有机氟化学1
高分子材料概论-有机氟

第二章:高分子材料概论2.9有机氟材料主要内容:2.9.1 有机氟材料概述2.9.2有机氟的基础原料和基本单体制备2.9.3 氟树脂2.9.4 氟橡胶2.9.5 思考题2.9.1 有机氟材料概述氟是自然界最活泼的一种非金属元素,电负性最高,为3.9,能分解水,生成臭氧和HF,黑暗中就能与氢直接化合,几乎能直接与所有金属、非金属元素化合。
含氟的化学物质一般都具有特殊性质,例如热稳定性、化学稳定性、防水、防油等,因此引发了人们的研究兴趣。
我们常说的“有机氟”或“有机氟材料”指的是含氟的高分子。
含氟高分子的主链是碳链或碳杂链,氟原子作为碳原子上的取代基而存在。
碳原子上所有的氢全被氟替代,则成为只含有C和F原子的氟碳聚合物如聚四氟乙烯,又如四氟乙烯/六氟丙烯共聚物,可称之为全氟高分子。
部分氢原子被取代或含有其它原子(如氯),一般叫含氟高分子。
对于含氟高分子材料的分类较简单,可分为:含氟聚合物的单体,都是乙烯基衍生物,合成单体的路线,通常都由HF加成或由HF制成氟氯碳烷(氟里昂、氟致冷剂)裂解而成相应的烯烃单体,聚合反应一般都是连锁聚合而获得含氟高分子。
2.9.2有机氟的基础原料和基本单体的制备一、无水HF合成合成含氟化合物的最基础原料是HF,自然界没有F2和HF天然存在,必须人工合成。
许多含氟精细化学品例如含氟的油、脂、表面活性剂,通常都要借助于F2合成,F2产生主要靠电解无水的HF获得。
所以,HF尤其是无水HF是含氟材料的最基本原料。
自然界氟的化合物主要是氟萤石(CaF2),中国占全世界已探明贮量的70%。
用于合成无水HF的CaF2要求越纯越好。
一般使用一级或特级的矿石精矿。
其生产过程是由萤石和浓硫酸高温反应获得,如下式所示,中间伴随着很多副反应。
CaF2 + H2SO4—> CaSO4 + 2HF四氟乙烯(TFE )是由二氟一氯甲烷裂解获得,因此其合成步骤分为二氟一氯甲烷的合成和二氟一氯甲烷的裂解两步: CHCl 3 + 2HF >CHClF 2 CHClF 2 >C 2F 4 + 2HCl三、三氟氯乙烯合成三氟氯乙烯(CTFE )是由三氟三氯乙烷脱氯制得,因此其合成步骤分为三氟三氯乙烷的合成和三氟三氯乙烷的脱氯两步: C 2Cl 6 + 3HF >C 2F 3Cl 3 + 3HCl C 2F 3Cl 3 >C 2F 3Cl + ZnCl 2四、全氟丙烯(六氟丙烯)合成全氟丙烯(HFP )一般采用C 2F 4或CHF 3裂解制备,通常采用C 2F 4裂解: 3 C 2F 4 >2C 3F 6SbCl 5Ni700-900o C-Cl 2 ZnSbCl 5Ni700-900o C偏氟乙烯(CH2=CF2 ;VDF)由乙炔和无水HF加成制得CHF2CH3,然后在氯气存在下热裂解而得:C2H2 + 2HF > CHF2-CH3CHF2-CH3>CH2=CF2 + 2HCl六、其他含氟单体除了上述主要的含氟单体,常见的还有氟乙烯(CHF=CH2)、全氟辛酸等。
当代有机氟化学

当代有机氟化学以下内容:来自于‹当代有机氟化学-合成反应应用实验›,自101页开始。
全氟烷基阴离子基本上可用于通常生成烷基或芳基阴离子一样的方法所产生,通过适当的C-H酸前体,用强碱脱质子或用还原性卤素(通常是溴、碘)金属交换,另外一种也是全氟世界所独有的方法即负离子或其他阴离子加成到全氟烯烃。
所有的全氟烷基阴离子由于受到氟取代的吸电子诱导效应(-I)而稳定,同时又受到氟原子的孤电子对对碳负离子中心的p-π电子排斥而去稳定。
对于β-氟碳负离子,负的超共轭效应可起到稳定化作用。
如果碳负离子并非处于自由的状态而是和金属(一个硬的路易斯酸),由于巨大的晶格能的释放趋向将强烈促使全氟烷基金属化物发生碎片化。
若存在β-氟原子,则将发生β-氟消除而产生末端全氟烯烃;若仅有α-氟原子,则发生α-氟消除而生成二氟卡宾,全氟芳基锂即使在低温条件下(一般-20*-40℃)也能发生消除,产生相应的芳基炔和氟化锂并伴随大量放热。
氟离子是很容易加成到全氟烯烃的,由于它将赴原子取代的SP3碳转化成SP2碳,而解除了p-π排斥引起的张力。
全氟丙烯或全氟烯烃的加成反应机理高度区域选择性的,他总是生成一个与带负电荷碳连有着最多碳原子数的阴离子。
氟离子很容易加成至全氟烯烃并生成一个碳负离子,用催化量的CsF 处理全氟烯烃有时可以生成许多齐聚体的混合物。
五-三氟甲基环戊二烯阴离子生成的例子深刻反映了这种类型的反应。
它可以被应用于高度选择性的合成,例如五-三氟甲基环戊二烯基铯。
F 2C CHCF 3CsF,MeCN,高压釜CF 3F 3C3CCF 33通过氟离子对全氟烯烃的加成产生全氟烷基阴离子的方法可以用于制备目的。
应用适当底物的脂肪族或芳环的亲核取代反应可选择性的引入全氟烷基。
对于芳香底物而言,离核的离去基团通常是氟离子,因此此类反应可改用催化量的氟离子。
催化剂或者是一个无机氟化物(CsF )或在一个电化学反应过程中由全氟烯烃的还原-脱氟产生。
氟化反应的机理及其在有机合成中的应用

氟化反应的机理及其在有机合成中的应用一、氟化反应与氟原子的电性氟原子的电性极强,正因其直接的泡利排斥(Pauli repulsion)表现出极高的亲核性,给化学反应带来了独特的特点。
1. 物种的亲核性有机化学合成中氟化反应沿袭了传统的核磁作用,与分子的亲核性质相关。
若电子云密度高,空间较宽松,较容易受到亲核反应的影响。
2. 电子亲合性和反应物的电名称由于氟原子具有极高的电子亲合性,电子爱在亲电子反应中流失快速。
而反应物种的电名称则对反应态的不同产物类型产生直接影响。
二、有机化合物中氟化反应的分类根据反应特点和产品类型,氟化反应可分为许多种类。
1. 消除反应消除反应是最古老和普遍应用的氟化合成反应之一,通过与邻位的氢离子热力竞争,削弱了醇或醚,醛或酮等种类中已有的氢键作用,将 FL 引入产物中。
示例:2. 亲电性氟化反应亲电性氟化反应是负电性物种介导下的氟化合成的一种类型。
在这类反应中,FL 对 C=C 或 C=O 化奇的亲末基团反应,其产物通常是α-氟化物。
示例:3. 难度较大氟化反应虽然在现有的加氟剂条件下,氟化反应已经能够做到目标产品较为具体化,但仍存在许多反应难点,如硬度问题、瓶颈阻力以及选择性等。
这种类型的氟化反应通常被称为“特殊氟化反应”。
示例:三、氟化反应在有机合成中的应用氟是最具腕力的元素之一,其在许多有机合成实践中有着广泛的应用前景。
虽然这种元素的高度反应性需要更高难度的化学技术,但目前已有越来越多的化学公司致力于研究氟化反应技术,包括在有机合成和药物研究中的应用。
在核药物、药物抗癌疗法、草药提取、农药和化妆品工业中的应用更是越来越多。
在药学研究中,氟原子已成为属于的典型基团,并被广泛应用于化学类似物的设计和制造中。
此外,氟原子还能提高化合物的溶解度和生物利用率,并减少毒性,因此对于从头合成(de novo synthesis)衍生药物方案是至关重要的。
在化学工业与农业中,有机氟化合物的化学性更为强劲,其可有效地对硬化电阻、催化剂、晶格表面和很多其他需要通过强大检测技术和特殊氟碳化合物进行替代的难性材料进行研究。
0710773-有机氟化物的性质及其应用-陆佳伟

有机氟化物独特性质及其应用近年来有机氟化学研究领域的发展非常迅猛,而含氟化合物几乎深入到我们日常生活的各个方面。
有机物中的氟元素神奇地赋予了该物质独特的性质,从而一些有机物有了氟元素的帮助下展现出了独特的化学魅力。
日常生活中有许多东西都离不开有机氟化物,以前的冰箱、灭火剂常用的氯氟烷到现在的润滑剂、液晶显示器、医用药物、农用化学药品等。
有了氟元素的帮忙,有机物的用途范围也变得更加广泛。
氟是一个特殊的元素,对于自然界生物圈而言,有机氟化物几乎完全是外来的。
各种生物过程完全不依赖于氟元素的代谢,但从另一个方面而言,现在许多的药物或农用化学品又至少含有一个氟原子,它们因此而有着特别的功能。
尽管氟是所有元素中最活泼的,但有些有机氟化物就如同惰性气体那样稳定的。
有机氟化物的独特性质:要介绍有机氟化物的性质,首先介绍最简单的有机氟化物——全氟碳烷,它是一种非极性溶剂。
一般情况下,直链烷烃是线性锯齿形构型。
相反全氟碳烷具有螺旋形构型,由于连接于碳链1,3-位的氟原子之间的电子及立体排斥,直链烷烃的碳链具有一定柔性而全氟碳烷的碳链是刚性的棒状分子结构,这一性质是由于1,3-位上两个CF2基团的排斥张力导致的。
由于全氟烷烃低的可极化性造成与其它碳氢溶剂的混合性很差,因此就产生了第三相,即相对于有机相和水相的氟相。
固体全氟碳烷的表面具有最低的表面能,聚四氟乙烯的表面能为18.5达因/厘米,这种材料的低摩擦和不粘性能被用于特夫隆不粘锅等其他一些用具。
这一性质与含氟量直接相关。
【1】低表面能的形成可以确定是由于氟原子紧密覆盖的表面所致,因此所有材料中观察到的具有最低表面能的是氟化石墨(C2F)n和(CF)n,它的表面能仅6达因/厘米【2】。
当一个全氟碳链上联结一个亲水基团时就得到一个含氟表面活性剂,它可以将水的表面张力从72达因/厘米降低到15~20达因/厘米。
而类似的碳表面活性剂仅能降低到25~35达因/厘米。
有机氟化物对环境的影响是由于全氟烷烃和氯氟烷烃特别的化学稳定性导致的,迄今为止CFC已经被逐步停止使用,它们的替代物也在被开发,目前包括如下几种:氢氟碳烷HFC,氢氯氟碳烷烃和部分氟化的醚等。
中国有机氟化学

化学史中国有机氟化学研究40年刘金涛(中国科学院上海有机化学研究所 上海 200032)我国的有机氟化学研究始于50年代后期,当时是为了满足国防建设的需求。
经过40年几代人的努力,如今我国已经能够生产许多含氟产品,如氟塑料、氟橡胶、氟里昂、含氟表面活性剂、含氟油脂、含氟医药和农药、氟碳代血液等,形成了初具规模的氟化学工业基础,并造就了一支实力雄厚的有机氟化学研究队伍,在国际氟化学界占有一席之地。
回顾我国氟化学发展的历史,大致可分为三个阶段。
初期主要集中力量建立氟技术,合成单体及聚合物和制冷剂,并进行小批量生产。
其后与化工部门一起扩大产量,并扩展至其它领域,如含氟表面活性剂、含氟医药和农药等,第三阶段始于70年代后期,是我国有机氟化学基础研究蓬勃发展的阶段,出现了一批优秀的研究成果,使中国的有机氟化学研究逐渐步入世界先进行列。
1 任务带学科——有机氟化学的兴起1896年氟代乙酸乙酯的合成标志着有机氟化学的开始,至今已有整整一个世纪的时间。
在此期间,几次历史性的突破极大地促进了有机氟化学的发展,如本世纪三十年代氟里昂在制冷工业上的应用,二战期间曼哈顿工程的实施以及50年代高生理活性52氟脲嘧啶的合成等。
我国氟资源丰富,已探明萤石的储量约占世界总储量的四分之一,但直到本世纪50年代,氟化学在中国还是一片空白。
50年代末,由于国际形势的变化,我国开始自行开发原子能技术,急需一批特殊的含氟材料,由此开始了有机氟化学在中国的研究。
当时氟材料的研制工作主要在中国科学院上海有机化学研究所进行。
为了国防建设的需要,科学院组织了一批优秀的化学家如黄耀曾、黄维垣、蒋锡夔、田遇霖等从其它专业转向有机氟化学领域,从零开始,因陋就简,由最基本的氟化氢做起,逐步建立各种氟化技术,制备四氟乙烯等单体。
与此同时,中国科学院化学研究所和中国科学院长春应用化学研究所也分别在进行氟橡胶和含氟共聚物的研制工作。
1963年科学院决定将氟化学的工作集中到上海,集中力量,形成特色。
有机氟化学

氟污染物质的来源
采矿 采矿是人类干预和干扰自然氟化学过程的 直接方式,也是氟污染环境的最根本的来 源。许多矿石都不用程度的含有氟。因此, 其开采量日益增加,开采范围逐渐扩大。 自然界矿石中的氟活性相对较弱,其自然 释放需要经过岩石风化、土壤形成、冲刷 浸蚀乃至生物地球化学作用等过程,时间 周期长,作用缓慢。 工艺加工过程 排放氟污染物的工业很多。有化工、冶金、 陶瓷、砖瓦、塑料、水泥、石油、原子能 等,它们后者采用含氟矿石作原料、接触 剂、催化助熔剂。我国每年磷灰石用量达 300-400万t以上,仅此一项,每年排氟量就 达10多万t。 农业活动 农业活动氟污染主要是通过施加磷肥和含 氟杀虫剂引起,主要发生于土壤中。其对 环境影响的活性与效率均较低,生物学效 应也较缓,而滞留环境中的时间较久远。 医药和家庭生活 中山医院的研究表明,饮水加氟和牙膏加 氟浓度不当而出现氟蛀牙的情形已有明显 表现。家庭使用含氟杀虫剂、灭鼠剂也可 能成为一种局部的食物氟污染源。另外, 家庭烧煤也可引起氟污染问题。据分析有 些煤中含氟为10-400ppm,我国黔西、鄂西 和川东南均有此类氟源引起污染的情况。 自然界火山活动及地理因素的影响
氟的环境污染
大气污染 废水 废渣
人为造成
构成对地下水污染威胁的主要是钢铁工业产生的废气和废水。因为萤石是冶炼钢 铁过程中的重要添加剂,随降水渗入潜水含水层,若潜水埋深浅,包气带薄,且包 气带中不是含钙多的碱性上,而是酸性或偏酸性的含钙不丰富的土壤,潜水便易受 氟离子污染,这种情况在我国多见于南方地区。而在北方地区,地下水氟污染主要 由含氟废水和废渣引起。 如唐山钢厂含氟量高达10-15mg/L的废水直接排入徒河,使两岸灰岩井水氟离子 含量逐年上升,最高达6mg/L
氟的环境化学效应及其生物特性
有机氟化合物的合成及应用研究

有机氟化合物的合成及应用研究有机氟化合物是一类具有重要应用价值的化合物,广泛用于医药、农药、材料科学和有机光电器件等领域。
随着有机化学的不断发展,有机氟化合物的合成方法也日益丰富和研究深入。
本文将探讨有机氟化合物的合成方法和应用研究。
首先,有机氟化合物的合成方法多种多样,其中最常用的方法是亲电氟化和亲核氟化。
亲电氟化是指通过亲电试剂与底物反应,将氟离子引入有机分子中。
这种方法常用于合成含氟有机化合物,如芳香氟化合物和氟代醇等。
亲核氟化是指通过亲核试剂与底物反应,引入氟离子。
这种方法常用于合成含氟氨基化合物和含氟碳酸酯等。
除了亲电氟化和亲核氟化,还有一些其他的合成方法,如芳烃和氟化剂反应、有机锂试剂和氟化试剂反应等。
有机氟化合物的合成方法不仅仅限于以上几种,根据具体的底物和要求,可以选择不同的反应路线。
例如,可以通过氟化巴铁和有机锂试剂反应,得到含氟有机铁配合物;可以通过氟烷和亲核试剂反应,得到含氟醇;还可以通过交叉偶联反应,将有机氟化合物与其他官能团连接在一起。
这些合成方法的发展,为有机氟化合物的合成提供了更多的选择和可能性。
除了合成方法的研究,有机氟化合物的应用也是一个重要研究方向。
有机氟化合物在医药领域的应用尤为广泛。
一些含氟药物被证明具有良好的活性和药代动力学性质,能够用于治疗癌症、糖尿病、心血管疾病等疾病。
例如,含氟醇类抗癌药物已经成为化疗的常用药物,其抗癌活性和生物利用度优于传统的抗癌药物。
此外,有机氟化合物还可以用于合成荧光探针、放射性示踪剂和核磁共振成像剂等,为生物医学研究提供了重要工具。
在农药领域,有机氟化合物也发挥着重要作用。
一些含氟农药被广泛应用于农作物保护,能够有效地控制害虫和病原菌的繁殖。
这些农药具有高效、低毒性和环境友好的特点,有助于提高农作物产量和质量。
此外,有机氟化合物在材料科学和有机光电器件领域也有广泛的应用。
由于氟原子的特殊性质,有机氟化合物可以提高材料的热稳定性、电子传输性能和光学性能。
有机氟去除方法

有机氟去除方法有机氟化合物是一类广泛存在于环境中的化合物,遍布于大气、水体、土地和食物等各个环境中。
然而,有机氟化合物常常表现出非常不稳定的性质,很难大规模地去除。
本篇文章将介绍一些有机氟治理方法,以期为保护环境和人类健康做出贡献。
1.生物降解法生物降解法是指通过一些具有特殊酶的微生物对有机氟化合物进行生物降解,将其分解为无毒化合物,从而起到去除有害物质的效果。
这种方法具有环保、高效等优势,但需要一定时间,适用于低浓度有机氟化合物去除。
2.化学还原法化学还原法指通过还原剂将含氟化合物还原成无氟化合物,如NaBH4、Zn等,具有快速的作用,是一种针对高浓度有机氟化合物的治理方法。
但同时也存在不足,如还原剂容易造成二次污染,且需要精细控制条件和技术,通常需要配合其他治理方法。
3.吸附法吸附法是指利用吸附介质吸附有机氟化合物,如活性炭、氧化铁等,通过吸附表面滞留的有机氟化合物来实现去除。
这种方法具有相对较低的成本,并且比较适用于低浓度有机氟化合物的治理,但需要处理后的吸附介质进行再处理或处置,同时,可能会带来对其他环境问题的影响。
4.光催化法光催化法是指利用光催化材料,如二氧化钛等,在紫外光的作用下,产生具有去除有机氟化合物作用的活性氧种,实现有机氟化合物的去除。
这种方法具有去除效率高、处理后的材料可进行再利用等优点。
不过需要足够强度的紫外光,并且会因反应物的尾气排放等问题而造成二次污染。
5.超声波法超声波法是指通过超声波对有机氟化合物进行撞击和分解,将其分解成较为简单的无机化合物,从而去除有害物质。
这种方法具有快速、效率高等优点,并且不需要额外的化学药剂,可以较好地掌控反应条件。
但需要处理过程中产生高温高压的超声波作用产生的大量气泡、噪音等环境污染进行控制。
总之,有机氟化合物治理是一个综合性的问题,需要在多方面进行考虑和治理,以达到更好的治理效果和环境健康的保护。
各种方法都有自己的优缺点,要根据不同的条件和场所,选择合理方法达到可持续发展的目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机氟化学
氟元素: “化学元素中举足轻重的小个子”
尖端材料:在军用尖端材料中,含氟材料占近一半(由于其独特优异的稳定性和其它物理特性);
医药农药:最近报道,全球新注册的医药中10%含有氟元素;新注册的农药中,40%含有氟元素。
有机氟化学起源
有机含氟材料(包括有机含氟化合物、调聚物、聚合物)的起源可以上溯到19世纪后期。1886
年法国化学家Moissan首次分离出了单质氟,随后经过了19世纪30年代的氟利昂的发现,40年
代曼哈顿计划氟材料的大量使用,才在50年代以后逐渐发展成为既有浓厚学术性又有极强应用性
的一门学科。经过了100多年的曲折发展道路,有机氟材料领域不断得到提高,深刻影响了全球
经济发展和社会进步。
原子
电负性
Pauling原子半径 (Å) Bondi原子半径 键能 (CH3-X) 键长
CH3-X
H 2.1 1.20 1.20 99 1.09
F 4.0 1.35 1.47 116 1.39
Cl 3.0 1.80 1.75 81 1.77
Br 2.8 1.95 1.85 68 1.93
O (OH) 3.5 1.40 1.52 86 1.43
S (SH) 2.5 1.85 1.80 65 1.82
氟化学发展中的里程碑
1886年 Moissan分离得到单质氟;
1892年 Swarts发现了三氟化锑作用下的氯/氟卤素交换反应;
1928年 Midgley发明了“氟利昂”;
1938年 Plunkett发现了聚四氟乙烯,标志着含氟聚合物的诞生;
1947年 Fowler发现了三氟化钴作用下的全氟化方法;
1949年 Simons发现了电化学氟化方法;
1954年 Fried对有机含氟物质在医学上的应用的研究;
1962年 George Olah利用含氟物质首次发现稳定的碳正离子存在;
1962年 Bartlett发现了惰性气体的氟化(XePtF6);
1974年 Molina和Rowland对某些氟利昂破坏臭氧层的研究;
1979年 Margraves发现了直接氟化;
2003年 O’Hagan分离出了第一个氟化酶。
BIOCHEMICAL FLUORINE The biosynthetic pathway to fluoroacetate and 4-fluorothreonine in
the bacterium S. cattleya involves a fluorinase-catalyzed C–F bond formation in the first step
shown here. The intermediate metabolites shown have been identified, but in some cases (indicated
by dashed arrows) the enzymes involved remain to be isolated.
Fluorine Chemistry's Uncharted Territory
(1) Coordination or metathesis polymerization methods, such as
Ziegler-Natta-type reactions carried out on ethylene and propylene,
have been unsuccessful With fluoroolefins, Smart said. These
fluorinated monomers typically are too unreactive because they
have highly electron-deficient double bonds. If they do react,
metal fluoride elimination is a problem. These circumstances have
limited commercial polymerizations to free-radical processes. It’s
also difficult to tailor high-molecular-weight block copolymer
structures with fluoroolefins, he added.
(2) Fluoroolefin polymerization is still based largely on developments from
the 1950s, he pointed out, while there have been myriad changes for
hydrocarbon polymerizations, particularly in catalyst design and living polymerization capabilities. That
means there are many opportunities for fluoropolymers, and there are “little pieces of evidence” in the
chemical literature to suggest that organometallic chemistry involving late-transition metals with the
right type of ligands could make a difference. “This is an encouraging area for chemists to think about,”
he said.
(3) Smart also mentioned efforts to replace fully fluorinated alkane surfactants, such as perfluorooctyl
carboxylates and sulfonates that are used in polymerization processes. These compounds and their
precursors are under scrutiny as persistent molecules that accumulate in the environment. “I think in the
next few years we will see a lot of work to find replacements,” Smart said. “It’s possible, with the right
design, that some of these materials can be lightly fluorinated and still express the surface activity of the
long-chain surfactants.”
(4) Another interesting prospect he noted is direct fluorination reactions using fluorspar (CaF2), which is
the only raw material source for fluorine in the chemical industry. “There are no direct processes that use
fluorspar, except to make HF,” Smart observed.