大数定律

合集下载

大数定律

大数定律
2
对任意ε > 0 ,估计 µ n 偏离 p 不小于ε 的概率 P(| µ n − p |≥ ε )
P(| µ n − p |≥ ε ) = P(| Sn − np |≥ nε )
(k − np) 2 = ∑ P ( Sn = k ) ≤ ∑ P ( Sn = k ) 2 2 nε k :|k − np|≥ nε k :|k − np|≥ nε
1 0
述计算积分 A = ∫ f ( x) dx 的 Monte Carlo 法.
设 X1 , Y1 , X 2 , Y2 ,⋯ 是相互独立的随机变量序列, 且都服从[0,1] 上的均匀分布.设 1 若f ( X i ) ≥ Yi Zi = , 0 若f ( X i ) < Yi
则 Zi = 1当且仅当 ( X i , Yi ) 落在曲线 f ( x) 下面阴影中.因而
µ n = Sn / n
当 n 无限增大时,频率 µ n 在某一确定值附近趋于稳定,这一确 定值称为 A 的概率。
如果 µ n 有极限,自然会把这极限看作这确定值,即 A 的概率.
µ n 是随机变量,通常的数列的极限的定义不适用.
下面证明频率 µ n “依概率收敛”(定义见后)于 p ,因而
概率的统计定义与(以公理 1.1 和公理 1.2 为基础的建立 起来的)概率论理论是相容的.
P(| X − EX |≥ ε ) ≤ DX / ε 2 .
证 2 2) 分别用 ( X − EX ) 2 和ε 2 代替 1)中的 X 和ε 有. 1
P (( X − EX ) 2 |≥ ε 2 ) ≤ E ( X − EX ) 2 / ε 2 ,
由此得
P (| X − EX |≥ ε ) ≤ DX / ε 2 .

四种大数定律

四种大数定律

四种大数定律一、大数定律简介大数定律是概率论的基本定理之一,用于描述当随机试验次数趋于无穷时,随机事件发生的频率会趋于一个确定的数值。

大数定律在很多领域都有广泛的应用,如统计学、经济学、物理学等。

下面将介绍四种常见的大数定律。

二、辛钦定律辛钦定律是大数定律的一种形式,它指出当独立同分布的随机变量的和的绝对值超过一个常数时,其频率趋于无穷时,事件发生的概率趋于零。

这个定律的应用非常广泛,例如在赌场中,当一个人连续多次下注时,他的输赢金额会趋向于一个常数。

三、伯努利大数定律伯努利大数定律是大数定律的另一种形式,它描述了在相互独立的重复试验中,当试验次数趋于无穷时,随机事件发生的频率会趋于其概率。

例如在抛硬币的实验中,当抛硬币次数足够多时,正面朝上和反面朝上的频率将接近0.5。

四、中心极限定理中心极限定理是大数定律的又一种形式,它指出当独立同分布的随机变量的和的标准化差异趋近于一个正态分布时,频率趋于无穷时,随机事件的分布将趋于正态分布。

这个定理在统计学中有广泛的应用,例如在抽样调查中,样本均值的分布将趋于正态分布。

五、泊松大数定律泊松大数定律是大数定律的另一种形式,它描述了在独立随机事件发生的频率固定的条件下,当试验次数趋于无穷时,事件发生的频率会趋于一个常数。

这个定律在队列论、信号处理等领域有广泛的应用,例如在电话交换系统中,电话呼叫的到达率和服务率满足一定条件时,系统中正在服务的电话数的平均值将趋于一个常数。

六、总结大数定律是概率论中的重要定理,用于描述随机事件发生的频率趋于一个确定值的现象。

本文介绍了四种常见的大数定律,包括辛钦定律、伯努利大数定律、中心极限定理和泊松大数定律。

这些定律在不同领域有广泛的应用,如赌场、统计学、经济学等。

了解和应用大数定律可以帮助我们更好地理解和分析随机事件的发生规律,对于决策和预测具有重要的参考价值。

大数定律

大数定律

k 1
定理二(李雅普诺夫(Lyapunov) (L )定理) 设随机变量 数学期望和方差 (k=1,2,…) 1,2,…) ,记 相互独立,它们具有 ,
若存在正数 使得当
时,
则随机变量之和
Zn
的标准化变量
X
k 1 n k
E ( X k )
k 1 n
n

X
k 1
n
k
n
D ( X k )
16
自从高斯指出测量误差服从正态 分布之后,人们发现,正态分布在 自然界中极为常见。
高斯
如果一个随机变量是由大量相互独立的随机因 素的综合影响所造成,而每 个别因素对这种综合 素的综合影响所造成,而每一个别因素对这种综合 影响中所起的作用不大。 则这种随机变量一般都服 从或近似服从正态分布。 从或近似服从正态分布 现在我们就来研究独立随机变量之和所特有 的规律性问题。 当n无限增大时,这个和的极限分布是什么呢? 无限增大时 这个和的极限分布是什么呢?
k 1
Bn
21
Zn
X
k 1
n
k
E ( X k )
k 1 n
n

X
k 1
n
k
n
D ( X k )
k 1
Bn
的分布函数
Fn ( x)
n X n i i 1 lim Fn ( x) lim P x n n n
由切比雪夫不等式
2 n 1 n P Xk 1 2 n k 1 上式中令 n 得 1 n lim P{| X i | } 1 n n i 1
4

23个大数定律

23个大数定律

23个大数定律大数定律是概率论中的一组重要定理,用于描述在随机试验中大量重复进行时的规律性现象。

以下是23个大数定律的简要介绍。

1. 大数定律:随着试验次数的增加,随机变量的平均值会趋近于其期望值。

2. 弱大数定律:对于独立同分布的随机变量序列,其平均值收敛于期望值的概率为1。

3. 辛钦大数定律:对于独立同分布的随机变量序列,其平均值以概率1收敛于期望值。

4. 伯努利大数定律:在一系列独立的伯努利试验中,事件发生的频率趋近于其概率。

5. 泊松大数定律:对于独立同分布的泊松随机变量序列,其平均值以概率1收敛于其参数。

6. 中心极限定理:大量独立同分布的随机变量的和趋近于正态分布。

7. 林德伯格-列维定理:对于独立同分布的随机变量序列,其和的标准化形式以概率1收敛于标准正态分布。

8. 稳定中心极限定理:对于独立同分布的随机变量序列,其和的标准化形式以概率1收敛于稳定分布。

9. 辛钦大数定律的弱形式:对于独立同分布的随机变量序列,其平均值收敛于期望值的概率为1。

10. 多重大数定律:对于多个随机变量序列,其平均值以概率1收敛于各自的期望值。

11. 大数定律的强形式:对于独立同分布的随机变量序列,其平均值收敛于期望值的概率为1。

12. 独立非同分布大数定律:对于独立非同分布的随机变量序列,其平均值以概率1收敛于各自的期望值。

13. 独立同分布大数定律的弱形式:对于独立同分布的随机变量序列,其平均值收敛于期望值的概率为1。

14. 辛钦大数定律的强形式:对于独立同分布的随机变量序列,其平均值收敛于期望值的概率为1。

15. 大数定律的加法形式:对于独立同分布的随机变量序列,其和以概率1收敛于各自的期望值之和。

16. 大数定律的乘法形式:对于独立同分布的随机变量序列,其乘积以概率1收敛于各自的期望值之积。

17. 大数定律的极限形式:对于独立同分布的随机变量序列,其平均值以概率1收敛于期望值的极限。

18. 大数定律的收敛速度:随着试验次数的增加,随机变量的平均值与期望值之间的差异逐渐减小。

通俗的解释大数定律

通俗的解释大数定律

通俗的解释大数定律
概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。

概率论中讨论随机变量序列的算术平均值向随机变量各数学期望的算术平均值收敛的定律。

在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。

通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。

偶然中包含着某种必然。

大数定律分为弱大数定律和强大数定律。

大数定律通俗一点来讲,就是样本数量很大的时候,样本均值和真实均值充分接近。

这一结论与中心极限定理一起,成为现代概率论、统计学、理论科学和社会科学的基石。

概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。

概率论中讨论随机变量序列的算术平均值向随机变量各数学期望的算术平均值收敛的定律。

来源
最早的大数定律的表述可以追溯到公元1500年左右的意大利数学家Cardano。

1713年,著名数学家James (Jacob) Bernouli正式提出并证明了最初的大数定律。

不过当时现代概率论还没有建立起来,测度论、实分析的工具还没有出现。

因此当时的大数定律是以“独立事件的概率”作为对象的。

后来,历代数学家如Poisson(“大数定律”的名字来自于他)、Chebyshev、Markov、Khinchin (“强大数定律”的名字来自于他)、Borel、Cantelli等都对大数定律的发展做出了贡献。

直到1930年,现代概率论奠基人、数学大师Kolmogorov才真正证明了最后的强大数定律。

概率论中的大数定律是什么?

概率论中的大数定律是什么?

概率论中的大数定律是什么?
概率论中的大数定律是指随着随机变量的实验次数增加,其平均值逐渐稳定地接近于其期望值的现象。

大数定律揭示了随机变量行为的规律性,为概率论的应用提供了基础。

大数定律有两种主要形式:弱大数定律和强大数定律。

1. 弱大数定律
弱大数定律是指当随机变量的实验次数趋近于无穷大时,其样本均值接近于期望值的概率趋近于1。

换句话说,样本均值与期望值之间的差值在概率意义下趋近于零。

弱大数定律包括切比雪夫大数定律和伯努利大数定律等。

这些定律适用于满足一定条件的随机变量,如独立同分布的随机变量。

2. 强大数定律
强大数定律是指当随机变量的实验次数趋近于无穷大时,样本均值几乎确定地收敛于期望值。

也就是说,样本均值与期望值之间的差值几乎为零,而不仅仅是在概率意义下趋近于零。

强大数定律包括辛钦大数定律和伯努利大数定律等。

这些定律适用于更一般的随机变量,包括不满足独立同分布条件的情况。

大数定律在概率论和统计学中有广泛的应用。

它提供了实验结果稳定性的保证,使我们能够对随机事件进行准确的估计和推断。

无论是在金融领域、生物领域还是工程领域,大数定律都扮演着重要角色。

总结起来,概率论中的大数定律是指随着随机变量的实验次数增加,其平均值逐渐稳定地接近于其期望值的现象。

弱大数定律和强大数定律分别描述了样本均值与期望值之间的差值在概率意义下趋近于零和几乎为零的情况。

希望本文对您理解概率论中的大数定律有所帮助。

第05章 大数定律

第05章 大数定律

二、主要内容
大数定律
辛 钦 大 数 定 律 伯 努 利 大 数 定 律
中心极限定理
定 理 一 定 理 二 定 理 三
辛钦定理
设随机变量 服从同一分布 ( k 1 , 2 , ), X 1 , X 2 , , X n , 相互独立 , 且具有数学期望
则对于任意正数
,
E(Xk)
n n
D X k k 1
n
.
的分布函数
F n ( x ) 对于任意
n
Байду номын сангаас
x 满足
X k n k 1 lim Fn ( x ) lim P x n n n


x
1 2π

t
2
e
2
d t ( x ).
近似
定理二(李雅普诺夫定理定理)
设随机变量 们具有数学期望 E(Xk) k , 记 Bn
2
X 1 , X 2 , , X n , 相互独立 和方差: D(X k )
n 2 k
,它
0 ( k 1 , 2 , ),

k 1

2 k
,
若存在正数 1 B
2 k 1 n
Yn a .
P
辛钦大数定理
设随机变量 服从同一分布 ( k 1 , 2 , ),

X 1 , X 2 , , X n , 相互独立 , 且具有数学期望 E(Xk)
,
X
X n
k 1
1
n
k
依概率收敛于 , 即X .
P
伯努利大数定理

大 数 定 律

大 数 定 律

5
❖ 2.大数定律 切比雪夫大数定理
➢ 定理5.1.1 设 X1, X2, …, Xn…是相互独立的随机变量序列, 具有 数学期望 E( Xn ) , 且存在常数C, 使得方差 D(Xn)<C (n = 1, 2, …), 则随机变量序列 X1, X2, …, Xn… 服从大数定律,
n
令Yn Xk , 即 k 1
概率论与数理统计
❖ 前言
➢ 在第一章学习概率的概念时,我们已经提出了在随机试 验的大量重复试验中,某一随机事件出现的频率总是稳 定于某一数值就是概率. 也就是说,大量的随机现象往 往呈现几乎必然的规律,其平均结果具有稳定性,这个 规律就是大数定律.
概率论与数理统计
2
❖ 1.基本概念 首先介绍两个常用概念.
❖ 2.大数定律 切比雪夫大数定理
➢ 推论5.1.1表明, 当n充分大时,独立同分布的随机变量序
列的算术平均值
1 n
n i 1
Xi
接近于数学期望 E(Xi) = , 也就
是说n个相互独立同分布随机变量的算术平均值, 当n无
限增大时, 几乎变成了一个常数. 这一结论从理论上说明
了大量观测值的算术平均具有稳定性, 为实际应用提供
概率论与数理统计
12
❖ 2.大数定律 辛钦大数定律
➢ 定理5.1.3 设随机变量序列 X1, X2, …, Xn… 独立同分布, 具有
有限的数学期 E(Xk) = , 则对任给 >0, 有
➢ 证明从略.
lim P n
1 n
n i 1
Xi
1.
➢ 辛钦大数定律表明, 当要测量一个物理量的精确值 时, 若在 相同条件下重复测量n次, 用其算术平均值作为精确值 的近
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 大数定律与中心极限定理
在数学中大家都注意到过这样的现象:有时候一个有限项的和很难求,而一经取极限让有限过渡到无限,则问题反而好办。

例如计算和
!
1!31!212n s n ++++= 对于固定的但很大的n ,这个和很难求,但考虑∞→n 取极限时,则
有十分简单的结果:e s n n =∞
→lim 。

利用此结果,当n 很大时就可以把e 作为n s 的近似值。

在概率论中,也经常会出现求与很多个随机变量和有关的事件的概率。

比如)(21b X X X a P n <+++< ,除少数情况外,这样的概率计算都会十分复杂。

因而自然会提出问题:可否利用极限来近似计算呢?即考虑∞→n 时,n 个随机变量之和是否有某种极限分布。

概率论中不仅证明了这是可能的,而且还证明了在很一般的情况下,和的标准化随机变量的极限分布就是标准正态分布。

这一事实既可以解决近似计算概率的问题,同时也强化了正态分布的重要性,以及也解释了现实世界中许多随机现象中的变量的分布密度曲线会呈现钟形曲线的原因。

在概率论中把这类结果的有关定理叫做“中心极限定理”. 中心极限定理就是研究在什么条件下,大量随机变量之和的分布会接近于正态分布。

概率论中,另一类极限定理是所谓的“大数定理”.它是由“频率的稳定性”引申和发展而来的。

考虑n 次独立重复试验,每次试验观察事件A 是否发生,令
⎩⎨⎧=否则
0,发生A 次试试 i 若第,1i X ,n i ,,2,1 = 那么事件A 发生的频数为n n X X X S +++= 21,频率为n S X n n /=。

若p A P =)(,则“频率的稳定性”就是说,在n 很大时,频率n X 会接近于概率p 。

而p X E i =)(,p X E n =)(。

故也可说成是:在n 很大时,n 个随机变量的算术平均n X 会接近于其期望)(n X E 。

按后一种说法,就可不必局限于i X 只取0,1两个值的情况。

概率论中讨论的大数定理就是研究在何种条件下,n 个随机变量的算术平均n X ,当∞→n 时会在某种意义下收敛于其期望)(n X E 。

上面提到的问题都属随机变量序列的收敛性问题,随机变量序列的收敛性有多种,其中常用的是两种:依概率收敛和按分布收敛。

§5.1 大数定律
一. 依概率收敛的定义
定义 设}{n X 为一随机变量序列,X 为一随机变量,若对任意的0>ε,有
0)|(|lim =ε≥-∞
→X X P n n 或
1)|(|lim =ε<-∞
→X X P n n 则称随机变量序列}{n X 依概率收敛于X ,记作X X P
n →。

依概率收敛的含义是:n X 与X 的绝对偏差不小于任意给定的正数的可能性会随n 的无限增大而无限变小。

或者说,绝对偏差||X X n - 小于任意给定的正数的可能性的会随n 的无限增大而无限地接近于1。

特别当X 为退化的随机变量时,即X 为常数c ,则称}{n X 依概率收敛于常数c 。

依概率收敛的序列有以下性质。

设,a X P n →,b Y P
n →),(y x g 在点),(b a 过连续,则
),(),(b a g Y X g P n n →
二、 大数定律 大数定律有多种形式,下面从最简单的伯努利大数定律说起,然后逐个介绍各种大数定律。

1.伯努利大数定律
定理 设A n 为n 重伯努利试验中事件A 发生的次数,每次试验中事件A 发生的概率都为p ,则频率
n n A 依概率收敛于p ,即对0>ε∀,有 0)|(|lim =ε≥-∞→p n
n P A n , 或1)|(|lim =ε<-∞→p n
n P A n 证明:由于A n ~),(p n B ,故,)(p n n
E A =n p p n n Var A )1()(
-=, 由切比雪夫不等式,有
0)1()()|(|02
2→ε-=ε≤ε≥-≤n p p n n Var p n
n P A A , 所以 0)|(|lim =ε≥-∞→p n n P A n 。

伯努利大数定律说明:随着试验次数n 的增大,事件A 发生的频率n
n A 与其概率p 的绝对偏差||p n n A -大于任意给定的正数ε的可能性可以无限地接近于零,这就是频率的稳定性的概率意义。

2.几个常用的大数定律
定理(切比雪夫大数定律) 设}{n X 为一列两两不相关的随机变量
序列,若,,2,1,)( =≤i c X Var i 则}{n X 服从大数定律,即对0>ε∀,有 0)|)((|lim =ε≥-∞
→n n n X E X P 其中∑==n i i n X n X 1
1。

证明:由于}{n X 两两不相关,故
n
c X Var n X Var n i i n ≤
=∑=)(1)(12, 由切比雪夫不等式,有
0)()|((|02
2→ε≤ε≤ε≥-≤n c X Var X E X P n n n 。

证明完毕。

以上大数定律都要求随机变量i X 的方差存在,以下的辛钦大数定律
则去掉这个条件,但保留期望存在的条件,并要求}{n X 为独立同分布的随机变量序列。

定理(辛钦大数定律) 设}{n X 为独立同分布的随机变量序列,且i X 的期望存在,则}{n X 服从大数定律,即对0>ε∀,有 0)|)(|lim =ε≥μ-∞
→n n X P 其中)(i X E =μ。

辛钦大数定律刻画了算术平均值的稳定性。

同时,辛钦大数定律提供了求随机变量的数学期望)(X E 的近似值的方法。

设想对X 作多次独立重复观察(或从X 的分布中产生多个随机数),观察结果为
n X X X ,,,21 ,当n 足够大时,可以把观察值的平均值∑=n
i i X n 1
1作为)(X E
的近似值。

事实上,用观察值的平均值去近似随机变量的均值在实际工作中是常用的方法。

比如用多次的测量值的平均值作为最终的测量结果。

例 (用蒙特卡罗方法计算定积分) 近似计算定积分⎰=10)(dx x f J 。

假设X ~)1,0(U ,则=))((X f E ⎰10)(dx x f ,
所以求定积分⎰=10)(dx x f J 的近似值就是求随机变量)(X f 的期望
))((X f E 的近似值。

由辛钦大数定律,我们可用)(X f 的模拟值去近似计算定积分⎰=1
0)(dx x f J 。

具体做法如下:先用计算机产生n 个)1,0(U 的
随机数n x x x ,,,21 ,然后计算每个n i x f i ,,2,1),( =,最后得J 的近似值 )(11∑=≈n i i x f n J 对于积分⎰b a dx x f )(,我们总可通过换元将该积分变为区间]1,0[上的定
积分。

以上几个大数定律都可在概率论的理论框架下给出严格的证明,从数学的角度称为“大数定理”更为恰当.可是,当我们泛泛地谈论“频率的稳定性”,“平均值的稳定性”时,这表述了一种全人类多年的集体经验,有些哲理的味道,而且这种经验远在早于现代概率论之前就有,因此称之为“定律”也不算不妥.。

相关文档
最新文档