,不随机。

本学科从此穿上了随机变量这双“红舞鞋”,此后再也没脱下来。

请关注下面的文字:用X 表示事件的方法:用X 的像集所对应的原像集表示事件。

因为{e 丨X (e)∈L}⊆Ω,所以{e 丨X (e)∈L}表示随机事件,即用X 的值域中的点集L ⊆R 所对应的定义域中的点集{e 丨X (e)∈L}来表示事件。

将{e 丨X (e)∈L}简记为{X ∈L}。

当L={i x }时,{X ∈L}={X =i x }表示事件,用于分布律;当L=(-∞,x ]时,{X ∈L}={X ≤x }表示事件,用于分布函数。

概率论第二章习题及答案

概率论第二章习题及答案

三、一些常用的离散型随机变量
1) Bernoulli分布 如果随机变量 X 的分布律为
PX 0 1 p q , PX 1 p

P{ X k } p q
X P
k 1 k
(k 0 , 1)
1 p
0 1-p
则称随机变量 X 服从参数为 p 的 Bernoulli分布. 记作 X ~ B1 , p . 其中0 p 1 为参数
第二章 随机变量及其分布
一、 随机变量的定义
设E是一个随机试验,S是其样本空间.若对每一个
S , 都有唯一确定的一个实 数X 与之对应 , 则称
X 为一个随机变量.

S
X
R
第二章 习题课
二、离散型随机变量的分布律
设离散型随机变量 X 的所有可能取值为 x1 , x2 , , xk , 并设
如果连续型随机变量X 的密度函数为 (I)
1 2 2 x f x e 2 其中 , 0 为参数, 则称随机变量X 服从参数为 , 2 的
正态分布.记作
f (x)
x 2
X ~ N ,

2

0
第二章 随机变量及其分布
4)几 何 分 布
若随机变量 X 的分布律为
PX k q k 1 p
k 1, 2,
其中 p 0,q 0,p q 1
则称随机变量 X 服从参数为 p的几何分布.
返回主目录
第二章 随机变量及其分布
5)超 几 何 分 布
如果随机变量 X 的分布律为

x

f ( t )dt,

概率论基础复习题答案

概率论基础复习题答案

概率论基础复习题答案填空题(含答案),1(设随机变量C的密度函数为P(X),则p(x) 0; = 1 ;p(x)dx,,,o E § =xp (x) dx,,,考查第三章2(设A, B,C为三个事件,则A, B,C至少有一个发生可表示为:;A, CA:B:C发生而B不发生可表示;A,B,C恰有一个发生可表示为:ABC。

ABC, ABC, ABC考查第一章,(x), (x) 3 (设随机变量,其概率密度函数为,分布函数为,贝iJ,"N(O, 1)001,(0), (0)等于,等于0. 5。

002,考查第三章14(设随机变量g具有分布P{g二k}二,21,2,3,4,5,则EX 3 , DX 52。

考查第五章r5(已知随机变量X, Y的相关系数为,若U二dX+b, V二cY+d,其中ac>0.则U, VXYr的相关系数等于。

XY考查第五章12X~N(,,,)6(设,用车贝晓夫不等式估计:P(|X,, |,k,),l,2k考查第五章,pxpp7 (设随机变量C的概率函数为P{4=}= i, 1, 2,...,则0 ;= ,iiiii,lxpl ;E g 二。

,iii,1考查第一章8(设A, B,C为三个事件,则A, B,C都发生可表示为:;A发生而B,C不发生ABC 可表示为:;A,B, C恰有一个发生可表示为:。

ABCABC, ABC, ABC考查第一章9(,,则5。

X~N(5,4)P(X,c),P(X,c)c,考查第三章2x, ,x, 1,010(设随机变量在[1, 6]上服从均匀分布,则方程有实根的概率为,4o 5考查第三章较难11(若随机变量X, Y的相关系数为r, U=2X+1, V=5Y+1O则U, V的相关系数二c XYXY考查第三章12(若服从的均匀分布,,,,2,则的密度函数,gy()22 1。

,,,,,,gyy ()2,考查第五章AB13(设P⑷,0.4, P(A, B),0.7,若与互不相容,则P(B),ABO. 3 ;若与相互独立,则P(B), 0.5 o考查第一章14(将数字1, 2, 3, 4, 5写在5张卡片上,任意取出三张排列成三位数,这个数12CP34是奇数的概率P(A)=。

概率论基础试题及答案

概率论基础试题及答案

概率论基础试题及答案一、单项选择题(每题2分,共10分)1. 随机变量X服从标准正态分布,P(X≤0)的值为:A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 已知随机变量X服从二项分布B(n, p),若n=10,p=0.3,则P(X=3)的值为:A. 0.0573B. 0.05734C. 0.05735D. 0.0574答案:A3. 若随机变量X与Y相互独立,则P(X>Y)的值为:A. P(X)P(Y)B. P(X) - P(X≤Y)C. 1 - P(X≤Y)D. 1 - P(X)P(Y)答案:C4. 随机变量X服从泊松分布,其期望值为λ,若λ=5,则P(X=3)的值为:A. 0.175467B. 0.175468C. 0.175469D. 0.17547答案:A5. 随机变量X服从均匀分布U(a, b),其概率密度函数为:A. f(x) = 1/(b-a), a≤x≤bB. f(x) = 1/(a-b), a≤x≤bC. f(x) = 1/(a+b), a≤x≤bD. f(x) = 1/(a-b), b≤x≤a答案:A二、填空题(每题3分,共15分)1. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = __________,其中μ为均值,σ^2为方差。

答案:1/(σ√(2π)) * e^(-(x-μ)^2/(2σ^2))2. 已知随机变量X服从指数分布,其概率密度函数为f(x) = λe^(-λx),其中x≥0,则其期望值为E(X) = __________。

答案:1/λ3. 若随机变量X与Y相互独立,且P(X) = 0.6,P(Y) = 0.4,则P(X∩Y) = __________。

答案:0.244. 随机变量X服从二项分布B(n, p),若n=5,p=0.2,则P(X≥3) = __________。

答案:0.031255. 随机变量X服从几何分布,其概率质量函数为P(X=k) = (1-p)^(k-1)p,其中k=1,2,3,...,则其方差Var(X) = __________。

概率论基础(第二版)课后答案_李贤平_高等教育出版社(1-5章全)

概率论基础(第二版)课后答案_李贤平_高等教育出版社(1-5章全)

第一章 事件与概率1、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A =U U ;(3)C AB ⊂;(4)BC A ⊂.2、试把n A A A U L U U 21表示成n 个两两互不相容事件的和.3、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。

4、证明下列等式:(1)1321232−=++++n n n n n n n nC C C C L ; (2)0)1(321321=−+−+−−n n n n n n nC C C C L ; (3)∑−=−++=r a k r a b a k b r k a C C C0.5、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。

6、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。

7、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。

8、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。

9、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。

现从两袋中各取一球,求两球颜色相同的概率。

10、由盛有号码L ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。

11、任意从数列L ,2,1,N 中不放回地取出n 个数并按大小排列成:n m x x x x <<<<<L L 21,试求M x m =的概率,这里N M ≤≤1。

(完整版)概率论第二章答案

(完整版)概率论第二章答案

(完整版)概率论第⼆章答案习题2-21. 设A 为任⼀随机事件, 且P (A )=p (01,,0,A X A =??发⽣不发⽣.写出随机变量X 的分布律.解 P {X =1}=p , P {X =0}=1-p . 或者2. 已知随机变量X 只能取-1,0,1,2四个值, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠13571,24816c c c c+++= 所以3716c=. 所求概率为 P {X <1| X0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 3. 设随机变量X 服从参数为2, p 的⼆项分布, 随机变量Y 服从参数为3, p 的⼆项分布, 若{P X ≥51}9 =, 求{P Y ≥1}.解注意p{x=k}=kk n k n C p q -,由题设5{9P X =≥21}1{0}1,P X q =-==-故213qp =-=. 从⽽{P Y ≥32191}1{0}1().327P Y =-==-=4. 在三次独⽴的重复试验中, 每次试验成功的概率相同, 已知⾄少成功⼀次的概率为1927, 求每次试验成功的概率.解设每次试验成功的概率为p , 由题意知⾄少成功⼀次的概率是2719,那么⼀次都没有成功的概率是278. 即278)1(3=-p , 故 p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解由泊松分布的分布律可知6=λ.6. ⼀袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表⽰取出的3只球中的最⼤号码, 写出随机变量X 的分布律.解从1,2,3,4,5中随机取3个,以X 表⽰3个数中的最⼤值,X 的可能取值是3,4,5,在5个数中取3个共有1035=C 种取法.{X =3}表⽰取出的3个数以3为最⼤值,P{X =3}=2235C C =101;{X =4}表⽰取出的3个数以4为最⼤值,P{X =4}=1033523=C C ;{X =5}表⽰取出的3个数以5为最⼤值,P{X =5}=533524=C C .X 的分布律是1. 设X求分布函数解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-??-(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1; (4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ?+-===?+= 于是 11()arctan ,.2F x x x π=+-∞<<+∞(2) {11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+-11111().24242ππππ=+?---=3. 设随机变量X 的分布函数为F (x )=0, 0,01,21,1,,x xx x <求P {X ≤-1}, P {0.3解 P {X 1}(1)0F -=-=≤,P {0.3P {05. 假设随机变量X 的绝对值不⼤于1;11{1},{1}84P X P X =-===; 在事件{11}X -<<出现的条件下, X 在(-1,1)内任⼀⼦区间上取值的条件概率与该区间的长度成正⽐. (1) 求X 的分布函数(){F x P X =≤x }; (2) 求X 取负值的概率p .解 (1) 由条件可知, 当1x <-时, ()0F x =; 当1x =-时,1(1)8F -=;当1x =时, F (1)=P {X ≤1}=P (S )=1. 所以115{11}(1)(1){1}1.848P X F F P X -<<=---==--=易见, 在X 的值属于(1,1)-的条件下, 事件{1}X x -<<的条件概率为{1P X -<≤|11}[(1)]x X k x -<<=--,取x =1得到 1=k (1+1), 所以k =12. 因此{1P X -<≤|11}12x X x -<<=+. 于是, 对于11x -<<, 有 {1P X -<≤}{1x P X =-<≤,11}x X -<<{11}{1|11}≤P X P X x X =-<<-<-<< 5155.8216x x ++=?=对于x ≥1, 有() 1.F x = 从⽽0,1,57(),11,161,1.x x F x x x <-+=-<7{0}(0){0}(0)[(0)(0)](0).16p P X F P X F F F F =<=-==---=-=习题2-41. 选择题 (1) 设2, [0,],()0, [0,].x x c f x x c ∈=如果c =( ), 则()f x 是某⼀随机变量的概率密度函数. (A)13. (B) 12. (C) 1. (D) 32.解由概率密度函数的性质()d 1f x x +∞-∞=?可得02d 1cx x =?, 于是1=c , 故本题应选(C ).(2) 设~(0,1),XN ⼜常数c 满⾜{}{}P X c P X c =<≥, 则c 等于( ).(A) 1. (B) 0. (C) 12. (D) -1.解因为{}{}P X c P X c =<≥, 所以1{}{}P X c P X c -<=<,即2{}1P X c <=, 从⽽{}0.5P X c <=,即()0.5c Φ=, 得c =0. 因此本题应选(B).(3) 下列函数中可以作为某⼀随机变量的概率密度的是( ).(A)cos ,[0,],()0,x x f x π∈=??其它. (B) 1,2,()20,x f x <=其它.(C)22()2,0,()0,0.≥x x f x x µσ--==?可知本题应选(D).(4) 设随机变量2~(,4)XN µ, 2~(,5)Y N µ, 1{X P P =≤4µ-}, {2P P Y =≥5µ+}, 则( ).(A) 对任意的实数12,P P µ=. (B) 对任意的实数12,P P µ<. (C) 只对实数µ的个别值, 有12P P =. (D) 对任意的实数12,P P µ>. 解由正态分布函数的性质可知对任意的实数µ, 有12(1)1(1)P P ΦΦ=-=-=. 因此本题应选(A).(5) 设随机变量X 的概率密度为()f x , 且()()f x f x =-, ⼜F (x )为分布函数, 则对任意实数a , 有( ).(A)()1d ()∫aF a x f x -=-. (B) 01()d 2()∫aF a x f x -=-.(C) ()()F a F a -=. (D) ()2()1F a F a -=-.解由分布函数的⼏何意义及概率密度的性质知答案为(B). (6) 设随机变量X服从正态分布211(,)N µσ,Y服从正态分布222(,)N µσ,且12{1}{1},P X P Y µµ-<>-< 则下式中成⽴的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) µ1 <µ2. (D) µ1 >µ2.解答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满⾜{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A)2u α . (B) 21α-u. (C)1-2u α. (D) α-1u .解答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布, 要使1{2}4P k X k <<=成⽴, 应当怎样选择数k ?解因为随机变量X 服从参数为λ的指数分布, 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=??由题意可知221{2}(2)()(1e )(1e )e e 4k k k k P k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3. 设随机变量X 有概率密度34,01,()0,x x f x <<=??其它, 要使{}{}≥P X a P X a =<(其中a >0)成⽴, 应当怎样选择数a ?解由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是304d 0.5a x x =?,因此a =.4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 根据分布函数与概率密度的关系()()F x f x '=,可得2,01,()0,其它.x x f x <(2)22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )=2,01,0,x x ??≤≤ 其它, 求P {X ≤12}与P {14X <≤2}.解{P X ≤12201112d 224}x x x ===?;1{4P X <≤12141152}2d 1164x x x ===?. 6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得12221121111d ()d []122x x A x x xAx x A =+-=+-=-??,于是2A =;(2) 由公式()()d x F x f x x -∞=?可得当x ≤0时,()0F x =;当0x <≤1时, 201()d 2xF x x x x ==;当1x <≤2时, 2101()d (2)d 212x x F x x x x x x =+-=--??;当x >2时,()1F x =.所以220,0,1()221, 2.1,021,12x F x x x x x x x =->≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x+<<=其它,对X 独⽴观察3次, 求⾄少有2次的结果⼤于1的概率.解根据概率密度与分布函数的关系式{P a X <≤}()()()d bab F b F a f x x =-=?,可得2115{1}(1)d 48P X x x >=+=.所以, 3次观察中⾄少有2次的结果⼤于1的概率为223333535175()()()888256C C +=. 8. 设~(0,5)X U , 求关于x 的⽅程24420x Xx ++=有实根的概率.解随机变量X 的概率密度为105,()50,,x f x <=≤其它,若⽅程有实根, 则21632X -≥0, 于是2X ≥2. 故⽅程有实根的概率为 P {2X ≥2}=21{2}P X -<1{P X =-<<1d 5x =-15=-.9. 设随机变量)2,3(~2N X.(1) 计算{25}P X <≤, {410}P X -<≤, {||2}P X >, }3{>X P ; (2) 确定c 使得{}{};P X c P X c >=≤ (3) 设d 满⾜{}0.9P X d >≥, 问d ⾄多为多少?解 (1) 由P {a}()()22222a Xb b a ΦΦ-----<=-≤公式, 得到P {2{||2}P X >={2}P X >+{2}P X <-=123()2Φ--+23()2Φ--=0.6977,}3{>X P =133{3}1()1(0)2P X ΦΦ-=-=-≤=0.5 .(2) 若{}{}≤P X c P X c >=,得1{}{}P X c P x c -=≤≤,所以{}0.5P X c =≤由(0)Φ=0推得30,2c -=于是c =3. (3){}0.9≥P X d > 即13()0.92d Φ--≥, 也就是3()0.9(1.282)2d ΦΦ--=≥,因分布函数是⼀个不减函数, 故(3)1.282,2d --≥ 解得 32( 1.282)0.436d +?-=≤.10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解因为()~2,X N σ2,所以~(0,1)X Z N µσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--,于是22()10.3Φσ-=, 从⽽2()0.65Φσ=. 所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=. 习题2-51. 选择题(1) 设X 的分布函数为F (x ), 则31Y X =+的分布函数()G y 为( ).(A) 11()33F y -. (B) (31)F y +.(C)3()1F y +. (D)1133()F y -. 解由随机变量函数的分布可得, 本题应选(A).(2) 设()~01,XN ,令2Y X =--, 则~Y ( ).(A)(2,1)N --. (B)(0,1)N . (C)(2,1)N -. (D)(2,1)N .解由正态分布函数的性质可知本题应选(C).2. 设~(1,2),23X N Z X =+, 求Z 所服从的分布及概率密度. 解若随机变量2~(,)X N µσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a µσ=++ 这⾥1,µσ==, 所以Z ~(5,8)N .概率密度为()f z=2(5)16,x x ---∞<<+∞.3. 已知随机变量X 的分布律为(1) 求解 (1)(2)4. ()X f x =1142ln 20x x <, , , 其它,且Y =2-X , 试求Y 的概率密度.解先求Y 的分布函数)(y F Y :)(y F Y ={P Y ≤}{2y P X =-≤}{y P X=≥2}y -1{2}P Xy =-<-=1-2()d yX f x x --∞.于是可得Y 的概率密度为()(2)(2)Y X f y f y y '=---=12(2)ln 20,.,124,其它y y -?<-即 121,2(2)ln 20, ,()其它.Y y y f y -<<-?=5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解由题意可知随机变量X 的概率密度为()0,.1,22,4其它X f x x =?-<因为对于0(){Y F y P Y =≤2}{y P X =≤}{y P =X于是随机变量2YX =的概率密度函数为()Y fy (X X f f =+0 4.y =<<即()04,0,.其它f y y =<总习题⼆1. ⼀批产品中有20%的次品, 现进⾏有放回抽样, 共抽取5件样品. 分别计算这5件样品中恰好有3件次品及⾄多有3件次品的概率.解以X 表⽰抽取的5件样品中含有的次品数. 依题意知~(5,0.2)X B .(1) 恰好有3件次品的概率是P {X =3}=23358.02.0C .(2) ⾄多有3件次品的概率是k k k k C-=∑5358.02.0.2. ⼀办公楼装有5个同类型的供⽔设备. 调查表明, 在任⼀时刻t 每个设备被使⽤的概率为0.1. 问在同⼀时刻(1) 恰有两个设备被使⽤的概率是多少? (2) ⾄少有1个设备被使⽤的概率是多少? (3) ⾄多有3个设备被使⽤的概率是多少?(4) ⾄少有3个设备被使⽤的概率是多少?解以X 表⽰同⼀时刻被使⽤的设备的个数,则X ~B (5,0.1),C -559.01.0,k =0,1, (5)(1) 所求的概率是P {X =2}=0729.09.01.03225=C ; (2)所求的概率是P {X ≥1}=140951.0)1.01(5=--;(3) 所求的概率是 P {X ≤3}=1-P{X =4}-P {X =5}=0.99954;(4) 所求的概率是P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=0.00856. 3. 设随机变量X 的概率密度为e ,0,()00,≥,x k x f x x θθ-=且已知1{1}2P X>=, 求常数k , θ.解由概率密度的性质可知e d 1xkx θθ-+∞=?得到k =1.由已知条件111e d 2xx θθ-, 得1ln 2θ=.4. 某产品的某⼀质量指标2~(160,)X N σ, 若要求{120P ≤X ≤200}≥0.8, 问允许σ最⼤是多少?解由{120P ≤X ≤} 200120160160200160{}X P σσσ---=≤≤=404040()(1())2()1ΦΦΦσσσ--=-≥0.8,得到40()Φσ≥0.9, 查表得40σ≥1.29, 由此可得允许σ最⼤值为31.20.5. 设随机变量X 的概率密度为φ(x ) = A e -|x |, -∞试求: (1) 常数A ; (2) P {0解 (1) 由于||()d e d 1,x x x A x ?+∞==?即02e d 1x A x +∞-=?故2A = 1, 得到A =12.所以φ(x ) =12e -|x |.(2) P {011111e e d (e )0.316.0222xxx ----=-=≈?(3) 因为||1()e d ,2xx F x x --∞=得到当x <0时, 11()e d e ,22x x x F x x -∞==?当x ≥0时, 00111()e d e d 1e ,222 x x x xF x x x ---∞=+=-??所以X 的分布函数为 1,0,2()11,0.2x x F x x -?。

概率论第二章练习答案解析

概率论第二章练习答案解析

《概率论》第二章 练习答案一、填空题:1.设随机变量X 的密度函数为f(x)=⎩⎨⎧02x 其它1〈⨯〈o 则用Y 表示对X 的3次独立重复的观察中事件(X≤21)出现的次数,则P (Y =2)= 。

⎰==≤412021)21(xdx X P649)43()41()2(1223===C Y p 2. 设连续型随机变量的概率密度函数为:ax+b 0<x<1f (x) =0 其他 且EX =31,则a = _____-2___________, b = _____2___________。

⎪⎪⎩⎪⎪⎨⎧=+=+→⎰⎰解之31)(011)(01dx b ax x dx b ax 3. 已知随机变量X 在[ 10,22 ] 上服从均匀分布,则EX= 16 , DX= 124. 设=+==)(,则,为随机变量,1041132ξξξξE E E 22104=+ξE =+)104(ξD []32161622=-=)(ξξξE E D 5. 已知X 的密度为=)(x ϕ 0b ax + 且其他,10<<x P (31<x )=P(X>31) ,则a = , b =⎰⎰⎰+=+⇒==+∞∞-10133131311dx b ax dx b ax x P x P dx x )()()〉()〈()(ϕ联立解得:4723=-=b a ,6.若f(x)为连续型随机变量X 的分布密度,则⎰+∞∞-=dx x f )(__1____。

7. 设连续型随机变量ξ的分布函数⎪⎩⎪⎨⎧≥<≤<=2,110,4/0,0)(2x x x x x F ,则 P (ξ=0.8)= 0 ;)62.0(<<ξP = 0.99 。

8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ϕ=()⎪⎩⎪⎨⎧≥)(01001002其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 条件概率与统计独立性1、解:自左往右数,排第i 个字母的事件为A i ,则42)(,52)(121==A A P A P ,21)(,31)(1234123==A A A A P A A A P 1)(12345=A A A A A P 。

所以题中欲求的概率为()()()()12345123412312154321)()(A A A A A P A A A A P A A A P A A P A P A A A A A P =301121314252=⋅⋅⋅⋅= 2、解:总场合数为23=8。

设A={三个孩子中有一女},B={三个孩子中至少有一男},A的有利场合数为7,AB 的有利场合为6,所以题中欲求的概率P (B|A )为()768/78/6)()(===A P AB P A B P .3、解:(1)M 件产品中有m 件废品,m M -件正品。

设A={两件有一件是废品},B={两件都是废品},显然B A ⊃,则 ()2211/)(m m m M m C C C C A P +=- 22/)(Mm C C B P =, 题中欲求的概率为)(/)()(/)()|(A P B P A P AB P A B P ==121/)(/221122---=+=-m M m C C C C C C Mm m M m M m . (2)设A={两件中有一件不是废品},B={两件中恰有一件废品},显然A B ⊂,则 (),/)(2112M m M m m M C C C C A P --+= 211/)(M m M m C C C B P -=.题中欲求的概率为)(/)()(/)()|(A P B P A P AB P A B P ==12/)(/2112211-+=+=---m M m C C C C C C C Mm M m m M Mm M m . (3)P{取出的两件中至少有一件废品}=())1()12(/2211---=+-M M m M m C C C C M m m M m4、解:A={甲取出一球为白球},B={甲取出一球后,乙取出一球为白球},C={甲,乙各取出一球后,丙取出一球为白球}。

则 )()(b a aA P += 甲取出的球可为白球或黑球,利用全概率公式得)|()()|()()(A B P A P A B P A P B P +=ba b b a b b a a b a b b a b +=-+⋅++-+-⋅+=111 甲,乙取球的情况共有四种,由全概率公式得)|()()|()()|()()|()()(B A C P B A P B A C P B A P B A C P B A P AB C P AB P C P +++=21)1)((22)1)(()1(-+-⋅-+++-+-⋅-++-=b a b b a b a ab b a b b a b a b b 2)1)(()1(21)1)((-+⋅-++-+-+-⋅-+++b a bb a b a a a b a b b a b a ab ba bb a b a b a b a b a b +=-+-++-+-+=)2)(1)(()2)(1(. 5、解:设B={两数之和大于10},A i ={第一个数取到i},9,,1,0 =i 。

则101)(=i A P , 5,3,2,9/)1()|(,0)|()|(10 =-===i i A B P A B P A B P i ;,9/)2()|(-=j A B P j9,8,7,6=j 。

由全概率公式得欲求的概率为∑====9356.04516)|()()(i i i A B P A P B P . 6、解:设A 1={从甲袋中取出2只白球},A 2={从甲袋中取出一只白球一只黑球},A 3={从甲袋中取出2只黑球},B={从乙袋中取出2只白球}。

则由全概率公式得)()|()()|()()|()(332211A P A B P A P A B P A P A B P B P ++=222222222111222222+++++++++++++=βαβααβαC C C c C C C C c c c C C b a ab b a b a B A a a . 7、解:A 1={从第一袋中取出一球是黑球},……,A i ={从第一袋中取一球放入第二袋中,…,再从第1-i 袋中取一球放入第i 袋中,最后从第i 袋中取一球是黑球},N i ,,1 =。

则)()(,)(11b a b A P b a a A P +=+=. 一般设)()(b a a A P k +=,则)()(b a bA P k +=,得)()()|()()|()(111b a aA P A A P A P A A P A P k k k k k k k +=+=+++.由数学归纳法得 )()(b a aA P N +=.8、解:设A 1={飞机第一部分中两弹},A 2={飞机第二部分中两弹},A 3={飞机第一部分中一弹},A 4={其它情况},则.),(4321Ω=+++≠=A A A A j i A A j i φ.04.02.02.0)(,01.01.01.0)(21=⨯==⨯=A P A PA 3={第一弹中第一部分且第二弹中第二部分,或第一弹中第一部分且第二弹中第三部分,或第一弹中第二部分且第二弹中第一部分,或第一弹中第三部分且第二弹中第一部分},18.01.07.01.02.07.01.02.01.0)(3=⨯+⨯+⨯+⨯=A P ,.77.0)]()()([1)(3214=++-=A P A P A P A P设B={飞机被击落},则 .0)|(),3,2,1(1)|(4===A B P I A B P i由全概率公式得∑==41)()|()(i iiA P AB P B P .23.018.004.001.0=++=9、解:设A i ={第i 回出正面},记)(i i A P p =,则由题意利用全概率公式得)()|()()|()(111i i i i i i i A P A A P A P A A P A P ++++=)1()12()1)(1(111p p p p p pp -+-=--+=。

已知c p i =,依次令1,,2,1 --=n n i 可得递推关系式),1()12(1p p p P n n -+-=- ,),1()12(21 p p p P n n -+-=-- ).1()12()1()12(12p c p p p p P -+-=-+-=解得,)12(])12()12()12(1)[1(122---+-++-+-+-=n n n p c p p p p P当1≠p 时利用等比数列求和公式得11)12()12(1)12(1)1(---+-----=n n n p c p p p p .)12()12(212111---+--=n n p c p (*)(1)若1=p ,则C p C p n n n =≡∞→lim ,;(2)若0=p ,则当12-=k n 时,c p n =;当k n 2=时,c p n -=1。

若21=c ,则21lim ,21=≡∞→n n n p p 若121≠c ,则n n p c c ∞→-≠lim ,1不存在。

(3)若10<<p ,则由(*)式可得.21)12()12(2121lim lim 11=⎥⎦⎤⎢⎣⎡-+--=--∞→∞→n n n n n p c p p10、解:令i i i C B A ,,分别表示第i 次交换后,甲袋中有两只白球,一白一黑,两黑球的事件,则由全概率公式得)|()()|()()|()()(11111n n n n n n n n n n n C A P C P B A P B P A A P A P A P p +++++++==n n n n q r q p 410410=⋅++⋅=,)|()()|()()|()()(11111n n n n n n n n n n n C B P C P B B P B P A B P A P B P q +++++++==,211211n n n n n n r q p r q p ++=⋅++⋅=,)|()()|()()|()()(11111n n n n n n n n n n n C C P C P B C P B P A C P A P C P r +++++++==n n n n q r q p 410410=⋅++⋅=.这里有11++=n n r p ,又1111=+++++n n n r q p ,所以1121++-=n n p q ,同理有n n p q 21-=,再由n n q p 411=+得)21(411n n p p -=+。

所以可得递推关系式为⎪⎩⎪⎨⎧-=-==++++111121)21(41n n n n n p q p p r , 初始条件是甲袋一白一黑,乙袋一白一黑,即1,0000===q r p ,由递推关系式得n n n n p p p r 2141)21(4111-=-==++ =+-=--=--11418141)2141(2141n n p p⎪⎭⎫⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=-+-++-=+++++211211412)1(2)1(212111012232n n n n n p2112131)1(6121)1(161+++⎪⎭⎫⎝⎛⋅⋅-+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⋅--=n n n n , 11112131)1(3221++++⎪⎭⎫ ⎝⎛⋅⋅-+=-=n n n n p q ..32lim ,61lim lim ===∞→∞→∞→n n n n n n q r p11、解:设A n ={家庭中有n 个孩子},n=0,1,2,…,B={家庭中有k 个男孩}。

注意到生男孩与生女孩是等可能的,由二项分布)21(=p 得 .212121)|(nk nkn kk nn C C A B P ⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=-由全概率公式得∑∑∞=∞=⎪⎭⎫ ⎝⎛==k n nk nn k n n n C ap A B P A P B P 21)|()()(∑∞=++⎪⎭⎫ ⎝⎛=01112i k k p C a (其中k n i -=)∑∞=+⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=011122i k k p Cp a .)2(22121`1+---=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=k kk kp ap p p a 12、解:(1)设A={至少有一男孩},B={至少有2个男孩}。

B AB B A =⊃,,由1)2(0<-<p p得,)1)(2()2(1)2(22)2(2)(11p p ap p p p pp a p ap A P k k k--=---⋅-=-=∑∞=+2222221)1()2()2(1)2(22)2(2)(p p ap p p p p p a p ap B P k k k --=---⋅-=-=∑∞=+, ppA PB P A P AB P A B P -===2)()()()()|(.(2)C={家中无女孩}={家中无小孩,或家中有n 个小孩且都是男孩,n 是任意正整数},则∑∞=⎪⎭⎫⎝⎛+--=12111)(a nn ap p ap C P)2)(1(32211212112p p p ap p p ap p ap p app ap --+--=-+--=-+--= A 1={家中正好有一个男孩}={家中只有一个小孩且是男孩},则ap ap A P 2121)(1=⋅=,且C A ⊂1, 所以在家中没有女孩的条件下,正好有一个男孩的条件概率为)()()()()|(111C P A P C P C A P C A P ==)32(2)2)(1()2)(1(322122p ap p p p ap p p p ap p ap +----=--+--=.13、解:设A={产品确为合格品},B={检查后判为合格品}。

相关文档
最新文档