有限元讲义分析应用领域

合集下载

有限元方法简介

有限元方法简介

有限元方法在工程中的应用
有限元方法是一种数值分析方法,它将复杂的几何形状和物理系统转化为离散的网格,并对网格上的未知量进行求解,从而达到数值求解的目的。

随着计算机技术的不断发展,有限元方法得到了广泛的应用,尤其是在工程领域。

在工程中,有限元方法被广泛应用于结构力学、热传导、动力学、量子力学等领域。

在结构力学中,有限元方法可以用来分析结构的力学特性,比如拉伸、压缩、弯曲等。

在热传导领域中,有限元方法可以用来分析热传导现象,比如材料热传导、流体热传导等。

在动力学领域中,有限元方法可以用来分析物体的运动和动力学特性,比如刚体运动、振动等。

在量子力学领域中,有限元方法可以用来分析量子力学现象,比如电子输运、固体材料特性等。

除了上述应用领域,有限元方法还被广泛应用于材料科学、光学、声学、流体力学等领域。

可以说,有限元方法已经成为了工程分析的常用工具,在未来的发展中,它将继续发挥着重要的作用。

总结起来,有限元方法是一种先进的数值分析方法,它在工程领域中有着广泛的应用,是工程分析的常用工具。

随着计算机技术的不断发展,有限元方法将继续发挥着重要的作用,为工程领域的发展做出更大的贡献。

有限元分析及应用课件

有限元分析及应用课件
参数设置
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。

有限元理论基础及应用

有限元理论基础及应用

有限元理论基础及应用有限元理论是应用于工程计算领域的一种数值分析方法,它是通过将连续的结构或物体分割成有限数量的离散单元,然后在每个单元上进行近似计算,最终得到整个结构或物体的近似解。

有限元理论广泛应用于结构分析、流体力学、电磁场分析等领域,是工程计算的重要工具。

有限元理论的基础是有限元方法,它将连续的结构或物体以网格的形式划分成一系列有限的单元,通过在每个单元内进行节点位移或其他物理量的近似表示,建立起离散的数学模型。

在有限元方法中,常用的单元形状包括线元、三角形单元、四边形单元等。

每个单元的节点之间通过连接的方式形成整个结构的网格。

有限元理论的基本原理是将连续的物理问题转化为离散的代数问题,通过求解代数方程组得到数值结果。

其基本步骤包括:1.离散化:将连续的结构或物体划分为离散的单元,并在每个单元上建立近似解。

2.建立单元方程:根据结构或物体的本构关系、边界条件等,建立每个单元的方程。

3.组装:根据单元之间的连接方式,将每个单元的方程组装成整个结构或物体的方程。

4.边界条件处理:考虑边界条件对结构或物体的约束作用,修改方程。

5.求解代数方程组:将边界条件处理后的方程组进行求解,得到数值解。

有限元理论的应用非常广泛,主要包括:1.结构分析:有限元方法在结构力学领域的应用非常广泛,可以用于预测结构的应力、变形、疲劳寿命等。

例如,在建筑工程中,可以使用有限元方法对建筑结构进行静力分析,以确保结构的稳定性和安全性。

2.流体力学:有限元方法在流体力学领域的应用包括流体流动、传热、空气动力学等方面。

通过将流体分割成离散的单元,并建立流体的动量方程、能量方程等,可以模拟和预测流体的各种特性。

3.电磁场分析:有限元方法可以用于模拟和分析电磁场的分布、辐射、散射等现象。

在电子器件设计中,有限元方法可以用于预测电磁场的影响和优化设计。

此外,有限元方法还应用于声学、热力学、生物力学等领域。

它的优势包括模拟结果的准确性、适用于复杂几何形状和边界条件、计算速度较快等。

有限元分析及应用讲义

有限元分析及应用讲义

σ
mnb j
= m σ σn ) in(
a jm
X stress SMAX ~ 32,750 psi SMXB ~ 33,200 psi (difference ~ 450 psi ~ 1.5 %)
例如:SMX=32750是节点解的实际值 SMXB=33200是估计的上限
σ mxb = m σ a + σn ) ax( jm j
规定 0.1% 局部应力差,使用p方法计算的最 局部应力差,使用 方法计算的最 大X方向应力约为 34,700 psi 方向应力约为 15 (比普通 方法高出大约 5% ) 比普通h方法高出大约 比普通
有限元分析及应用讲义
P方法进行静力分析的步骤
1.选择P方法作业 1.选择 选择P GUI:Main Menu > Preference > P-Method 定义一个P单元,P方法被激活。 2.建模 2.建模 建模过程与H-单元分析相同,单元类型必须用P单元 (a)指定P单元 水平 定义局部P-水平等级 定义P单元时用KeyOpt选项定义 定义整体p-水平等级 命令: PPRANGE , START, MAX GUI: Main Menu > Solution > P-Method > Set P Range (b)定义几何模型 应用实体建模 (c) 用P单元分网。 自适应网格对P方法是无效的 3.施加载荷、求解 3.施加载荷 施加载荷、 应用实体模型加载,而不是有限元模型 求解:推荐采用条件共轭梯度法(PCG),但PCG对于壳体P单元无效 4.后处理 察看结果 4.后处理
有限元分析及应用讲义
映射网格划分& 映射网格划分&举例
映射网格划分
由于面和体必须满足一定的要求,生成映射网格不如生成自由网格容 易: – 面必须包含 3 或 4 条线 (三角形或四边形). – 体必须包含4, 5, 或 6 个面 (四面体, 三棱柱, 或六面体). – 对边的单元分割必须匹配. 对三角形面或四面体, 单元分割数必须为偶数.

有限元法的工程领域应用

有限元法的工程领域应用

有限元法的工程领域应用
有限元法(Finite Element Method,简称FEM)是一种工程领域常用的数值计算方法,广泛应用于结构力学、固体力学、流体力学等领域。

以下是一些有限元法在工程领域常见的应用:
1. 结构分析:有限元法可用于分析各种结构的受力性能,如建筑物、桥梁、飞机、汽车等。

通过将结构离散成有限数量的单元,可以计算出每个单元的应力、应变以及整个结构的位移、变形等信息。

2. 热传导分析:有限元法可用于模拟材料或结构的热传导过程。

通过对材料的热传导系数、边界条件等进行建模,可以预测温度分布、热流量等相关参数。

3. 流体力学分析:有限元法在流体力学领域的应用非常广泛,例如空气动力学、水动力学等。

通过建立流体的速度场、压力场等参数的数学模型,可以分析流体在不同条件下的运动特性。

4. 电磁场分析:有限元法可以应用于计算电磁场的分布和特性,如电磁感应、电磁波传播等。

通过建立电磁场的数学模型,可以预测电场、磁场强度以及电磁力等。

5. 振动分析:有限元法可用于模拟结构的振动特性,如自由振动、强迫振动等。

通过建立结构的质量、刚度和阻尼等参数的数学模型,可以计算出结构在不同频率下的振动响应。

6. 优化设计:有限元法可以与优化算法结合,应用于工程设计中的结构优化。

通过对结构的材料、几何形状等进行参数化建模,并设置目标函数和约束条件,可以通过有限元分析来寻找最佳设计方案。

以上只是有限元法在工程领域的一些应用,实际上有限元法在各个领域都有广泛的应用,为工程师提供了一种精确、高效的数值计算方法,用于解决各种实际工程问题。

有限元方法的讨论及工程应用

有限元方法的讨论及工程应用

有限元方法的讨论及工程应用有限元方法(Finite Element Method,简称FEM)是一种工程数值分析方法,常用于解决结构力学、热传导、流体力学等领域的问题。

它将复杂的实际工程问题离散化为简单结构的有限元单元,通过数值计算方法求解整个问题。

首先,有限元方法的基本原理。

有限元方法是基于力学基本方程、物理约束条件和边界条件构建数学模型,使得问题的数学描述和物理描述统一起来。

它通过对实际工程问题进行离散化处理,将连续问题转化为离散的代数方程组,从而求解结构的应力、应变、位移等物理量。

有限元方法的基本原理是将问题域划分成若干个有限元,通过插值函数和加权残差法建立元素方程和整体方程,最终求解得到问题的近似解。

其次,有限元方法的数学基础。

有限元方法需要用到一些数学知识,如线性代数、微积分、偏微分方程等。

线性代数提供了矩阵计算和线性方程组求解的基础,微积分提供了对物理量进行离散化的方法,偏微分方程提供了对实际工程问题建立数学模型的手段。

这些数学基础为有限元方法的理论分析和计算实现提供了支持。

再次,有限元方法的工程应用。

有限元方法在实际工程中有广泛的应用,涵盖了各个领域。

在结构工程中,有限元方法可以用于分析和设计建筑物、桥梁、飞机等结构的强度、刚度、稳定性等问题。

在热传导领域,有限元方法可以用于分析材料的热传导特性,优化材料的热设计和散热系统的热性能。

在流体力学中,有限元方法可以用于分析流体的流动特性,包括液体和气体的流速、压力、温度等参数。

此外,有限元方法还可以与其他分析方法相结合,如有限差分法、边界元法等。

它们可以相互补充,共同解决更复杂的工程问题。

随着计算机技术的不断发展,有限元方法的计算效率和准确性得到了大幅提升,为工程师提供了强大的工具,帮助他们更好地理解和解决实际工程问题。

总之,有限元方法是一种有效的工程数值分析方法,广泛应用于结构力学、热传导、流体力学等领域。

它通过将实际问题离散化处理,并应用数值计算方法求解,可以得到问题的近似解。

有限元分析及应用讲义

有限元分析及应用讲义
有限元分析及应用讲义
识别无效的结果
分析的对象的一些行为 计算出的几何项 求解的自由度及应力 反作用力或节点力

有限元分析及应用讲义
1.分析的对象的一些基本的行为:
• • • • • 重力方向总是竖直向下的 离心力总是沿径向向外的 没有一种材料能抵抗 1,000,000 psi 的应力 轴对称的物体几乎没有为零的 环向应力 弯曲载荷造成的应力使一侧受压,另一侧受拉
13
有限元分析及应用讲义
局部的细化
采用plane42单元网格局部细化与未细化
能量百分比误差 局部细化
Displacement DMX=0.88E-03 SEPC=14.442
未细化
DMX=0.803E-03
应力偏差
Element Solution(SDSG) SDSG SMN=63.453 SMN=64.528 SMX=426.86 SMX=689.589
s = 1200 Elem 2 s = 1300
节点的 ss 是积分点 的外插)
(
savg = 1200
7
有限元分析及应用讲义
ANSYS网格误差估计
误差估计作用条件:
• 线性静力结构分析及线性稳态热分析 • 大多数 2-D 或 3-D 实体或壳单元 • PowerGraphics off
误差信息:
s
mnb j
min( s
a jm
s n )
X stress SMAX ~ 32,750 psi SMXB ~ 33,200 psi (difference ~ 450 psi ~ 1.5 %)
s mxb max( s a s n ) j jm 例如:SMX=32750是节点解的实际值 SMXB=33200是估计的上限

有限元分析及应用2篇

有限元分析及应用2篇

有限元分析及应用2篇
第一篇:有限元分析及应用
有限元分析是工程学中常用的计算分析方法。

它是一种将连续介质问题转化为离散问题进行数值计算的方法。

有限元分析常用于结构力学、流体力学、热传导等领域,可以模拟和预测物理系统的反应。

有限元分析的基本步骤是构建计算模型、进行离散化、求解计算模型和分析结果。

在构建计算模型时,需要确定模型的几何形状、材料性质和加载条件。

然后将模型划分为有限数量的单元和节点,并为每个节点分配一个特定的自由度。

离散化过程可以通过手动划分单元或使用软件工具实现。

离散化后,可以使用通用或专业有限元软件来解决模型。

在求解过程中,可以对模型进行修改和优化,并进行对比分析以确定最优设计。

有限元分析广泛应用于航空、汽车等制造业、建筑和特种设备制造业。

它可以有效地减少产品开发时间和成本,提高工作效率和生产效果。

有限元分析使工程师能够更好地了解物理系统行为和特性,并确保产品符合设计要求。

随着计算机技术的发展和软件工具的不断更新,有限元分析将在未来得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档