全等三角形判定定理(二) 习题精选(二)

合集下载

人教版八年级数学上册 第12章 全等三角形 章末复习测试题(二)

人教版八年级数学上册 第12章 全等三角形 章末复习测试题(二)

第12章全等三角形章末复习测试题(二)一.选择题1.不能说明两个三角形全等的条件是()A.三边对应相等B.两边及其夹角对应相等C.两角及其夹边对应相等D.三角对应相等2.在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC≌△A′B′C′一定成立的是()A.AC=A′C′B.BC=B′C′C.∠B=∠B′D.∠C=∠C′3.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF ≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个4.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB 5.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D 6.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE7.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BAC C.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC8.一块三角形玻璃被打碎后,店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃,能够全等的依据是()A.ASA B.AAS C.SAS D.SSS9.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA10.如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P,记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有()A.S1+S3=S2+S4B.S1+S2=S3+S4C.S1+S4=S2+S3D.S1=S311.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE ⊥BD,交BD的延长线于点E,若BD=8,则CE=.13.如图,在△ABC中,AB=3,AC=2,BC边上的中线AD的长是整数,则AD=.14.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.16.已知:如图,AB∥CD,O为∠BAC、∠ACD的平分线的交点,OE⊥AC于点E,若两平行线间的距离为6,则OE=.17.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).18.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.19.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.20.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.21.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1),△ABD不动.(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.参考答案一.选择题1.解:A、三边对应相等,符合SSS,能推出两个三角形全等;B、两边及其夹角对应相等,符合SAS,能推出两个三角形全等;C、两角及其夹边对应相等,符合ASA,能推出两个三角形全等;D、三角对应相等满足AAA,不能推出全等三角形,是错误的.故选:D.2.解:A、∠A=∠A′,AB=A′B′AC=A′C′,根据SAS能推出△ABC≌△A′B′C′,故A选项错误;B、具备∠A=∠A′,AB=A′B′,BC=B′C′,不能判断△ABC≌△A′B′C′,故B选项正确;C、根据ASA能推出△ABC≌△A′B′C′,故C选项错误;D、根据AAS能推出△ABC≌△A′B′C′,故D选项错误.故选:B.3.解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.4.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据AAS判定△ABC≌△DBE,故正确.故选:B.5.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选:C.6.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.7.解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.故选:C.8.解:这片碎玻璃的两个角和这两个角所夹的边确定,从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.9.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:D.10.解:四边形ABCD,四个内角平分线交于一点P,则P是该四边形内切圆的圆心,如图,可将四边形分成8个三角形,面积分别是a、a、b、b、c、c、d、d,则S1=a+d,S2=a+b,S3=b+c,S4=c+d,∴S1+S3=a+b+c+d=S2+S4,故选:A.二.填空题(共6小题)11.解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5 ∴x+y=11.故答案为:11.12.解:如图,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE=8,∴CE=4.故答案为:4.13.解:如右图,AB=3,AC=2,AD是BC上的中线,延长AD到E,使DE=AD,连接BE,∵AD=DE,∠ADC=∠EDB,BD=CD,∴△ADC≌△EDB(SAS),∴BE=AC=2,在△ABE中,BE﹣AB<AE<AB+BE,即1<2AD<5,解得<AD<,又∵AD是整数,∴AD=1或2,故答案为:1或2.14.解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.15.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.16.解:作OF⊥AB,OG⊥CD,∵∠ACD平分线的交点,OE⊥AC交AC于E,∴OE=OF=OG,∵FG=6,∴OE=3,故答案为3.三.解答题(共5小题)17.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.故答案为②.18.(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中,∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中,∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)19.证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS);(2)∵△ACD≌△BEC,∴CD=CE,又∵CF平分∠DCE,∴CF⊥DE.20.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.21.证明:(1)如图2,连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE,∵MD=ME,∴∠MAD=∠MAE,∴∠MAD﹣∠BAD=∠MAE﹣∠CAE,即∠BAM=∠CAM,在△ABM和△ACM中,,∴△ABM≌△ACM(SAS),∴MB=MC;(2)MB=MC.理由如下:如图3,延长DB、AE相交于E′,延长EC交AD于F,∴BD=BE′,CE=CF,∵M是ED的中点,B是DE′的中点,∴MB∥AE′,∴∠MBC=∠CAE,同理:MC∥AD,∴∠BCM=∠BAD,∵∠BAD=∠CAE,∴∠MBC=∠BCM,∴MB=MC;(3)MB=MC还成立.如图4,延长BM交CE于F,∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE,又∵M是DE的中点,∴MD=ME,在△MDB和△MEF中,,∴△MDB≌△MEF(AAS),∴MB=MF,∵∠ACE=90°,∴∠BCF=90°,∴MB=MC.。

三角形全等的判定练习题

三角形全等的判定练习题

12.2 三角形全等的判定练习题班别:姓名:一、单选题.1.如图,∠1=∠2,AC=AD,增加下列条件中的1个:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≅△AED的条件有( )A.4个B.3个C.2个D. 1个2.如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=6,OB=2,则OC的长为( )A.2B.3C.4D. 63.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )A. 甲和乙B. 乙和丙C. 甲和乙和丙D. 甲和丙4.如图,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定( )A. △ABD≌△ACDB. △BDE≌△CDEC. △ABE≌△ACED. 以上都不对5.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中,与△ABC全等的图形是( )A. 甲B. 乙C. 甲和乙D. 都不是6.如图,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,则∠AFE的度数等于( )A.148°B.140°C.135°D. 128°7.如图所示,能运用“ASA”定理证明△AOB≌△DOC的是( )A. AO=DO,∠A=∠DB. AO=DO,∠B=∠CC. AO=DO,BO=COD. AO=DO,AB=CD二、填空题8.如图,已知AB⊥BD,AB//ED,AB=ED,要说明△ABC≌△EDC,若以“SAS”为依据,还要添加的条件为______;若添加条件AC=EC,则可以用______公理(或定理)判定全等.9.直角三角形全等的判定方法有________(用简写).10.如图,CA⊥AB,垂足为A,AB=8cm,AC=4cm,射线BM⊥AB,垂足为B,一动点E从A点出发以2cm/s的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动秒时,△DEB与△BCA全等.三、解答题11.如图,在△ABC中,AB=AC,AD是高.求证:(1)BD=CD;(2)∠BAD=∠CAD.11.如图,点B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.12.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB//DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.12.【答案】B3.【答案】D4.【答案】C5.【答案】C6.【答案】C7.【答案】C8.【答案】A9.【答案】A10.【答案】D11.【答案】A12.【答案】BC =DC ;HL13.【答案】SAS ,ASA ,AAS ,SSS ,HL 14.【答案】0,2,6,815.【答案】证明:(1)在Rt △ABD 和Rt △ACD 中,{AB =AC,AD =AD,∴Rt △ABD ≌Rt △ACD(HL).∴BD =CD .(2)∵Rt △ABD ≌Rt △ACD ,∴∠BAD =∠CAD .16.【答案】证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF , 在△ABC 和△DEF 中,{AB =DE AC =DF BC =EF∴△ABC≌△DEF(SSS).17.【答案】解:△ABD ≌△ACD ,△ABE ≌△ACE ,△EBD ≌△ECD .证明如下:∵点D 是BC 的中点, ∴BD =CD.在△ABD 和△ACD 中,{AB =AC,AD =AD,BD =CD,∴△ABD ≌△ACD(SSS). ∴∠BAE =∠CAE.在△ABE 和△ACE 中, {AB =AC,∠BAE =∠CAE,AE =AE, ∴△ABE ≌△ACE(SAS). ∴BE =CE.在△EBD 和△ECD 中, {BD =CD,ED =ED,BE =CE,∴△EBD ≌△ECD(SSS).18.【答案】(1)证明:∵AB//DE ,∴∠ABC =∠DEF , 在△ABC 与△DEF 中 {∠ABC =∠DEFAB =DE ∠A =∠D,∴△ABC≌△DEF ;(2)∵△ABC≌△DEF , ∴BC =EF ,∴BF +FC =EC +FC , ∴BF =EC ,∵BE =10m ,BF =3m , ∴FC =10−3−3=4m。

全等三角形判定经典

全等三角形判定经典

11.2三角形全等的判定ABC DEF(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”。

表示方法:如图所示,在△ABC 和△DEF 中,AB DEAC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS )。

例1. 如图所示,AB =CD ,AC =DB 。

求证:△ABC ≌△DCB 。

A BCD分析:由已知可得AB =CD ,AC =DB ,又因为BC 是两个三角形的公共边,所以根据SSS 可得出△ABC ≌△DCB 。

证明:在△ABC 和△DCB 中,∵⎩⎨⎧AB =CD AC =DB BC =CB,∴△ABC ≌△DCB (SSS )评析:证明格式:①点明要证明的两个三角形;②列举两个三角形全等的条件(注意写在前面的三角形,条件也放在前面),用大括号括起来;③条件按照“SSS ”顺序排序;④得出结论,并把判断的依据注在后面。

“ASA ”。

表示方法:如图所示,在△ABC 和△DEF 中,B E BC EF C F∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )。

例2. 如图所示,AB ∥CD ,AF ∥DE ,BE =CF ,求证:AB =CD 。

ABEFCD分析:要证明AB =CD ,由于AB 、CD 分别是△ABF 和△DCE 的边,可尝试证明△ABF ≌△DCE ,由已知易证:∠B =∠C ,∠AFB =∠DEC ,下面只需证明有一边对应相等即可。

事实上,由BE =CF 可证得BF =CE ,由ASA 即可证明两三角形全等。

证明:∵AB ∥CD ,∴∠B =∠C (两直线平行,内错角相等) 又∵AF ∥DE ,∴∠AFC =∠DEB (同上) ∴∠AFB =∠CED (等角的补角相等)又∵BE =CF ,∴BE -EF =CF -EF ,即BF =CE 在△ABF 和△DCE 中,()()()B C BF CE AFB CED ∠=∠⎧⎪=⎨⎪∠=∠⎩已证已证已证∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等)角边”或“AAS ”。

全等三角形的判定(sss)

全等三角形的判定(sss)

A
A’
B
C B’
C’
图一
图二
AB=A’B’
∠A=∠A’ ΔABC ≌ ∆A’ B’ C’ (SAS) AC=A’C’
A
A’
B
C
B’
C’
∠A=∠A’
AB=A’B’
ΔABC ≌ ∆A’ B’ C’
∠B=∠B’
(ASA)
A
A’
B
C
B’

C’
∠A=∠A’
∠B=∠B’ ΔABC ≌ ∆A’ B’ C’(AAS)
AD=AD(公共边)
∴ △ABD≌ACD(SAS)
总结 上题中应用了哪些性质及定理
性质一:等腰三角形的两底角相等 性质二:等腰三角形的中线、角平分线、高线互相重合。 定理三:在两个三角形中,如果有三条边相等,那么这两个三角形全等。 定理四:在两个三角形中,如果有两个角相等及一条边相等,那么这两个三角形 全等。 定理五:在两个三角形中,如果有两个角相等及所夹的边相等,那么这两个三角 形全等。 定理六:在两个三角形中,如果有两条边相等及所夹的角相等,那么这两个三角 形全等。
作业:课后习题
AC=A’C’
定理的引入 A
C
E
F
B
D
思考
已知:AC=DE AB=DF BC=FE 求证:△ABC≌ △DFE
定理的引入 A
C
D
已知:AC=DC AB=DB 求证:△ABC≌ △DBC
B
证明:连接AD, ∵AC=DC
∴∠CAD= ∠CDA
同理, ∠BAD= ∠BDA
∴ ∠BAC= ∠BDC
∵ AC=DC
答:图中有△ABE≌ACE,△BDE≌CDE △ABD≌ACD。

三角形全等的判定(4个知识点+14大题型+18道强化训练)(学生版) 24-25学年八年级数学上册

三角形全等的判定(4个知识点+14大题型+18道强化训练)(学生版) 24-25学年八年级数学上册

第04讲 三角形全等的判定(4个知识点+14大题型+18道强化训练)课程标准学习目标1.经历探索三角形全等条件的过程,掌握和会用“边边边”“边角边”和“角边角”“角角边”和“斜边、直角边”条件判定两个三角形全等;2. 使学生经历探索三角形全等的过程,体验操作、归纳得出数学结论的方法.3. 通过探究三角形全等的条件的活动,培养学生观察分析图形的能力及运算能力,培养学 生乐于探索的良好品质以及发现问题的能力. 1.经历探索三角形全等条件的过程,掌握和会用“边边边”“边角边”和“角边角”“角角边”和“斜边、直角边”条件判定两个三角形全等;2. 使学生经历探索三角形全等的过程,体验操作、归纳得出数学结论的方法. 3. 通过探究三角形全等的条件的活动,培养学生观察分析图形的能力及运算能力,培养学 生乐于探索的良好品质以及发现问题的能力.知识点一、全等三角形的判定一、全等三角形判定1——“边边边”定理1:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .二、全等三角形判定2——“边角边”定理2:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C .注意:1. 这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.三、全等三角形判定3——“角边角”定理3:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .四、全等三角形判定4——“角角边”定理4:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC 和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.3.三角形证全等思路SAS HL SSS AAS SAS ASA AAS ASA AASì®ìïï®íïïï®îïï®®ìïï®ìïïííï®íïïïïï®îîïï®ìïí®ïîïî找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边知识点02:灵活运用全等判定定理2、灵活运用全等判定定理(1)判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

全等三角形的判定练习题

全等三角形的判定练习题

全等三角形的判定练习题一、选择题1. 下列哪组条件可以判定两个三角形全等?A. 两边和其中一边的对角相等B. 两角和其中一角的对边相等C. 两边和它们的夹角相等D. 两角和其中一边相等A. ∠A=∠DB. ∠B=∠EC. ∠C=∠FA. SAS(边角边)B. ASA(角边角)C. AAS(角角边)D. SSS(三边)二、填空题1. 若两个三角形的______相等,且它们的夹角相等,则这两个三角形全等。

2. 在全等三角形中,对应边______相等,对应角______相等。

3. 要判定两个三角形全等,至少需要知道它们的______个元素相等。

三、判断题1. 若两个三角形的两边和它们的夹角分别相等,则这两个三角形一定全等。

()2. 两个等腰三角形的底角相等,则这两个三角形全等。

()3. 两个等边三角形的边长相等,则这两个三角形全等。

()四、解答题1. 在△ABC中,AB=AC,∠B=∠C,求证:△ABC是等腰三角形。

2. 已知△ABC和△DEF,AB=DE,BC=EF,∠B=∠E,求证:△ABC≌△DEF。

3. 在△ABC中,AB=AC,∠A=40°,∠B=70°,求∠C的度数。

4. 已知△ABC和△DEF,AB=DE,BC=EF,AC=DF,求证:△ABC≌△DEF。

5. 在△ABC中,AB=8cm,AC=10cm,∠A=60°,求BC的长度。

五、作图题1. 请作出一个三角形,使其与给定三角形全等,已知条件是两边及其夹角。

2. 请作出一个三角形,使其与给定三角形全等,已知条件是两角及其夹边。

3. 请作出一个三角形,使其与给定三角形全等,已知条件是三边。

六、综合题1. 在平面直角坐标系中,点A(2, 3),点B(6, 3),点C和点D在x轴上,且△ABC≌△ABD,求点C和点D的坐标。

2. 在四边形ABCD中,AB=CD,AD=BC,且∠ABC=∠CDA=90°,证明:△ABC≌△CDA。

12.2全等三角形的判定

12.2全等三角形的判定

12.1全等三角形12.2全等三角形的判定学习目标1.理解全等三角形和全等三角形的概念,掌握全等三角形对应边、对应角的概念。

2.会确定全等三角形的对应边和对应角,会用全等三角形的性质解决问题。

3.会用全等三角形的判定定理判定两个三角形全等。

4.能灵活运用所学的判定方法,判定两个三角形全等,进而解决线段和角的相等问题。

考点关注1.利用全等三角形的性质,求线段的长或角的度数。

2.利用全等三角形全等的判定方法判定三角形全等。

3.利用三角形全等和全等三角形的性质,证明线段或角相等。

知识点1 全等三角形的有关概念(1)全等三角形对应角所对的边是对应边,两组对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两组对应边所夹的角是对应角;(3)两个全等三角形中的一对最长边(最大角)是对应边(对应角),—对最短边(最小角)是对应边(对应角);(4)两个全等三角形有公共边时,公共边是对应边;(5)两个全等三角形有公共角时,公共角是对应角;(6)两个全等三角形有对顶角时,对顶角是对应角.知识点2 全等三角形的性质【特别提醒】1.由全等三角形的性质可得到全等三角形的面积和周长相等,但周长和面积相等的三角形不一定全等.2.全等三角形的性质是证明线段或角相等的重要方法,在运用这个性质时,关键是结合图形或根据全等三角形的记法灵活地找到对应边或对应角,要牢牢抓住“对应”二字.练习1:如图12-1所示,已知△ACF≌△DBE,且点A,B,C,D在同一条直线∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长图12 - 11.判定两个三角形全等常用的思路方法如下表。

2.全等三角形的图形有以下几种模型。

(1)平移全等型。

(2)对称全等型。

(3)旋转全等型。

3.在寻找证明两个三角形全等的条件时,应注意图形中的隐含条件:①公共边或公共角相等;②对顶角相等.练习2:如图12 - 5所示,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F = 90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE = CF;③△ACN≌△ABM;④CD = DN.其中正确的结论有()A.4个B.3个C.2个D.1个图12-5题型1 利用全等三角形证明角或线段相等例1:如图12 - 6所示,已知AC=AE,AD=AB,∠ACB =∠DAB=90°,AE⫽CB,AC,DE交于点F.(1)求证∠DAC=∠B;(2)猜想线段AF,BC的关系.图12-6题型2 证明线段的和差关系例2:如图12 - 7所示,已知AC⫽BD,AE,BE分别平分∠CAB和∠DBA,CD过点E,求证:AB+AC+B D.图12 - 7题型3 动态几何问题例3:在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⏊MN于点D,BE ⏊MN于点E.(1)当直线MN绕点C旋转到如图12 - 9(1)所示的位置时,求证DE=AD+BE(2)当直线MN绕点C旋转到如图12 - 9(2)所示的位置时,求证DE=AD-BE(3)当直线MN绕点C旋转到如图12 - 9(3)所示的位置时,线段DE,AD,BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明。

全等三角形的判定ASA、AAS-练习题

全等三角形的判定ASA、AAS-练习题

14.4(2)全等三角形的判定ASA、AAS一、探究现在,我们讨论:如果两个三角形有两个角、一条边分别对应相等,那么这两个三角形能全等吗?这时同样应有两种不同的情况:如图所示,一种情况是两个角及这两角的夹边;另一种情况是两个角及其中一角的对边.ASA AAS二、检测反馈,学以致用1.如图,已知AO=DO,∠AOB与∠DOC是对顶角,还需补充条件______________=_______________,就可根据“ASA”说明△AOB≌△DOC;或者补充条件_______________=_______________,就可根据“AAS”,说明△AOB≌△DOC。

(若把“AO=DO”去掉,答案又会有怎样的变化呢?)2. 如图,OP是∠MON的角平分线,C是OP上一点,CA⊥OM,CB⊥ON,垂足分别为A、B,△AOC≌△BOC吗?为什么?3、如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.三、巩固练习1、如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为______cm.第1题2、已知:如图 , ∠1=∠2 , ∠3=∠4求证:AC=AB.3.如图,AB⊥BC,AD⊥DC,∠BAC=∠CAD.试说明:AB=AD .4、已知:如图 , FB=CE , AB∥ED , AC∥FD.F、C在直线 BE上.求证:AB=DE , AC=DF.5、如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,试说明:AB=AC+AD6、已知:如图,AB=DC,∠A=∠D.试说明:∠1=∠2.7.如图,ΔABC中,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G.⑴图中有全等三角形吗?请找出来,并证明你的结论.⑵若连结DE,则DE与AB有什么关系?并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形判定定理(二) 习题精选(二)
(ASA及推论AAS)
提高卷(60分钟)
一、选择题
1.如图13—2—24所示,△BDC是将长方形纸ABCD沿BD折叠得到的,图中(包括实
线、虚线在内)共有全等三角形()

A.2对
B.3对
C.4对
D.5对
二、填空题
2.如图13—2—25所示,已知AB⊥BC于B,AE⊥DE于E,AB=AE,∠ACB=∠ADE,∠
ACD=∠ADC=70°,∠BAD=60°,则∠BAE=_______。

3.如图13—2—26所示,在△ABC中,∠C=90°,BC=40,AD是∠BAC的平分线,交
BC于D,且DC:DB=3:5,则点D到AB的距离是__________。
三、证明题
4.如图13—2—27所示,已知在四边形ABCD中,∠1=∠2,∠3=∠4,∠B=∠D,AF
=CE,求证:AB=DE。

5.如图13—2—28所示,已知AB、CD互相平分于点N,过N引直线EF分别交AD、BC
于E、F。求证:AE=BF。

6.如图13—2—29所示,已知CD⊥AB于D,BE交AC于E,CD、BE交于点N,且DB=
EC,求证AC=AB。
7.如图13—2—30所示,已知AB∥CD,∠1=∠2,∠3=∠4,求证:BC=AB+CD。
答案
1.C2.80°3.15
4.分别延长BA、CE,交于点N。∵∠3=∠4,∠B=∠D,又根据三角形三内角和为180°,
∴∠N=∠CED,又∠CED=∠NEA,∴∠N=∠NEA,∴∠BAD=∠1+∠2=∠N+∠NEA。∴∠1=∠AEN=
∠CED,又∵∠B=∠D,CE=AF,∴△ABF≌△DEC,∴AB=DE。

5.∵已知AN=BN,∠AND=∠BNC,CN=DN。
∴△AND≌△BNC,∴∠A=∠B,又AN=BN,∠ANE=∠BNF,∴△ANE≌△BNF,∴AE=BF。
6.∵∠CEN=∠NDB=90°,∠ENC=∠DNB,DB=EC,∴△CEN≌△BND。∴EN=DN,CN=BN,CN
+ND=BN+NE,即CD=BE。又∵∠BEA=∠CDA=90°,∠A=∠A,∴△ADC≌△AEB。

∴AC=AB
7.在BC上截取BN=BA,连结EN。∴△ABE≌△NBE。∴∠A=∠BNE。又∵AB∥CD,
∴∠A+∠D=180°。又∵∠BNE+∠ENC=180°,∴∠D=∠ENC,又∵∠3=∠4,CE=CE,
∴△ENC≌△EDC。
∴CD=CN,∴BC=BN+CN=AB+CD。

相关文档
最新文档