高中物理动量定理和动能定理专项练习题

合集下载

高考必刷题物理动能与动能定理题及解析

高考必刷题物理动能与动能定理题及解析

高考必刷题物理动能与动能定理题及解析一、高中物理精讲专题测试动能与动能定理1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥2.某小型设备工厂采用如图所示的传送带传送工件。

传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。

工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。

传送带长度为6m =L ,不计空气阻力。

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。

物理动能定理的综合应用题20套(带答案)及解析

物理动能定理的综合应用题20套(带答案)及解析

【解析】
【分析】
对 m 受力分析,由共点力平衡条件可以求出动摩擦因数;以 m 为研究对象,求出最大加
速度,以系统为研究对象,由牛顿第二定律求出最大推力;对系统由动能定理求出最大速
度,然后由平抛运动规律求出最大水平位移.
【详解】
(1)对 m 由平衡条件得:mgsinθ-μ2mgcosθ=0 解得:μ2=tanθ (2)对 m 设其最大加速度为 am,由牛顿第二定律得 水平方向:Nsinθ+μ2Ncosθ=mam 竖直方向:Ncosθ-μ2Nsinθ-mg=0
解得:N=12.5N
(3)从
D

E,由动能定理知:
mg
Hale Waihona Puke 2R1 2mvE 2
1 2
mvD2
解得: vD 5m / s

B

D,由动能定理知
mgL
1 2
mvD2
1 2
mvB2
解得: vB 7m / s
对物块 L vB vD t 2
解得:t=1s;
s相对 L vt 6 2 1m 8m
由能量守恒定律知: Q mgL s相对
L ),
解得,
Q= 1 2
m(
0
2gh)2 ;
考点:动能定理
【名师点睛】本题考查了求物体速度、动摩擦因数、产生的热量等问题,分析清楚运动过
程,熟练应用动能定理即可正确解题.
6.如图所示,光滑斜面 AB 的倾角 θ=53°,BC 为水平面,BC 的长度 lBC=1.10 m,CD 为光滑
的 1 圆弧,半径 R=0.60 m.一个质量 m=2.0 kg 的物体,从斜面上 A 点由静止开始下滑,物 4
解得:Q=16J

高一物理动能定理试题答案及解析

高一物理动能定理试题答案及解析

高一物理动能定理试题答案及解析1.一子弹以速度v飞行恰好射穿一块铜板,若子弹的速度是原来的3倍,那么可射穿上述铜板的数目为()A.3块B.6块C.9块D.12块【答案】C【解析】子弹以速度v运动时,恰能水平穿透一块固定的木板,根据动能定理有:,设子弹的速度为时,穿过的木板数为n,则有:联立两式并代入数据得:n=9块,C正确。

【考点】考查了动能定理的应用2.在一次试车实验中,汽车在平直的公路上由静止开始做匀加速运动,当速度达到v时,立刻关闭发动机让其滑行,直至停止。

其v-t图象如图所示。

则下列说法中正确的是()A.全程牵引力做功和克服阻力做功之比为1:1B.全程牵引力做功和克服阻力做功之比为2:1C.牵引力和阻力之比为2:1D.牵引力和阻力之比为3:1【答案】AD【解析】试题解析:由于物体初始的速度为零,最后的速度也为零,故物体的动能没有变化,即动能的增量为零,根据动能定理可知,物体受到的合外力也为零,即全程牵引力做功和克服阻力做功相等,故它们的比值为1:1,A正确,B错误;由图像可知,1s前物体在牵引力的作用下运动,其位移为x,则后2s内物体的位移为2x,故由动能定理可得:Fx=f(x+2x),所以牵引力F和阻力f之比为3:1,D正确,C错误。

【考点】动能定理。

3.甲、乙两物体质量之比m1∶m2=1∶2,它们与水平桌面间的动摩擦因数相同,若它们以相同的初动能在水平桌面上运动,则运动位移之比为.【答案】2:1。

【解析】根据动能定理得可知,对于甲物体:m1gμ×x1=Ek,对于乙物体:m2gμ×x2=Ek,联立以上两式解之得x1:x2=m2:m1=2:1,故位移之比为2:1。

【考点】动能定理。

4.一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m、带电量为+q的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E后(如图所示),小球开始作简谐运动,关于小球运动有如下说法中正确的是A.球的速度为零时,弹簧伸长qE/kB.球做简谐运动的振幅为qE/kC.运动过程中,小球的机械能守恒D.运动过程中,小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零【答案】BD【解析】球的平衡位置为Eq=kx,解得x= qE/k,在此位置球的速度最大,选项A 错误;球做简谐运动的振幅为qE/k,选项B正确;运动过程中,由于电场力和弹力做功,故小球的机械能不守恒,选项C 错误;运动过程中,由于电场力和弹力做功,所以小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零,选项D 正确。

高考物理动能定理的综合应用题20套(带答案)含解析

高考物理动能定理的综合应用题20套(带答案)含解析

高考物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。

设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。

【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)求滑块与斜面间的动摩擦因数μ;(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -μmgcos37°2sin 37R︒=0-0 解得:μ=0.375⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ①在C 点时,根据牛顿第二定律有:mg +N =2Cv m R② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°2sin 37R ︒=212C mv -2012mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④在竖直方向的位移为:y =212gt ⑤ 根据图中几何关系有:tan37°=2R yx-⑥ 由④⑤⑥式联立解得:t =0.2s考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.3.如图所示,光滑曲面与光滑水平导轨MN 相切,导轨右端N 处于水平传送带理想连接,传送带长度L =4m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v =4.0m/s 运动.滑块B 、C 之间用细绳相连,其间有一压缩的轻弹簧,B 、C 与细绳、弹簧一起静止在导轨MN 上.一可视为质点的滑块A 从h =0.2m 高处由静止滑下,已知滑块A 、B 、C 质量均为m =2.0kg ,滑块A 与B 碰撞后粘合在一起,碰撞时间极短.因碰撞使连接B 、C 的细绳受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离.滑块C 脱离弹簧后以速度v C =2.0m/s 滑上传送带,并从右端滑出落至地面上的P 点.已知滑块C 与传送带之间的动摩擦因数μ=0.2,重力加速度g 取10m/s 2.(1)求滑块C 从传送带右端滑出时的速度大小; (2)求滑块B 、C 与细绳相连时弹簧的弹性势能E P ;(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C 总能落至P 点,则滑块A 与滑块B 碰撞前速度的最大值v m 是多少? 【答案】(1) 4.0m/s (2) 2.0J (3) 8.1m/s 【解析】 【分析】 【详解】(1)滑块C 滑上传送带到速度达到传送带的速度v =4m/s 所用的时间为t ,加速度大小为a ,在时间t 内滑块C 的位移为x ,有mg ma μ=C v v at =+212C x v t at =+代入数据可得3m x = 3m x L =<滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为v=4.0m/s(2)设A 、B 碰撞前A 的速度为v 0,A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,有2012A A m gh m v =01()A A B m v m m v =+ 12()()A B A B C C m m v m m v m v +=++A 、B 碰撞后,弹簧伸开的过程系统能量守恒222A 1A 2111()()222P B B C C E m m v m m v m v ++=++代入数据可解得2.0J P E =(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传送带的速度v .设A 与B 碰撞后的速度为1v ',分离后A 与B 的速度为2v ',滑块C 的速度为'C v ,C 在传送带上做匀减速运动的末速度为v =4m/s ,加速度大小为2m/s 2,有22()Cv v a L '-=- 解得42m/s Cv '= 以向右为正方向,A 、B 碰撞过程1()A m A B m v m m v '=+弹簧伸开过程12()()A B C C A B m m v m v m m v '''+=++22212111+()()+222p A B A B C C E m m v m m v m v '''+=+代入数据解得74228.14m v =+≈m/s .4.一个平板小车置于光滑水平面上,其右端恰好和一个光滑圆弧轨道AB 的底端等高对接,如图所示.已知小车质量M=3.0kg ,长L=2.06m ,圆弧轨道半径R=0.8m .现将一质量m=1.0kg 的小滑块,由轨道顶端A 点无初速释放,滑块滑到B 端后冲上小车.滑块与小车上表面间的动摩擦因数.(取g=10m/s 2)试求:(1)滑块到达B 端时,轨道对它支持力的大小; (2)小车运动1.5s 时,车右端距轨道B 端的距离;(3)滑块与车面间由于摩擦而产生的内能.【答案】(1)30 N (2)1 m (3)6 J 【解析】(1)滑块从A 端下滑到B 端,由动能定理得(1分)在B 点由牛顿第二定律得(2分) 解得轨道对滑块的支持力N (1分)(2)滑块滑上小车后,由牛顿第二定律对滑块:,得m/s2 (1分)对小车:,得m/s2 (1分)设经时间t后两者达到共同速度,则有(1分)解得s (1分)由于s<1.5s,故1s后小车和滑块一起匀速运动,速度v="1" m/s (1分)因此,1.5s时小车右端距轨道B端的距离为m (1分)(3)滑块相对小车滑动的距离为m (2分)所以产生的内能J (1分)5.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg 的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m6.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)0.32μ=(2)F=130N【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△t=mv′﹣mv,代入数据解得:F=130N.7.如图所示,BC 225竖直放置的光滑细圆管,O为细圆管的圆心,在圆管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球从进入圆管开始受到始终竖直向上的力F=5N的作用,当小球运动到圆管的末端C时作用力F立即消失,小球能平滑地冲上粗糙斜面.(g=10m/s2)求:(1)小球从O点的正上方某处A点水平抛出的初速度v0为多少?(2)小球在圆管中运动时对圆管的压力是多少?(3)小球在CD斜面上运动的最大位移是多少?【答案】(1)2m/s ;(2)7.1N ;(3)0.35m. 【解析】 【详解】(1)小球从A 运动到B 为平抛运动, 水平方向:r sin45°=v 0t ,在B 点:tan45°=y v gt v v =, 解得:v 0=2m/s ;(2)小球到达在B 点的速度:22m/s cos 45v v ︒==,由题意可知:mg =0.5×10=5N=F ,重力与F 的合力为零,小球所受合力为圆管的外壁对它的弹力,该力不做功, 小球在管中做匀速圆周运动,管壁的弹力提供向心力,22(22)0.5N 7.1N225v F m r ==⨯= 由牛顿第三定律可知,小球对圆管的压力大小:7.1N F '=; (3)小球在CD 上滑行到最高点过程,由动能定理得:21sin 45?cos 45?02mg s mg s mv μ︒︒--=-解得:s ≈0.35m ;8.如图,与水平面夹角θ=37°的斜面和半径R =1.0m 的光滑圆轨道相切于B 点,且固定于竖直平面内。

高中物理《动量》专题训练

高中物理《动量》专题训练

第1页共62页高中物理《动量》专题训练1.(2022北京,12,3分)“雪如意”是我国首座国际标准跳台滑雪场地。

跳台滑雪运动中,裁判员主要根据运动员在空中的飞行距离和动作姿态评分。

运动员在进行跳台滑雪时大致经过四个阶段:①助滑阶段,运动员两腿尽量深蹲,顺着助滑道的倾斜面下滑;②起跳阶段,当进入起跳区时,运动员两腿猛蹬滑道快速伸直,同时上体向前伸展;③飞行阶段,在空中运动员保持身体与雪板基本平行、两臂伸直贴放于身体两侧的姿态;④着陆阶段,运动员落地时两腿屈膝,两臂左右平伸。

下列说法正确的是 ( )A.助滑阶段,运动员深蹲是为了减小与滑道之间的摩擦力B.起跳阶段,运动员猛蹬滑道主要是为了增加向上的速度C.飞行阶段,运动员所采取的姿态是为了增加水平方向速度D.着陆阶段,运动员两腿屈膝是为了减少与地面的作用时间答案 B 滑动摩擦力的大小取决于动摩擦因数与压力的大小,助滑阶段的深蹲状态不能改变这两个因素,A 错误。

起跳阶段运动员猛蹬滑道可增大地面对人向上的作用力,从而增大运动员所受合力的冲量,由动量定理可知B 正确。

飞行阶段的姿态可减小空气阻力,但无法产生向前的作用力,也就不能增加水平方向的速度,C错误。

着陆阶段的屈膝可增加地面对人的作用时间,从而减小人与地面间的作用力,D错误。

2.(2022重庆,4,4分)在测试汽车的安全气囊对驾乘人员头部防护作用的实验中,某小组得到了假人头部所受安全气囊的作用力随时间变化的曲线(如图)。

从碰撞开始到碰撞结束过程中,若假人头部只受到安全气囊的作用,则由曲线可知,假人头部 ( )A.速度的变化量等于曲线与横轴围成的面积B.动量大小先增大后减小C.动能变化正比于曲线与横轴围成的面积D.加速度大小先增大后减小答案 D 假人的头部只受到安全气囊的作用力,则F⁃t图线与时间轴所围的面积即合力的冲量,再根据动量定理可知合力的冲量等于物体动量改变量,即曲线与横轴围成的面积表示动量的变化量,A、C错误;图线一直在t轴的上方,即合力的冲量方向不变,由于头部初动量方向与合力的冲量方向相反,则假人头部动量的大小先减小,B错误;假人的头部只受到安全气囊的作用,则根据牛顿第二定律可知a∝F,即假人头部的加速度先增大后减小,D正确。

高考物理动能与动能定理真题汇编(含答案)含解析

高考物理动能与动能定理真题汇编(含答案)含解析

高考物理动能与动能定理真题汇编(含答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:(1)物体与传送带间的动摩擦因数;(2) 0~8 s内物体机械能的增加量;(3)物体与传送带摩擦产生的热量Q。

【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J【解析】【详解】(1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,且加速大小为的匀减速直线运动,对其受力分析,由牛顿第二定律得:可解得:μ=0.875.(2)根据v-t图象与时间轴围成的“面积”大小等于物体的位移,可得0~8 s 内物体的位移0~8 s s内物体的机械能的增加量等于物体重力势能的增加量和动能增加量之和,为(3) 0~8 s内只有前6s发生相对滑动. 0~6 s内传送带运动距离为:0~6 s内物体位移为:则0~6 s内物体相对于皮带的位移为0~8 s内物体与传送带因为摩擦产生的热量等于摩擦力乘以二者间的相对位移大小,代入数据得:Q=126 J故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J【点睛】对物体受力分析并结合图像的斜率求得加速度,在v-t图像中图像包围的面积代表物体运动做过的位移。

2.如图所示,在倾角为θ=37°的斜面底端有一个固定挡板D ,处于自然长度的轻质弹簧一端固定在挡板上,另一端在O 点,已知斜面OD 部分光滑,PO 部分粗糙且长度L =8m 。

质量m =1kg 的物块(可视为质点)从P 点静止开始下滑,已知物块与斜面PO 间的动摩擦因数μ=0.25,g 取10m/s 2, sin37°=0.6,cos37°=0.8。

高中物理动量定理专项训练100(附答案)含解析

高中物理动量定理专项训练100(附答案)含解析

高中物理动量定理专项训练100(附答案)含解析一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。

求:①A与B撞击结束时的速度大小v;②在整个过程中,弹簧对A、B系统的冲量大小I。

【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。

2.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.μ=(2)F=130N【答案】(1)0.32【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△t=mv′﹣mv,代入数据解得:F=130N.3.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1 = 36 km/h正面撞击固定试验台,经时间t1 = 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2 =0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I0 = 1.6×104 N·s ,1.6×105 N;(2)见解析【解析】【详解】(1)v1 = 36 km/h = 10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1 ①将已知数据代入①式得I0 = 1.6×104 N·s ②由冲量定义有I0 = F0t1 ③将已知数据代入③式得F0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m1v1+ m2v2 = (m1+ m2)v⑤对试验车,由动量定理有-Ft2 = m1v-m1v1 ⑥将已知数据代入⑤⑥式得F= 2.5×104 N ⑦可见F<F0,故试验车的安全气囊不会爆开⑧4.如图所示,质量M=1.0kg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题4、动量定理和动能定理典型例题【例1】如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量作用开始运动,当小物块滑离木板时,木板的动能E KA 为8.0J ,小物块的动能E KB 为0.50J ,重力加速度取10m/s 2,求:(1)瞬时冲量作用结束时木板的速度υ0; (2)木板的长度L .【例2】在一次抗洪抢险活动中,解放军某部队用直升飞机抢救一重要落水物体,静止在空中的直升飞机上的电动机通过悬绳将物体从离飞机90m 处的洪水中吊到机舱里.已知物体的质量为80kg ,吊绳的拉力不能超过1200N ,电动机的最大输出功率为12k W ,为尽快把物体安全救起,操作人员采取的办法是,先让吊绳以最大拉力工作一段时间,而后电动机又以最大功率工作,当物体到达机舱前已达到最大速度.(g 取10m/s 2)求: (1)落水物体运动的最大速度; (2)这一过程所用的时间.【例3】一个带电量为-q 的液滴,从O 点以速度υ射入匀强电场中,υ的方向与电场方向成θ角,已知油滴的质量为m ,测得油滴达到运动轨道的最高点时,速度的大小为υ,求:(1)最高点的位置可能在O 点上方的哪一侧? (2)电场强度为多大?(3)最高点处(设为N )与O 点电势差绝对值为多大?【例4】.如图所示,固定的半圆弧形光滑轨道置于水平方向的匀强电场和匀强磁场中,轨道圆弧半径为R ,磁感应强度为B ,方向垂直于纸面向外,电场强度为E ,方向水平向左。

一个质量为m 的小球(可视为质点)放在轨道上的C 点恰好处于静止,圆弧半径OC 与水平直径AD 的夹角为α(sin α=0.8).⑴求小球带何种电荷?电荷量是多少?并说明理由.⑵如果将小球从A 点由静止释放,小球在圆弧轨道上运动时,对轨道的最大压力的大小是多少?【例5】.如图所示,虚线上方有场强为E 的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,方向垂直纸面向外,ab 是一根长为L 的绝缘细杆,沿电场线放置在虚线上方的场中,b 端在虚线上.将一套在杆上的带正电的小球从a 端由静止释放后,小球先做加速运动,后做匀速运动到达b 端.已知小球与绝缘杆间的动摩擦因数μ=0.3,小球重力忽略不计,当小球脱离杆进入虚线下方后,运动轨迹是半圆,圆的半径是L /3,求带电小球从a 到b 运动过程中克服摩擦力所做的功与电场力所做功的比值.B E【例6】.(16分)如图所示,竖直放置的两根足够长的光滑金属导轨相距为L ,导轨的两端分别与电源(串有一滑动变阻器R )、定值电阻、电容器(原来不带电)和开关K 相连。

整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B 。

一质量为m ,电阻不计的金属棒ab 横跨在导轨上。

已知电源电动势为E ,内阻为r ,电容器的电容为C ,定值电阻的阻值为R 0,不计导轨的电阻。

(1)当K 接1时,金属棒ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值R 多大? (2)当K 接2后,金属棒ab 从静止开始下落,下落距离s 时达到稳定速度,则此稳定速度的大小为多大?下落s 的过程中所需的时间为多少?(3)先把开关K 接通2,待ab 达到稳定速度后,再将开关K 接到3。

试通过推导,说明ab 棒此后的运动性质如何?求ab 再下落距离s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器还没有被击穿)训练题(18分)如图1所示,两根与水平面成θ=30︒角的足够长光滑金属导轨平行放置,导轨间距为L =1m ,导轨两端各接一个电阻,其阻值R 1=R 2=1Ω,导轨的电阻忽略不计。

整个装置处于匀强磁场中,磁场方向垂直于导轨平面斜向上,磁感应强度B =1T 。

现有一质量为m =0.2kg 、电阻为1Ω的金属棒用绝缘细绳通过光滑滑轮与质量为M =0.5kg 的物体相连,细绳与导轨平面平行。

将金属棒与M 由静止释放,棒沿导轨运动了6m 后开始做匀速运动。

运动过程中,棒与导轨始终保持垂直且接触良好,图示中细绳与R 2不接触。

(g=10m/s 2)求:(1)金属棒匀速运动时的速度;(2)棒从释放到开始匀速运动的过程中,电阻R 1上产生的焦耳热; (3)棒从释放到开始匀速运动的过程中,经历的时间;(4)若保持磁感应强度为某个值B 0不变,取质量M 不同的物块拉动金属棒,测出金属棒相应的做匀速运动的速度值v ,得到v -M 图像如图2所示,请根据图中的数据计算出此时的B 0。

a bM v 0 0.1 0.2 0.3 0.4 0.57.如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。

质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=0.25,求:(sin37°=0.6,cos37°=0.8,g =10m/s 2)(1)物块滑到斜面底端B 时的速度大小。

(2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。

8.一质量为500kg 的汽艇,在静水中航行时能达到的最大速度为10m/s ,若汽艇的牵引力恒定不变,航行时所受阻力与航行速度满足关系f =kv ,其中k =100Ns/m 。

(1)求当汽艇的速度为5m/s 时,它的加速度;(2)若水被螺旋桨向后推动的速度为8m/s ,则螺旋桨每秒向后推动水的质量为多少?(以上速度均以地面为参考系)9.如图所示,两块竖直放置的平行金属板A 、B ,两板相距为d ,两板间电压为U ,一质量为m 的带电小球从两板间的M 点开始以竖直向上的初速度υ0进入两板间匀强电场内运动,当它达到电场中的N 点时速度变为水平方向,大小变为2υ0,求M 、N 两点间的电势差和电场力对带电小球所做的功(不计带电小球对金属板上电荷均匀分布的影响,设重力加速度为g ).10.如图所示,在竖直放置的铅屏A 的右表面上贴着射线放射源P,已知射线实质为高速电子流,放射源放出粒子的速度v0=1.0×107m/s。

足够大的荧光屏M与铅屏A平行放置,相距d=2.0×10-2m,其间有水平向左的匀强电场,电场强度大小E=2.5×104N/C。

已知电子电量e=1.6⨯10-19C,电子质量取m=9.0⨯10-31kg。

求(1)电子到达荧光屏M上的动能;11.如图所示,两条光滑的绝缘导轨,导轨的水平部分与圆弧部分平滑连接,两导轨间距为L,导轨的水平部分有n段相同的匀强磁场区域(图中的虚线范围),磁场方向竖直向上,磁场的磁感应强度为B,磁场的宽度为S,相邻磁场区域的间距也为S,S大于L,磁场左、右两边界均与导轨垂直。

现有一质量为m,电阻为r,边长为L的正方形金属框,由圆弧导轨上某高度处静止释放,金属框滑上水平导轨,在水平导轨上滑行一段时间进入磁场区域,最终线框恰好完全通过n段磁场区域。

地球表面处的重力加速度为g,感应电流的磁场可以忽略不计,求:(1)刚开始下滑时,金属框重心离水平导轨所在平面的高度.(2)整个过程中金属框内产生的电热.(3)金属框完全进入第k(k<n)段磁场区域前的时刻,金属框中的电功率.12、如图所示,在地面附近有一范围足够大的互相正交的匀强电场和匀强磁场。

磁感应强度为B,方向水平并垂直纸面向外。

一质量为m、带电量为-q的带电微粒在此区域恰好作速度大小为v的匀速圆周运动。

(重力加速度为g)(1)求此区域内电场强度的大小和方向。

(2)若某时刻微粒运动到场中距地面高度为H的P点,速度与水平方向成45°,如图所示。

则该微粒至少须经多长时间运动到距地面最高点?最高点距地面多高?(3)在(2)问中微粒又运动P点时,突然撤去磁场,同时电场强度大小不变,方向变为水平向右,则该微粒运动中距地面的最大高度是多少?B【例1】【解析】(1)在瞬时冲量的作用时,木板A 受水平面和小物块B 的摩擦力的冲量均可以忽略.取水平向右为正方向,对A 由动量定理,有:I = m A υ0代入数据得:υ0 (2)设A 对B 、B 对A 、C 对A 的滑动摩擦力大小分别为F fAB 、F fBA 、F fCA ,B 在A 上滑行的时间为t ,B 离开A 时A 的速度为υA ,B 的速度为υB .A 、B 对C 位移为s A 、s B .对A 由动量定理有:—(F fBA +F fCA )t = m A υA -m A υ0对B 由动理定理有:F fAB t = m B υB其中由牛顿第三定律可得F fBA = F fAB ,另F fCA = μ(m A +m B )g对A 由动能定理有:—(F fBA +F fCA )s A = 1/2错误!未指定书签。

m A υ2A错误!未指定书签。

-1/2错误!未指定书签。

m A υ20错误!未指定书签。

错误!未指定书签。

对B 由动能定理有:F fA Bf s B = 1/2错误!未指定书签。

m B υ2B错误!未指定书签。

根据动量与动能之间的关系有: m A υA = KA A E m 2错误!未指定书签。

,m B υB = KBB E m 2错误!未指定书签。

木板A 的长度即B 相对A 滑动距离的大小,故L = s A -s B , 代入放数据由以上各式可得L = 0.50m . 训练题答案:(1)F=1.85N (2)I=6.94NS 【例2】【解析】先让吊绳以最大拉力F Tm = 1200N 工作时,物体上升的加速度为a ,由牛顿第二定律有:a =mmg - F Tm 错误!未指定书签。

,代入数据得a = 5m/s 2当吊绳拉力功率达到电动机最大功率P m = 12kW 时,物体速度为υ,由P m = T m υ,得υ = 10m /s .物体这段匀加速运动时间t 1 =aυ错误!未指定书签。

= 2s ,位移s 1 = 1/2错误!未指定书签。

at 21错误!未指定书签。

= 10m .此后功率不变,当吊绳拉力F T = mg 时,物体达最大速度υm = mgP m错误!未指定书签。

= 15m/s .这段以恒定功率提升物体的时间设为t 2,由功能定理有:Pt 2-mg (h -s 1) =21错误!未指定书签。

m υ2m错误!未指定书签。

-21错误!未指定书签。

m υ2代入数据得t 2 = 5.75s ,故物体上升的总时间为t = t 1+t 2 = 7.75s . 即落水物体运动的最大速度为15m/s ,整个运动过程历时7.75s .训练题答案:(1)P=kmgv m (2)t=(v m 2+2kgs )/2kgv m 训练题答案:BC【例3】【解析】(1)带电液油受重力mg 和水平向左的电场力qE ,在水平方向做匀变速直线运动,在竖直方向也为匀变速直线运动,合运动为匀变速曲线运动.由动能定理有:W G +W 电 = △E K ,而△E K重力做负功,W G <0,故必有W 电>0,即电场力做正功,故最高点位置一定在O 点左侧. (2)从O 点到最高点运动过程中,运动过程历时为t ,由动量定理:在水平方向取向右为正方向,有:-qEt = m (-υ)-m υcos θ在竖直方向取向上为正方向,有:-mgt = 0-m υsin θ上两式相比得θθsin cos 1+=mg qE 错误!未指定书签。

相关文档
最新文档