1.1.2 回归分析电子教案
1.1.2回归分析的基本思想及其初步应用 教案

第 1 页 1.1.2 回归分析的根本思想及其初步应用教学要求:通过典型案例的探究 ,进一步了解回归分析的根本思想、方法及初步应用. 教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学过程:一、复习准备:1.由例1知 ,预报变量〔体重〕的值受解释变量〔身高〕或随机误差的影响.2.为了刻画预报变量〔体重〕的变化在多大程度上与解释变量〔身高〕有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 二、讲授新课:1. 教学总偏差平方和、残差平方和、回归平方和:〔1〕总偏差平方和:所有单个样本值与样本均值差的平方和 ,即21()n i i SST y y ==-∑.残差平方和:回归值与样本值差的平方和 ,即21()ni i i SSE y y ==-∑.回归平方和:相应回归值与样本均值差的平方和 ,即21()ni i SSR y y ==-∑.〔2〕学习要领:①注意i y 、i y 、y 的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和 ,即222111()()()n n ni i i i i i i y y y y y y ===-=-+-∑∑∑;③当总偏差平方和相对固定时 ,残差平方和越小 ,那么回归平方和越大 ,此时模型的拟合效果越好;④对于多个不同的模型 ,我们还可以引入相关指数22121()1()n i i i ni i y y R y y ==-=--∑∑来刻画回归的效果 ,它表示解释变量对预报变量变化的奉献率. 2R 的值越大 ,说明残差平方和越小 ,也就是说模型拟合的效果越好.2. 教学例题:例2 关于x 与Y 有如下数据:x 2 4 5 6 8 y 30 40 60 5070为了对x 、Y 两个变量进行统计分析 ,现有以下两种线性模型:6.517.5y x =+ ,717y x =+ ,试比拟哪一个模型拟合的效果更好.分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和 ,也可分别求出两种模型下的相关指数 ,然后再进行比拟 ,从而得出结论.。
苏教版选修(1-2)1.2《回归分析》word学案

1.2回归分析BCA案主备人:史玉亮审核人:吴秉政使用时间:2012.2.6 学习目标:1.通过对典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用。
2.结合具体的实际问题,了解非线性回归问题的解决思路。
3.通过回归分析的学习,提高对现代计算技术与统计方法的应用意识。
B案一、基础整合1.召与回归系数b?的计算方法b?= _______________________ ,a?= ________________________ 。
2.样本相关系数(1)对于变量x与y随机抽取到的n对数据(x1,y1),(x2,y2),……,(x n,y n),检验统计量是样本相关系数r= ______________________________________________(2)_____________________________________________________________ r具有以下性质:r w 1,并且r越接近1,线性相关程度___________________________________ ;r越接近0,线性相关程度_______________________ 。
(3)检验的步骤如下:①作统计假设:x与y不具有_____________________ 关系。
②根据 __________ 与______________ 在附表中查出r的一个临界值r0.05。
③根据 ____________________ 计算公式算出r的值。
④作统计推断。
如果r| > “a,表明有____________ 的把握认为x与y之间具有线性相关关系;如果|r w r o.05,我们没有理由拒绝__________ 。
这时寻找回归直线方程是毫无意义的。
二、预习检测1.下列两变量具有相关关系的是( )A.正方体的体积与棱长B.匀速行驶的车辆的行驶距离与时间C.人的身高与体重D.人的身高与视力2.下列两变量是线性相关的是( )A.如果变量X与Y之间存在着线性相关关系,则我们根据试验数据得到的点(X i, yj(i =1,2,3,...,n)将散布在某一条直线附近B.如果两个变量X与Y之间不存在线性关系,那么根据试验数据不能写出一个线性方程C.设x、y是具有线性相关关系的两个变量,且回归直线方程是(•召,则b?叫回归系数D.为使求出的回归直线方程有意义,可用统计假设检验的方法判断变量X与Y之间是否存在线性相关关系4.在一次试验中,测得(x, y)的四组值分别是A(1,2), B(2,3),C(3,4), D(4,5),则y 与x之间的回归直线方程为()A. y?=x1B. ?=x 2C. ? = 2x1D. y? = x-1C案合作探究1.回归直线方程的适用范围是什么?2.建立回归直线方程的一般步骤是什么?3.由回归直线方程得到的变量的值是真实值吗?例某工厂月份某种产品的产量与成本的统计数据见下表。
《回归分析课程教案》课件

《回归分析课程教案》课件第一章:引言1.1 课程目标让学生了解回归分析的基本概念和应用领域。
让学生掌握回归分析的基本原理和方法。
培养学生应用回归分析解决实际问题的能力。
1.2 教学内容回归分析的定义和分类回归分析的应用领域回归分析的基本原理和方法1.3 教学方法讲授法:讲解回归分析的基本概念和原理。
案例分析法:分析实际案例,让学生了解回归分析的应用。
1.4 教学资源课件:介绍回归分析的基本概念和原理。
案例:提供实际案例,让学生进行分析。
1.5 教学评估课堂讨论:学生参与课堂讨论,回答问题。
第二章:一元线性回归分析2.1 教学目标让学生了解一元线性回归分析的基本概念和原理。
让学生掌握一元线性回归模型的建立和估计方法。
培养学生应用一元线性回归分析解决实际问题的能力。
2.2 教学内容一元线性回归分析的定义和特点一元线性回归模型的建立和估计方法一元线性回归模型的检验和预测2.3 教学方法讲授法:讲解一元线性回归分析的基本概念和原理。
数据分析法:分析实际数据,让学生了解一元线性回归模型的建立和估计方法。
2.4 教学资源课件:介绍一元线性回归分析的基本概念和原理。
数据分析软件:用于一元线性回归模型的建立和估计。
2.5 教学评估课堂练习:学生进行课堂练习,应用一元线性回归分析解决实际问题。
第三章:多元线性回归分析3.1 教学目标让学生了解多元线性回归分析的基本概念和原理。
让学生掌握多元线性回归模型的建立和估计方法。
培养学生应用多元线性回归分析解决实际问题的能力。
3.2 教学内容多元线性回归分析的定义和特点多元线性回归模型的建立和估计方法多元线性回归模型的检验和预测3.3 教学方法讲授法:讲解多元线性回归分析的基本概念和原理。
数据分析法:分析实际数据,让学生了解多元线性回归模型的建立和估计方法。
3.4 教学资源课件:介绍多元线性回归分析的基本概念和原理。
数据分析软件:用于多元线性回归模型的建立和估计。
3.5 教学评估课堂练习:学生进行课堂练习,应用多元线性回归分析解决实际问题。
人教版高中选修(B版)1-21.2回归分析教学设计

人教版高中选修(B版)1-21.2回归分析教学设计教学目标1.了解回归分析的概念和意义;2.掌握最小二乘法求解回归系数的原理和方法;3.能够根据回归模型进行预测和推断,并对模型进行评价;4.运用回归分析方法探索变量之间的关系,解决实际问题。
教学重点1.回归分析的概念和意义;2.最小二乘法求解回归系数的原理和方法;3.回归模型的预测和推断;4.回归模型的评价。
教学难点1.回归模型评价的方法及其应用;2.回归分析在实际问题中的应用。
教学过程第一课时教学内容1.回归分析的概念和意义;2.最小二乘法求解回归系数的原理和方法。
教学方法讲授+练习。
1.PowerPoint演示文稿;2.计算器。
教学步骤1.引入:通过实例引导学生认识回归分析的概念和意义;2.讲解:理论知识,包括什么是回归分析、回归模型的表示形式、回归系数的意义和最小二乘法的原理和方法;3.练习:让学生进行实例计算,巩固理论知识。
第二课时教学内容1.回归模型的预测和推断;2.回归模型的评价。
教学方法讲授+案例分析。
教学手段1.PowerPoint演示文稿;2.Python编程环境。
教学步骤1.讲解:回归模型的预测和推断的概念和方法;2.案例分析:以房价数据为例,使用Python编程环境进行回归分析,计算并评价回归模型;教学内容回归分析在实际问题中的应用。
教学方法案例分析。
教学手段PowerPoint演示文稿。
教学步骤1.引入:通过一个实际问题引导学生认识回归分析在实际问题中的应用;2.案例分析:使用Python编程环境进行实际问题的回归分析。
教学评价1.课堂练习:通过课堂练习,检验学生对回归分析的理解;2.课后作业:通过设计适当的课后作业,加深学生对回归分析的理解和能力。
教学资源1.人教版高中选修(B版)1-21.2(数学)教材;2.Python编程环境;3.计算器。
河南师大附中高中数学 1.1.2 回归分析的基本思想及其初步应用学案(2)新人教A版选修1-2

§1.1.2 回归分析的基本思想及其初步应用第二课时:非线性回归分析【学习目标】1. 通过对典型案例的探究进一步了解回归分析的基本思想,方法及初步应用2. 体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.【自主学习】1.回忆建立回归模型的基本步骤?2.观察图1-1.5中的散点图,红铃虫的产卵数y 与温度x 具有线性关系吗?除线性关系外,还学过哪些常见的函数关系?3. 能否把模型x c e c y 21=经过变换转化为另外两个变量的线性关系?4.例2的两个模型,哪个能更好地刻画红铃虫的产卵数y 与温度x 的关系?为什么?【自主检测】1.已知回归直线方程0.500.81y x =-,则当25x =时,y 的估计值为________2. 线性回归方程y bx a =+必经过点_____________3. 对于变量y 与x 的n 组统计数据进行拟合的回归模型中,若21()n i i y y =-∑=100,相关指数2R 为0.7,则其残差平方和为_______【典型例题】例 一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的回归方程.【课堂检测】1. 下列结论正确的是( )①函数关系是一种确定性关系; ②相关关系是一种非确定性关系③回归分析是对具有函数关系的两个变量进行统计分析的一种方法④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法。
A. ①②B. ①②③C. ①②④D. ①②③④2.下列说法正确的有( )①回归方程适用于一切样本和总体。
②回归方程一般都有时间性。
③样本取值的范围会影响回归方程的适用范围。
④回归方程得到的预报值是预报变量的精确值。
A .① ②B . ①③④C .①②③D . ②③3.某考察团对全国10个大城市职工人均工资x 与居民消费y 进行统计调查,y 与x 具有相关关系,回归方程为:0.66 1.562y x =+,若某城市居民人均消费7.675,估计该城市消费额占人均工资收入的百分比约为:( )A. 66﹪B.72.3﹪C.67.3﹪D.83﹪4. 2R 越接近1,则模型的拟合效果越___________.【总结提升】1. 非线性回归模型可以转化为线性回归模型;2.模型只能用来近似产生样本数据的真实模型;建模追求的目标是建立效果最好的(在已知模型的范围内)或更好(比已知的模型)模型.。
数学1.2《回归分析》教案(新人教B版选修1-2)

1.2回归分析教学目标:通过对典型案例的探究,了解回归的基本思想、方法及其初步应用。
教学重点:通过对典型案例的探究,了解回归的基本思想、方法及其初步应用。
教学过程一、变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点(,)将散布在某一直线周围,因此,可以认为关于的回归函数的类型为线性函数,即,下面用最小二乘法估计参数、b,设服从正态分布,分别求对、b的偏导数,并令它们等于零,得方程组解得其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差.二、现在讨论线性相关的显著性检验中最简便、最常用的一种方法,即相关系数的显著性检验法.我们早在前面的学习中知道,变量与的相关系数是表示与之间线性相关关系的一个数字特征,因此,要检验随机变量与变量之间的线性相关关系是否显著,自然想到考察相关系数的大小,若相关系数的绝对值很小,则表明与之间的线性相关关系不显著,或者它们之间根本不存在线性相关关系;当且仅当相关系数的绝对值接近1时,才表明与之间的线性相关关系显著,这时求关于的线性回归方程才有意义.在相关系数未知的情况下,可用样本相关系数r作为相关系数的估计值,参照相关系数的定义,并用样本均值与样本方差分别作为数学期望与方差的估计值,定义与的样本相关系数如下:因此,根据试验数据(,),得到的值后可进一步算出样本相关系数r的值. 若使用的是具有线性回归计算功能的电子计算器时,把所有试验数据(,)逐对存入计算器中,则可直接算出r的值.由于样本相关系数r是相关系数的估计值,所以,r的绝对值越接近1,与之间的线性相关关系越显著. 当r>0时,称与正相关;当r<0时,称与负相关. 而当r的绝对值接近0时,则可认为与之间不存在线性相关关系.三、例1.在7块并排、形状大小相同的试验田上进行施化肥量对水稻产量影响的试验,得数据如下(单位:kg)1x2)检验相关系数r 的显著性水平:r=∑∑∑===---7171222271)7)(7(7i i i i i ii y y x x yx yx =)3.39971132725)(3077000(3.3993078717522⨯-⨯-⨯⨯-≈0.9733,在“相关系数检验的临界值表”查出与显著性水平0.05及自由度7-2=5相应的相关数临界值r 0 05=0.754<0.9733,这说明水稻产量与施化肥量之间存在线性相关关系.3)设回归直线方程a bx y +=ˆ,利用⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=∑∑==xb y a x x y x y x b i i i i i 71227177计算a ,b , 得b=75.430770005.399307871752≈⨯-⨯⨯- a=399.3-4.75×30≈257,则回归直线方程25775.4ˆ+=x yx例2.一个工厂在某年里每月产品的总成本y (万元)与该月产量x (万件)之间由如下一组数据:归直线方程.x2)r=∑∑∑===---1211212222121)12)(12(12i i i i i ii y y x x yx yx=18.534.1754.243120.997891-⨯⨯=在“相关系数检验的临界值表”查出与显著性水平0.05及自由度12-2=10相应的相关数临界值r 0 05=0.576<0.997891, 这说明每月产品的总成本y (万元)与该月产量x (万件)之间存在线性相关关系.3)设回归直线方程a bx y+=ˆ, 利用⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=∑∑==xb y a x x y x y x b i i i i i 121221211212,计算a ,b ,得b ≈1.215, a=x b y -≈0.974,∴回归直线方程为:974.0215.1ˆ+=x y课堂小节:本节课学习了回归的基本思想、方法及其初步应用 课堂练习:略课后作业:第7页习题A:1,2,3,4,5。
教学设计3:1.2回归分析

回归分析的基本思想及其初步应用【教学目标】:(1)知识与技能:了解求线形回归方程的两个计算公式的推导过程,、回归平方和;了解随机误差产生的原因;了解判断刻画模型拟合效果的方法——相关指数和残差分析;了解非线性模型通过变换转化为线性回归模型。
(2)过程与方法:本节内容先从大学中女大学生的甚高和体重之间的关系入手,求出相应的回归直线方程,从中也找出存在的不足,从而有进行回归分析的必要性,进而学习相关指数,用相关指数来刻画回归的效果。
(3)情感态度与价值观:从实际问题中发现自己已有知识的不足之处,激发学生的好奇心和求知欲,培养学生不满足于已有知识,勇于求知的良好个性品质,引导学生积极进取。
【教学重点】:1.了解判断刻画模型拟合效果的方法——相关指数和残差分析;2.通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型。
【教学难点】:1.了解随机误差产生的原因,用残差平方和衡量回归方程的预报精度;2.了解判断刻画模型拟合效果的方法——相关指数和残差分析。
【教学过程设计】:器)解答过程如下:令1ln c a =,2c b =,即bx a z +=分析x 与z 之间的关系,通过画散点图(如下图),可知x 与z 之间是存在着线性回归关系,可以用最小二乘法求出线性回归方程bx a z +=列表计算出各个量 编号 1 2 3 4 5 6 7 合计 温度x /°C 212325 27 29 32 35 192 产卵数y /个 711 21 24 66 115 325 569 z =ln y1.9462.3983.045 3.1784.190 4.7455.78425.285 x i 2 441529625729841 1024 1225 5414 x i z i40.9 55.2 76.1 85.8121.5151.8202.4733.7=x 27.429 =z 3.612∑==ni i x 125414∑==ni y i y x 1733.71272.043.277541461.343.2777.733ˆ22121=⨯-⨯⨯-=--=∑∑==x n xzx n zx bni ini ii843.3ˆˆ-=⋅-=x b z a843.3272.0ˆ-=x z问题七:我们的目标是建立红铃虫的产卵数y 与温度x 的模型,如何使得到的线性回归模型再变回红铃虫的产卵数y 与温度x 的模型?师:提出问题。
人教版高中数学选修1-2 1.1回归分析的基本思想及其初步应用(教案)(共4课时)

第一章统计案例1。
1回归分析的基本思想及其初步应用(一)教学目标:(1)。
知识与技能:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用(2).过程与方法:了解回归分析的基本思想、方法及初步应用(3).情感,态度与价值观:充分利用图形的直观性,简捷巧妙的解题教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析。
教学难点:解释残差变量的含义,了解偏差平方和分解的思想。
教学方法:讲解法,引导法教学过程:一、复习准备:1。
提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?2。
复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系。
回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报。
二、讲授新课:1。
教学例题:①例1从某大学中随机选取8名女大学生,其身高和体重数据如下表所示:编12345678号身高/cm165 165 157 170 175 165 155 170 体重/kg48 57 50 54 64 61 43 59 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm 的女大学生的体重. (分析思路→教师演示→学生整理)第一步:作散点图 第二步:求回归方程 第三步:代值计算② 提问:身高为172cm 的女大学生的体重一定是60。
316kg 吗? 不一定,但一般可以认为她的体重在60。
316kg 左右.③ 解释线性回归模型与一次函数的不同事实上,观察上述散点图,我们可以发现女大学生的体重y 和身高x 之间的关系并不能用一次函数y bx a =+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系)。
在数据表中身高为165cm 的3名女大学生的体重分别为48kg 、57kg 和61kg ,如果能用一次函数来描述体重与身高的关系,那么身高为165cm 的3名女在学生的体重应相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对题中的数据进行检验
2 下表是随机抽取的8对母女的身高数据, 试根据这些数据探讨y与x之间的关系.
母亲身高x/cm 女儿身高y/cm
154 157 158 159 160 161 162 163 155 156 159 162 161 164 165 166
散点图只是形象地描述点的分布情况,它的“线性”是否 明显只能通过观察,要想把握其特征,必须进行定量的研究
建构数学
相关系数
1.计算公式
n
(xi - x)(yi - y)
n
__
xiyi nxy
r=
i=1
i1
n
n
(xi - x)2 (yi - y)2
i=1
i=1
n i1
xi2
ቤተ መጻሕፍቲ ባይዱ
n
_
x
2
n i1
yi2
n
_
y
2
2.相关系数r的性质 (1)|r|≤1. (2)|r|越接近于1,x,y相关程度越强;|r|越接近于0,x,y相关
程度越弱. 注:b 与 r 同号
问题:达到怎样程度,x、y线性相关呢?它们的相关程度怎样呢?
检验方法步骤如下: 1.提出统计假设H0:变量x,y不具有线性相关关系;
就目前数据而言,没有充分理由认为y与x之间 有线性相关关系
1.下表给出我国从1949至1999年人口数 据资料,试根据表中数据估计我国2004年 的人口数。
年份 49
54
59
64
69
74
79
84
89
94
99
人口 542 603 672 705 807 909 975 1035 1107 1177 1246 数/百 万
(二)
复习回顾
求线性回归方程的步骤:
(1)计算平均数 x , y
n
(2)计算 x i 与y i 的积,求 x i y i
n
n
i1
(3)计算
x
2 i
,
y
2 i
i 1
i 1
(4)将上述有关结果代入公式,求b、a,
写出回归直线方程.
对于线性回归模型 yabx
应注意以下两个问题:
I 模型的合理性; II 在模型合理的情况下,如何估计a,b.
2.如果以95%的把握作出推断,那么可以根据1-0.95
=0.05与n-2在附录1中查出一个r的临界值 r0 .0 5
(其中1-0.95=0.05称为检验水平)
3.计算样本相关系数r
4.作出统计推断:若|r|> r0.05 ,则否定H0表明有
95%的把握认为x与y之间具有线性相关关系;
若|r| r0.05,则没有理由拒绝原来的假设H0,即