概率论与数理统计01+第一节+大数定律
EXCEL演示大数定律

EXCEL演示大数定律1 引言大数定律又称大数法则、大数率,它是概率论与数理统计学的基本定律之一。
通俗地说,这个定律就是,在试验不变的条件下,重复试验多次,随机事件发生的频率趋于一个稳定值,这个稳定值就是随机事件发生的概率。
比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们上抛硬币的次数足够多,达到上万次甚至几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一。
所以,我们说抛硬币这一事件中,正面和反面出现的概率都是0.5,而掷骰子事件中每个面出现的概率都是1/6。
要见证大数定律,就要作大量实验。
而上万次的实验太费时费力了。
为了在教学中,让学生更深刻地认识大数定律,我们可利用EXCEL作直观的虚拟实验演示。
以下,由易到难介绍几种演示大数定理的方法。
2、运用EXCEL函数演示大数定律要模拟随机现象,就要产生随机分布的随机数。
EXCEL的RAND()函数就能产生0~1之间(大于等于0且小于1)的随机数。
假设,实验中观察的随机事件发生概率是P,那么可用RAND()产生的小于P值的随机数代表事件发生,而RAND()产生的大于或等于P值的随机数就代表事件没发生。
下面开始具体的模拟演示。
设数字1代表事件发生,数字0代表事件没发生。
打开EXCEL(本文使用的是EXCEL2003),新建工作簿。
在新工作表Sheet1的A1单元格内输入文字:“随机事件结果”,B1输入:“随机事件发生频率”,C1中输入:“事件概率P值”。
C2中为P值输入一个具体数值,如0.3。
A2中输入公式:=IF(RAND()<C2,1 ,0),回车后得到1或0。
这里运用了IF()函数,如果RAND()产生的随机数小于C2中的概率值,A2中值为1,这代表概率为P=C2的随机事件发生了。
否则A2中值为0,这代表概率为P=C2的随机事件发没发生。
我们完成了一次随机实验。
要重复实验,只需选中A2单元格,用填充柄将A2内容向下拖拉复制即可。
第5讲 大数定律与中心极限定理

为.
P Xn a(n )
大数定律的定义
定义5.2
设 X 1 , X 2 , , X n ,是 随 机 变 量 序 列 ,令 1 n Yn X i n i 1 如果存在一个常数序列 a1 , a 2 , , a n , , 对任意的 0, 恒 有 l i mP {| Yn a n | } 0
这种稳定性的含义说明算术平均值是依概率 收敛的意义下逼近某一常数 .
定理5.2的另一种叙述:
设 随 机 变 量X 1 , X 2 , , X n , 两 两 不 相 关 , 且都具有有限的方差 ,并 有 公 共 的 上 界 D( X 1 ) C , D( X 2 ) C , , D( X n ) C , , 则
n
则称随机变量序列 { X n }服 从 大 数 定 律 .
二、大数定理
定理5.1(马尔可夫大数定律)
设 为一列随机变量序列,则
(2)满足马尔可夫条件:
n 1 D( X i ) 0(n ) 2 n i 1
条件:(1)随机变量的方差存在;
结论:称
服从大数定律,即
1 n 1 n lim P{| X i EX i | } 1 。 n n i 1 n i 1
依概率收敛于
解:由于
。
独立同分布,所以 也独立同分布,而且
由辛钦大数定律
例2. 设
则
P{| X Y | 6}
解: 设 则
由切比雪夫不等式
01YM1
例3. 已知一本400页的书中每页印刷错字个数服从参数为 0.02的泊松分布,求这本书印刷错字的个数不超过15的概 率。 表示每页出现错字个数,则 解: 设
注2: De Moivre-Laplace中心极限定理是LindebergLeve中心极限定理在随机变量序列 X 1 , X 2 , , X n , 独立同分布于0-1分布的特例。 注3: Chebysher不等式主要针对均值和方差已知时, 对随机变量取值的概率作粗略估计。
概率论与数理统计公式总结(湖南大学)

2.设 的 和 两个样本,则有:
(1)
5.相关性
对于随机变量X,Y下列结论是等价的:
(1)X与Y不相关 (3)ρ=0 (5)D(X Y)=D(X)+D(Y)
(2)Cov(X,Y)=0 (4)E(XY)=E(X)E(Y)
X,Y相互独立可以推出上述五个结论。
※切比雪夫不等式
表明:对于任意正数ε,当随机变量X的方差越小时,事件 的概率越小,其对立面概率越大。
则
定理(2)X Y相互独立,g(x)和h(y)是两个一元连续函数,则g(X)和h(Y)也相互独立。
定理(3) 则 。且 只差一个常数因子。
(重点)※期望与方差的性质
1期望的性质
(1)一维的:
若Y=g(X),
二维的:
若Z=g(X,Y),
(2)性质:E(C)=C E(CX)=CE(X) (C为常数)
E(X+Y)=E(X)+E(Y)
3.边缘概率密度函数
4.二维正态分布(还是看一下会比较好)
(1)二维正态分布中X,Y相互独立的充要条件是参数ρ(相关系数)=0
※连续型随机变量之和的分布
1.一般地:
卷积公式:
2.其他分布
(1)瑞利分布: X, Y均服从N(0, )则 的概率密度为
(2)Max与Min 分布:(自己推广到n个变量的情况)
(3)若X,Y独立,则Cov(X,Y)=0
(4)Cov(aX,bY)=abCov(X,Y)
(5)Cov( )=Cov( Y)+Cov( )
3.标准化随机变量
4.相关系数
也可写做为X,Y的标准化协随机变量的协方差
性质:(1)
(2)|ρ|=1的充要条件,存在常数a,b(b不等于0),使P{Y=a+bX}=1即X,Y以概率1线性相关。
第一节 大数定律

1 n limP ∑Xk − 0.1 < ε = 1. n→∞ n k=1
概率论
1 n 1 n 切比雪夫大数定律: limP n ∑Xi − n ∑E ( Xi ) < ε = 1; n→∞ i =1 i =1 大 E( Xk ) = µk 数 D( Xk ) = σk2
1 n 1 n limP ∑Xi − ∑E ( Xi ) < ε = 1 。 n→∞ n i =1 n i =1
我们用切比雪夫不等式证明该定理。 证: 我们用切比雪夫不等式证明该定理。
1 1 E ∑Xi = ∑E ( Xi ) n i =1 n i =1
概率论
, 1 第k次取到号码0, 设:Xk = 其它, 0,
k = 1,2,L
对序列{X 能否应用大数定律 能否应用大数定律? 问: 对序列 k}能否应用大数定律?
0 1 解: Xk ~ , 0.1 0.9
E(Xk)=0.1, k=1,2, … 独立同分布, 且期望存在, 故能使用大数定律. 诸 Xk 独立同分布 且期望存在 故能使用大数定律 即对任意的 ε > 0,
概率论
nA limP − p < ε =1 n→∞ n nA 或: limP − p ≥ ε = 0 。 n→∞ n
证明: 证明: 因为nA ~ B(n, p),由此可表示为:
概率论
nA = X1 + X2 + L + Xn .
0 其中Xk 相互独立,且都服从以 p 为参数的( − 1)分布,因而: 以 E( Xk ) = p, D( Xk ) = p(1 − p),
n n
概率论
(完整版)概率论与数理统计知识点总结(详细)

《概率论与数理统计》第一章概率论的基本概念 (2)§2.样本空间、随机事件 (2)§4等可能概型(古典概型) (3)§5.条件概率 (4)§6.独立性 (4)第二章随机变量及其分布 (5)§1随机变量 (5)§2离散性随机变量及其分布律 (5)§3随机变量的分布函数 (6)§4连续性随机变量及其概率密度 (6)§5随机变量的函数的分布 (7)第三章多维随机变量 (7)§1二维随机变量 (7)§2边缘分布 (8)§3条件分布 (8)§4相互独立的随机变量 (9)§5两个随机变量的函数的分布 (9)第四章随机变量的数字特征 (10)§1.数学期望 (10)§2方差 (11)§3协方差及相关系数 (11)第五章 大数定律与中心极限定理 (12)§1. 大数定律 ...................................................................................... 12 §2中心极限定理 . (13)第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论大数定律及其应用

概率论大数定律及其应用Revised as of 23 November 2020概率论基础结课论文题目:独立随机序列的大数事件的定理与应用作者摘要:历史上第一个定理属于,后人称之为“”。
概率论中讨论的向的定律。
概率论与数理的基本定律之一,又称弱大数理论。
大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。
本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。
关键词:弱大数定理伯努利大数定理随机变量数学期望概率引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。
在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。
比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。
偶然之中包含着必然。
从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。
这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。
深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么在什么条件下具有稳定性这就是我们大数要研究的问题。
概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。
然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。
这种稳定性与它在在实验进行中的个别特征无关,且不再是随机的。
概率统计中的大数定律与中心极限定理-教案

概率统计中的大数定律与中心极限定理-教案一、引言1.1概率统计的基本概念1.1.1随机事件与概率1.1.2随机变量与分布函数1.1.3数学期望与方差1.1.4大数定律与中心极限定理的关系1.2大数定律与中心极限定理的应用领域1.2.1自然科学领域1.2.2社会科学领域1.2.3工程技术领域1.2.4经济学领域1.3教学目标与教学方法1.3.1理解大数定律与中心极限定理的基本原理1.3.2学会运用大数定律与中心极限定理解决实际问题1.3.3培养学生的数据分析能力与逻辑思维能力1.3.4采用案例教学、讨论式教学等方法提高教学效果二、知识点讲解2.1大数定律2.1.1大数定律的定义2.1.2大数定律的证明2.1.3大数定律的应用2.1.4大数定律与频率稳定性2.2中心极限定理2.2.1中心极限定理的定义2.2.2中心极限定理的证明2.2.3中心极限定理的应用2.2.4中心极限定理与正态分布2.3大数定律与中心极限定理的关系2.3.1大数定律是中心极限定理的基础2.3.2中心极限定理是大数定律的推广2.3.3大数定律与中心极限定理在实际应用中的联系2.3.4大数定律与中心极限定理在理论分析中的联系三、教学内容3.1大数定律的教学内容3.1.1大数定律的基本概念与性质3.1.2大数定律的证明方法3.1.3大数定律在实际问题中的应用3.1.4大数定律与频率稳定性在教学中的实例分析3.2中心极限定理的教学内容3.2.1中心极限定理的基本概念与性质3.2.2中心极限定理的证明方法3.2.3中心极限定理在实际问题中的应用3.2.4中心极限定理与正态分布在教学中的实例分析3.3大数定律与中心极限定理的关系教学内容3.3.1大数定律与中心极限定理的联系与区别3.3.2大数定律与中心极限定理在实际应用中的相互依赖3.3.3大数定律与中心极限定理在理论分析中的相互补充3.3.4大数定律与中心极限定理在教学中的综合运用实例分析四、教学目标4.1知识与技能目标4.1.1掌握大数定律和中心极限定理的基本概念4.1.2理解大数定律和中心极限定理的数学表达和证明方法4.1.3能够应用大数定律和中心极限定理解决实际问题4.1.4培养学生的数据分析能力和逻辑推理能力4.2过程与方法目标4.2.1通过实例引入,让学生体会从具体到抽象的学习过程4.2.2采用小组讨论,培养学生合作学习和交流表达能力4.2.3利用数学软件进行模拟实验,增强学生的实践操作能力4.2.4通过问题解决,训练学生的批判性思维和创造性思维4.3情感、态度与价值观目标4.3.1培养学生对概率统计学科的兴趣和热情4.3.2强调数学知识在实际生活中的应用价值4.3.3增强学生的科学精神和求真态度4.3.4培养学生的团队合作精神和责任感五、教学难点与重点5.1教学难点5.1.1大数定律和中心极限定理的数学证明5.1.2大数定律和中心极限定理在实际问题中的应用5.1.3学生对概率统计概念的理解和运用5.1.4学生数据分析能力的培养5.2教学重点5.2.1大数定律和中心极限定理的基本概念和性质5.2.2大数定律和中心极限定理的数学表达和直观理解5.2.3大数定律和中心极限定理在生活中的实际应用5.2.4学生数据分析技能的提升六、教具与学具准备6.1教具准备6.1.1多媒体教学设备(投影仪、电脑等)6.1.2数学软件(如MATLAB、R等)用于模拟实验6.1.3实物模型或教具(如骰子、硬币等)用于演示6.1.4教学课件和讲义6.2学具准备6.2.1笔记本电脑或平板电脑(用于数学软件操作)6.2.2笔和纸(用于笔记和练习)6.2.3预习资料和阅读材料6.2.4小组讨论记录表七、教学过程7.1导入新课7.1.1通过生活实例引入大数定律的概念7.1.2提问学生对概率统计的基本理解7.1.3介绍大数定律和中心极限定理的历史背景7.1.4阐述本节课的学习目标和重要性7.2主体教学7.2.1详细讲解大数定律的定义和数学表达7.2.2通过数学软件演示大数定律的实验验证7.2.3讲解中心极限定理的原理和数学证明7.2.4分析中心极限定理在实际问题中的应用案例7.3练习与讨论7.3.1分组进行数学软件模拟实验7.3.2小组讨论实验结果和理论联系7.3.3解答学生在实验和讨论中的疑问7.4.1回顾本节课的主要内容和重点难点7.4.2强调大数定律和中心极限定理的实际应用7.4.3布置相关的练习题和思考题7.4.4预告下一次课的内容和学习要求八、板书设计8.1大数定律与中心极限定理基本概念8.1.1大数定律的定义8.1.2中心极限定理的定义8.1.3大数定律与中心极限定理的关系8.1.4实际应用案例8.2大数定律与中心极限定理的数学表达8.2.1大数定律的数学表达8.2.2中心极限定理的数学表达8.2.3数学证明的关键步骤8.2.4数学表达在实际问题中的应用8.3大数定律与中心极限定理的教学实例8.3.1大数定律的教学实例8.3.2中心极限定理的教学实例8.3.3教学实例中的关键点分析九、作业设计9.1基础练习题9.1.1大数定律的基本概念题9.1.2中心极限定理的基本概念题9.1.3大数定律与中心极限定理的关系题9.1.4实际应用案例分析题9.2数学软件模拟实验9.2.1大数定律的数学软件模拟实验9.2.2中心极限定理的数学软件模拟实验9.2.4实验中的关键点和难点解析9.3拓展阅读与思考9.3.1相关历史背景和数学家的研究9.3.2大数定律与中心极限定理在其他领域的应用9.3.3对概率统计学科未来发展的思考9.3.4学生自主研究项目提案十、课后反思及拓展延伸10.1教学效果评估10.1.1学生对大数定律与中心极限定理的理解程度10.1.2学生在实际问题中的应用能力10.1.3教学方法和教学内容的适应性10.1.4教学目标达成情况的评估10.2教学改进措施10.2.1针对学生的反馈调整教学内容和方法10.2.2增加更多的实际应用案例和讨论环节10.2.3引入更多的数学软件和工具进行辅助教学10.2.4鼓励学生进行自主研究和项目实践10.3拓展延伸方向10.3.1大数定律与中心极限定理在其他学科的应用10.3.2概率统计领域的前沿研究和最新发展10.3.3学生自主研究和项目实践的方向指导10.3.4与其他数学分支的联系和交叉研究重点关注环节补充和说明:1.教学内容的适应性:根据学生的反馈和理解程度,适时调整教学内容和难度,确保学生能够充分理解大数定律与中心极限定理的基本概念和原理。
概率论大数定律及其应用

概率论基础结课论文题目:独立随机序列的大数事件的定理与应用作者:信计1301班王彩云130350119摘要:概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。
概率论中讨论随机变量序列的算术平均值向常数收敛的定律。
概率论与数理统计学的基本定律之一,又称弱大数理论。
大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。
本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。
关键词:弱大数定理伯努利大数定理随机变量数学期望概率引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。
在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。
比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。
偶然之中包含着必然。
从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。
这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。
深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。
概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。
然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 大数定律与中心极限定理
概率论与数理统计是研究随机现象统计规律性的学科. 而随机现象的规律性在相同的条件下进行大量重复试验时会呈现某种稳定性. 例如, 大量的抛掷硬币的随机试验中, 正面出现频率; 在大量文字资料中, 字母使用频率; 工厂大量生产某种产品过程中, 产品的废品率等. 一般地, 要从随机现象中去寻求事件内在的必然规律, 就要研究大量随机现象的问题.
在生产实践中, 人们还认识到大量试验数据、测量数据的算术平均值也具有稳定性. 这种稳定性就是我们将要讨论的大数定律的客观背景. 在这一节中,我们将介绍有关随机变量序列的最基本的两类极限定理----大数定理和中心极限定理.
第一节 大数定律
内容要点:
一、依概率收敛
与微积分学中的收敛性的概念类似, 在概率论中, 我们要考虑随机变量序列的收敛性. 定义1 设 ,,,,21n X X X 是一个随机变量序列, a 为一个常数,若对于任意给定的正数ε,有 ,1}|{|lim =<-∞
→εa X P n n 则称序列 ,,,,21n X X X 依概率收敛于a , 记为
).(∞→−→−n a X P
n
定理1 设,,b Y a X P
n P n −→−−→−
又设函数),(y x g 在点),(b a 连续, 则 ),(),(b a g Y X g P
n n −→−.
二、切比雪夫不等式
定理2设随机变量X 有期望μ=)(X E 和方差2)(σ=X D ,则对于任给0>ε, 有
22
}|{|ε
σεμ≤≥-X P .
上述不等式称切比雪夫不等式.
注:(i) 由切比雪夫不等式可以看出,若2σ越小, 则事件
}|)({|ε<-X E X
的概率越大, 即, 随机变量X 集中在期望附近的可能性越大. 由此可见方差刻划了随机变量取值的离散程度.
(ii) 当方差已知时,切比雪夫不等式给出了X 与它的期望的偏差不小于ε的概率的估计式.如取,3σε= 则有
.111.09}3|)({|2
2
≈≤≥-σσσX E X P
故对任给的分布,只要期望和方差2σ存在, 则随机变量X 取值偏离)(X E 超过σ3的概率小于0.111.
三、大数定理
1.切比雪夫大数定律
定理3 (切比雪夫大数定律)设 ,,,,21n X X X 是两两不相关的随机变量序列,它们数学期望和方差均存在, 且方差有共同的上界, 即,,2,1,)( =≤i K X D i 则对任意0>ε, 有
1)(11lim 11=⎪⎭
⎪
⎬⎫⎪⎩⎪⎨⎧<-∑∑==∞→εn i i n i i n X E n X n P 注: 定理表明: 当n 很大时,随机变量序列}{n X 的算术平均值∑=n
i i X n 1
1依概率收敛于其数
学期望∑=n
i i X E n 1
)(1.
2.伯努利大数定理
定理4 (伯努利大数定律)设A n 是n 重伯努利试验中事件A 发生的次数, p 是事件A 在每次试验中发生的概率, 则对任意的0>ε, 有
1lim =⎭⎬⎫⎩⎨⎧<-→∞εp n n P A n 或 0l i m =⎭
⎬⎫
⎩⎨⎧≥-→∞εp n n P A n . 注:(i) 伯努利大数定律是定理1的推论的一种特例, 它表明: 当重复试验次数n 充分大
时, 事件A 发生的频率
n
n A
依概率收敛于事件A 发生的概率p .定理以严格的数学形式表达了频率的稳定性. 在实际应用中, 当试验次数很大时,便可以用事件发生的频率来近似代替事件的概率.
(ii) 如果事件A 的概率很小,则由伯努利大数定律知事件A 发生的频率也是很小的,或者说事件A 很少发生. 即“概率很小的随机事件在个别试验中几乎不会发生”,这一原理称为小概率原理,它的实际应用很广泛. 但应注意到,小概率事件与不可能事件是有区别的. 在多次试验中,小概率事件也可能发生.
3.辛钦大数定理 定理5 (辛钦大数定律) 设随机变量 ,,,,21n X X X 相互独立, 服从同一分布,且具有数学期望,,2,1,)( ==i X E i μ 则对任意0>ε, 有
11lim 1=⎭
⎬⎫
⎩⎨⎧<-∑=∞
→εμn i i n X n P . 注: (i) 定理不要求随机变量的方差存在;
(ii) 伯努利大数定律是辛钦大数定律的特殊情况;
(iii) 辛钦大数定律为寻找随机变量的期望值提供了一条实际可行的途径. 例如, 要估计某地区的平均亩产量, 可收割某些有代表性的地块, 如n 块,计算其平均亩产量, 则当n 较大时,可用它作为整个地区平均亩产量的一个估计. 此类做法在实际应用中具有重要意义.
例题选讲:
切比雪夫不等式
例1 已知正常男性成人血液中, 每一毫升白细胞数平均是7300, 均方差是700. 利用切比雪夫不等式估计每毫升白细胞数在5200~9400之间的概率.
解
设每毫升白细胞数为,X 依题意, ,7300=μ,70022=σ
所求概率为
}94005200{≤≤X P }73009400730073005200{-≤-≤-=X P }21002100{≤-≤-=μX P }.2100|{|≤-=μX P 由切比雪夫不等式
22)2100/(1}2100|{|σμ-≥≤-X P 2)2100/700(1-=,9/89/11=-=
即每毫升白细胞数在5200 ~ 9400之间的概率不小于8/9.
例2 在每次试验中, 事件A 发生的概率为0.75, 利用切比雪夫不等式求: 事件A 出现的频率在0.74~0.76之间的概率至少为0.90?
解 设X 为次试验中, 事件A 出现的次数, 则
)75.0,(~n b X , ,75.0n =μ ,1875.025.075.02n n =⨯=σ
所求为满足90.0}76.0/74.0{≥<<n X P 的最小的.n }76.0/74.0{<<n X P 可改写为
}76.074.0{n X n P <<}01.075.001.0{n n X n P <-<-=}01.0|{|n X P <-=μ 在切比雪夫不等式中取,01.0n =ε 则
}76.0/74.0{<<n X P }01.0|{|n X P <-=μ22)01.0/(1n σ-≥
20001.0/1875.01n n -=n /18751-=
依题意, 取n 使,9.0/18751≥-n 解得 ,18750
)9.01/(1875=-≥n 即n 取18750 时, 可以使得在n 次独立重复试验中, 事件A 出现的频率在76.0~74.0之间的概率至少为 0.90.。