不等式与不等关系
高中数学必修五-不等关系与不等式

不等关系与不等式知识集结知识元不等关系与不等式知识讲解1.不等关系与不等式【不等关系与不等式】不等关系就是不相等的关系,如2和3不相等,是相对于相等关系来说的,比如与就是相等关系.而不等式就包含两层意思,第一层包含了不相等的关系,第二层也就意味着它是个式子,比方说a>b,a﹣b>0就是不等式.【不等式定理】①对任意的a,b,有a>b⇔a﹣b>0;a=b⇒a﹣b=0;a<b⇔a﹣b<0,这三条性质是做差比较法的依据.②如果a>b,那么b<a;如果a<b,那么b>a.③如果a>b,且b>c,那么a>c;如果a>b,那么a+c>b+c.推论:如果a>b,且c>d,那么a+c>b+d.④如果a>b,且c>0,那么ac>bc;如果c<0,那么ac<bc.例题精讲不等关系与不等式例1.设a、b、c是互不相等的正数,则下列等式中不恒成立的是()A.|a-b|≤|a-c|+|b-c|B.C.D.例2.已知a,b,c,d∈R,则下列命题中必然成立的是()A.若a>b,c>b,则a>cB.若a>b,c>d,则C.若a2>b2,则a>bD.若a>-b,则c-a<c+b例3.若a,b∈R下列说法中正确的个数为()①(a+b)2≥a2+b2;②若|a|>b,则a2>b2;③a+b≥2A.0B.1C.2D.3不等式比较大小知识讲解1.不等式比较大小【知识点的知识】不等式大小比较的常用方法(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.【典型例题分析】方法一:作差法典例1:若a <0,b <0,则p =与q =a +b 的大小关系为()A .p <qB .p ≤qC .p >qD .p ≥q解:p ﹣q =﹣a ﹣b ==(b 2﹣a 2)=,∵a <0,b <0,∴a +b <0,ab >0,若a =b ,则p ﹣q =0,此时p =q ,若a ≠b ,则p ﹣q <0,此时p <q ,综上p ≤q ,故选:B方法二:利用函数的单调性典例2:三个数,,的大小顺序是()A .<<B .<<C .<<D .<<解:由指数函数的单调性可知,>,由幂函数的单调性可知,>,则>>,故<<,故选:B.例题精讲不等式比较大小例1.已知-1<a<0,b<0,则b,ab,a2b的大小关系是()A.b<ab<a2b B.a2b<ab<bC.a2b<b<ab D.b<a2b<ab例2.a=80.7,b=0.78,c=log0.78,则下列正确的是()A.b<c<a B.c<a<bC.c<b<a D.b<a<c例3.三个数a=,b=()2020,c=log2020的大小顺序为()A.b<c<a B.b<a<cC.c<a<b D.c<b<a当堂练习单选题练习1.已知t=a+4b,s=a+b2+4,则t和s的大小关系是()A.t>s B.t≥sC.t<s D.t≤s练习2.已知a=,b=,c=,则()A.a>b>c B.a>c>bC.b>a>c D.c>b>a练习3.设a=,b=2,c=log32,则()A.b>a>c B.a>b>cC.c>a>b D.b>c>a练习4.设a=(),b=(),c=(),则a,b,c的大小关系为()A.a<b<c B.b<c<aC.a<c<b D.c<a<b练习5.若a=(),b=(),e=log,则下列大小关系正确的是()A.c<a<b B.c<b<aC.a<b<c D.a<c<b填空题练习1._____.不等式≤3的解集是__________练习2.于实数a、b、c,有下列命题①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若c>a>b>0,则;⑤若a>b,,则a>0,b<0.其中正确的是______.练习3.已知a,b∈R,且>1,则下列关系中①②a3<b3③ln(a2+1)<ln(b2+1)④若c>d>0,则其中正确的序号为_____。
探究高中数学中的不等式与不等关系

探究高中数学中的不等式与不等关系数学是一门抽象而又具有逻辑性的学科,而不等式与不等关系作为数学中的一个重要概念,在高中数学中占据着重要的地位。
不等式与不等关系不仅仅是一种数学工具,更是一种思维方式和解决问题的方法。
本文将探究高中数学中的不等式与不等关系,分析其应用和意义。
一、不等式与不等关系的基本概念不等式是数学中比较两个数大小关系的一种表示方法,常用的不等关系有大于、小于、大于等于、小于等于等。
例如,a > b表示a大于b,a < b表示a小于b,a ≥ b表示a大于等于b,a ≤ b表示a小于等于b。
通过不等式与不等关系,我们可以比较两个数的大小关系,进而进行数值的比较和运算。
二、不等式与不等关系的性质及运算规则不等式与不等关系具有一些重要的性质和运算规则,这些性质和规则对于解决不等式问题具有重要的指导意义。
1. 不等式的传递性:如果a > b,b > c,那么可以推出a > c。
这个性质告诉我们,如果两个数之间存在大小关系,那么通过传递性可以推出更多的大小关系。
2. 不等式的加减乘除性质:对于不等式a > b,c > 0,有以下性质:- 加法性质:a + c > b + c- 减法性质:a - c > b - c- 乘法性质:a × c > b × c(当c > 0时)- 除法性质:a ÷ c > b ÷ c(当c > 0时)通过这些性质,我们可以对不等式进行加减乘除运算,从而得到新的不等式。
三、不等式的解集与图像表示解不等式就是找到满足不等式条件的数的集合,这个集合被称为不等式的解集。
不等式的解集可以用图像表示,从而更直观地理解不等式的解集。
对于一元一次不等式,我们可以通过构建不等式的解集来表示。
例如,对于不等式2x + 3 > 5,我们可以通过移项得到2x > 2,进而得到x > 1。
高二数学不等关系与不等式

的简报中医师名录听者莫不撕小纸片记录……。彷佛太平盛世就应该这样,每件事都跟昨天、前天没什么差别。一位迟到妈妈拉著尚未换穿球衣、头发睡歪一边的儿子小跑步而来,手上还捧著纸碗装蚵仔面线,由於限塑政策推行彻底,一支小汤匙只好含在嘴里,就这么快快快抵达树荫下,
立刻有几只妈妈手围上来替男孩剥衣换服下一秒钟他就像走出电话亭的超人,直接上场了。 ? 唉,在太平盛世的范围,早起算是相当痛苦的。 ? 你坐在布满粉紫草花的草地上,看这浮世一角看得趣味盎然,甚至还不想打开手中诗集。你不禁想,浮生之所以有趣,在於允许你隐身於安全
一粒吃又揣了一粒在口袋,再将它放回原处,装作啥事都不知晓。过不了几日,便会听到她的抱怨:“半包软糖仔那是你们阿姑买给我的,放在棉被堆里也给你们偷拿去呷。看看,剩三粒,比日本仔还野!夭鬼囡仔,我藏到无路啰!--喏,敏嫃,剩这粒给你。”
?我
的确是特权了,可以分享到阿嬷的卷仔饼,及她那个年代的甜处。于是,公事包里常常有些奇怪的东西:五条卷仔饼、一把纽仔饼、六粒龙眼球、两块爆米香、一块红龟仔果......我便拿着去普渡众生,遇到谁就给谁。回到家,阿嬷还要问食后心得:“好呷莫?”我说:“马马虎虎啦,
气息。扑蝶事件将成为他生命中的奇异点,此後因不断被引述、传诵而有了亮度。浮生甚暖,一陌生男孩抓到奇异光点时,你正好在现场。 ? 中场休息。孩子奔来,肥鸭们赶忙递水、擦汗、喂面包、抹驱蚊膏。你打开波兰女诗人辛波丝卡诗集,阳光捆著你的眼眸放在〈越南〉那页: ?
妇人,你叫什么名字?── 我不知道。 ? 你生於何时,来自何处?──我不知道。 ? 你为什么在地上挖洞?──我不知道。 ? 你在这里多久?」──我不知道。 ? 你看著树荫下十多个家庭的寻常早晨,相信太平盛世里所有的缺口都有办法弥补,即使「挖洞」这讨人厌的事,也能找
不等关系与不等式 课件

不等式性质的应用
[探究问题] 1.小明同学做题时进行如下变形: ∵2<b<3, ∴13<1b<12, 又∵-6<a<8, ∴-2<ab<4. 你认为正确吗?为什么?
提示:不正确.因为不等式两边同乘以一个正数,不等号的方向不变, 但同乘以一个负数,不等号方向改变,在本题中只知道-6<a<8.不明确 a 值 的正负.故不能将31<b1<21与-6<a<8 两边分别相乘,只有两边都是正数的同向 不等式才能分别相乘.
2.由-6<a<8,-4<b<2,两边分别相减得-2<a-b<6,你认为正确吗? 提示:不正确.因为同向不等式具有可加性与可乘性.但不能相减或相 除,解题时要充分利用条件,运用不等式的性质进行等价变形,而不可随意 “创造”性质.
3.你知道下面的推理、变形错在哪儿吗? ∵-2<a-b<4, ∴-4<b-a<-2. 又∵-2<a+b<2, ∴0<a<3,-3<b<0, ∴-3<a+b<3. 这怎么与-2<a+b<2 矛盾了呢?
0<x≤18,
x15-2x≥110.
[规律方法] 1.此类问题的难点是如何正确地找出题中的显性不等关系和隐性不等 关系. 2.当问题中同时满足几个不等关系,则应用不等式组来表示它们之间 的不等关系,另外若问题有几个变量,选用几个字母分别表示这些变量 即可.
3.用不等式(组)表示不等关系的步骤: (1)审清题意,明确表示不等关系的关键词语:至多、至少、不多于、 不少于等. (2)适当的设未知数表示变量. (3)用不等号表示关键词语,并连接变量得不等式.
不等关系与不等式

不等关系与不等式一、学习指导不等式的性质是解(证)不等式的基础,关键是正确理解和运用, 要弄清条件和结论,考试中多以小题出现,题目难度不大,学 习时,应抓好基本概念,少做偏难题.二、基础梳理1.不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数 学符号 连接两个数或代数式以表示它们 之间的不等关系,含有这些不等号的式子,叫做不等式.2.比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a -b >0⇔ ;a -b =0⇔ ;a -b <0⇔ . 另外,若b >0,则有a b >1⇔a >b ;a b =1⇔a =b ;a b <1⇔a <b .3.不等式的性质(1)对称性:a >b ⇔b <a ;(2)传递性:a >b ,b >c ⇔ ;(3)可加性:a >b ⇔a +c b +c ,a >b ,c >d ⇒a +c >b +d ;(4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ;(5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥2);(6)可开方:a >b >0⇒n a >nb (n ∈N ,n ≥2).三、典型题型题型一 比较大小【例1】已知a ,b ,c 是实数,试比较a 2+b 2+c 2与 ab +bc +ca 的大小.解:∵a 2+b 2+c 2-(ab +bc +ca )=12[(a -b )2+(b -c )2+(c -a )2]≥0, 当且仅当a =b =c 时取等号.∴a 2+b 2+c 2≥ab +bc +ca .【训练1】 已知a ,b ∈R 且a >b ,则下列不等式中一定成立的是( ).A.a b >1B .a 2>b 2C .lg(a -b )>0D.⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12 b题型二 不等式的性质【例2】 若a >0>b >-a ,c <d <0,则下列命题:(1)ad >bc ;(2)a d +b c <0;(3)a -c >b -d ;(4)a ·(d -c )>b (d -c )中能成立 的个数是( ).A .1B .2C .3D .4方法总结:在判断一个关于不等式的命题真假时,先把要判断的 命题和不等式性质联系起来考虑,找到与命题相近的性质,并应 用性质判断命题真假,当然判断的同时还要用到其他知识,比如 对数函数,指数函数的性质等.题型三 不等式性质的应用【例3】已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4. 求f (-2)的取值范围.[审题视点] 可利用待定系数法寻找目标式f (-2)与已知式f (-1), f (1)之间的关系,即用f (-1),f (1)整体表示f (-2),再利用 不等式的性质求f (-2)的范围.解:f (-1)=a -b ,f (1)=a +b .f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .∴⎩⎪⎨⎪⎧ m +n =4,m -n =-2,∴⎩⎪⎨⎪⎧ m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1).∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10.题型四 利用不等式的性质证明简单不等式【例4】设a >b >c ,求证:1a -b +1b -c +1c -a >0. 证明:∵a >b >c ,∴-c >-b .∴a -c >a -b >0,∴1a -b >1a -c >0. ∴1a -b +1c -a >0.又b -c >0,∴1b -c>0. 1a -b +1b -c +1c -a>0.四 、小结。
知识讲解_不等关系与不等式

不等关系与不等式编稿:张希勇 审稿:李霞【学习目标】1.了解实数运算的性质与大小顺序之间的关系;2.会用差值法比较两实数的大小;3.掌握不等式的基本性质,并能运用这些性质解决有关问题.【要点梳理】要点一、符号法则与比较大小实数的符号:任意x R ∈,则0x >(x 为正数)、0x =或0x <(x 为负数)三种情况有且只有一种成立.两实数的加、乘运算结果的符号具有以下符号性质:①两个同号实数相加,和的符号不变符号语言:0,00a b a b >>⇒+>;0,00a b a b <<⇒+<②两个同号实数相乘,积是正数符号语言:0,00a b ab >>⇒>;0,00a b ab <<⇒>③两个异号实数相乘,积是负数符号语言:0,00a b ab ><⇒<④任何实数的平方为非负数,0的平方为0符号语言:20x R x ∈⇒≥,200x x =⇔=.比较两个实数大小的法则:对任意两个实数a 、b①0b a b a ->⇔>;②0b a b a -<⇔<;③0b a b a -=⇔=.对于任意实数a 、b ,a b >,a b =,a b <三种关系有且只有一种成立.要点诠释:这三个式子实质是运用实数运算来比较两个实数的大小关系.它是本章的基础,也是证明不等式与解不等式的主要依据.要点二、不等式的性质不等式的性质可分为基本性质和运算性质两部分基本性质有:(1) 对称性:a>b b<a ⇔(2) 传递性:a>b, b>c a>c ⇒(3) 可加性:a b a c b c >⇔+>+ (c ∈R)(4) 可乘性:a>b ,⎪⎩⎪⎨⎧<⇒<=⇒=>⇒>bc ac c bc ac c bc ac c 000运算性质有:(1) 可加法则:,.a b c d a c b d >>⇒+>+(2) 可乘法则:,a b>0c d>0a c b d>0>>⇒⋅>⋅(3) 可乘方性:*0,0n n a b n N a b >>∈⇒>>(4)可开方性:a b 0,n N ,n 1+>>∈>⇒>要点诠释:不等式的性质是不等式同解变形的依据.要点三、比较两代数式大小的方法作差法:任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小.①0b a b a ->⇔>;②0b a b a -<⇔<;③0b a b a -=⇔=.作商法:任意两个值为正的代数式a 、b ,可以作商a b ÷后比较a b与1的关系,进一步比较a 与b 的大小. ①1b a a b>⇔>; ②1b a a b<⇔<; ③1b a a b =⇔=. 中间量法:若a>b 且b>c ,则a>c (实质是不等式的传递性).一般选择0或1为中间量.利用函数的单调性比较大小若两个式子具有相同的函数结构,可以利用相应的基本函数的单调性比较大小.作差比较法的步骤:第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化为“积”;第三步:定号,就是确定差是大于、等于还是小于0;最后下结论.要点诠释:概括为:“三步一结论”.这里“定号”是目的,“变形”是关键过程.【典型例题】类型一:用不等式表示不等关系例1.某人有楼房一幢,室内面积共2180m ,拟分割成大、小两类房间作为旅游客房,大房间面积为218m ,可住游客5人,每名游客每天住宿费40元;小房间每间面积为215m ,可住游客3人,每名游客每天住宿费50元;装修大房间每间需要1000元,装修小房间每间需要600元,如果他只能筹款8000元用于装修,试写出满足上述所有不等关系的不等式.【思路点拨】把已知条件用等式或不等式列出来(代数化),把目标用代数式表示,再研究条件和目标的关系。
《不等关系与不等式》 知识清单

《不等关系与不等式》知识清单一、不等关系在日常生活和数学中,我们经常会遇到各种不等关系。
比如,身高的比较、成绩的高低、物品价格的差异等等。
不等关系是客观存在的,它反映了事物之间的数量差异和大小顺序。
不等关系可以用文字语言来描述,例如“大于”“小于”“不超过”“不少于”等;也可以用符号语言来表示,常见的不等号有“>”(大于)、“<”(小于)、“≥”(大于或等于)、“≤”(小于或等于)。
二、不等式不等式是用不等号连接两个代数式所形成的式子。
例如,2x + 3 >5 就是一个不等式。
1、不等式的性质性质 1:如果 a > b,那么 b < a ;如果 b < a ,那么 a > b 。
(对称性)性质 2:如果 a > b 且 b > c ,那么 a > c 。
(传递性)性质 3:如果 a > b ,那么 a + c > b + c 。
(加法法则)性质 4:如果 a > b 且 c > 0 ,那么 ac > bc ;如果 a > b 且 c <0 ,那么 ac < bc 。
(乘法法则)这些性质是解决不等式问题的重要依据,需要熟练掌握和运用。
2、一元一次不等式形如 ax + b > 0 或 ax + b < 0 (其中a ≠ 0 )的不等式叫做一元一次不等式。
解一元一次不等式的一般步骤:(1)去分母(根据不等式的性质 2 和 3 )(2)去括号(乘法分配律)(3)移项(根据不等式的性质 1 )(4)合并同类项(5)系数化为 1 (根据不等式的性质 4 )在系数化为1 时,需要注意当系数为负数时,不等号的方向要改变。
3、一元二次不等式形如 ax²+ bx + c > 0 或 ax²+ bx + c < 0 (其中a ≠ 0 )的不等式叫做一元二次不等式。
解一元二次不等式通常需要先求出对应的一元二次方程的根,然后根据二次函数的图像来确定不等式的解集。
例如,对于不等式 x² 2x 3 > 0 ,先解方程 x² 2x 3 = 0 ,得到 x=-1 或 x = 3 。
不等关系与不等式

a -b >0 ⇔ a >b a>
思考4 如果两个实数的差等于零, 思考4:如果两个实数的差等于零,那么这两个实
数的大小关系如何?反之成立吗? 数的大小关系如何?反之成立吗?如何用数学语 言描述这个原理? 言描述这个原理?
学生活动one 学生活动one
雷电的温度大约是28000℃,比太阳 ℃ 雷电的温度大约是 表面温度的4.5倍还要高。设太阳表面温 倍还要高。 表面温度的 倍还要高 度为t 那么t应满足怎样的关系式 应满足怎样的关系式? 度为 ℃,那么 应满足怎样的关系式?
4.5t<28000
课堂评价:用不等式表示下面的不等关系: 课堂评价:用不等式表示下面的不等关系:
698 x + 518 y ≤ 4000 x ≥ 0 y≥0 x, y ∈N*
实际应用中建构数学
实际问题: 实际问题:不等关系
抽象 概括 刻 画
数学问题: 数学问题:不等式
三、不等式基本原理 思考1 实数可以比较大小,对于两个实数a 思考1:实数可以比较大小,对于两个实数a,b,
1.a与b的和是非负数; 与 的和是非负数 的和是非负数;
a+b≥0
2.某公路立交桥对通过车辆的高度 “限高 某公路立交桥对通过车辆的高度h“ 某公路立交桥对通过车辆的高度 4m” ”
0<h≤4
数学应用
二、用不等式组来表示不等关系
学生活动two 学生活动two
这是某酸奶的质量检查规定 脂肪含量( ) 脂肪含量(f) 不少于2.5% % 不少于 蛋白质含量( ) 蛋白质含量(p) 不少于2.3% % 不少于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式与不等关系考纲要求1.了解现实世界和日常生活中的不等关系.2.了解不等式(组)的实际背景. 考情分析1.从高考内容上来看,不等关系、不等式的性质及应用 是命题的热点.2.着重突出考查对不等式性质的灵活运用,有时与充要 性的判断交汇命题,体现了化归转化思想,难度中、 低档.3.考查题型多为选择、填空题. 教学过程基础梳理一、实数大小顺序与运算性质之间的关系a -b >0⇔ ;a -b =0⇔ ; a -b <0⇔ . 二、不等式的基本性质1.对称性a >b ⇔2.传递性a >b ,b >c ⇒3.可加性a >b ⇒4.可乘性 a >b c >0⇒ ,⎭⎬⎫a >bc <0⇒5.同向可加性⎭⎬⎫a >bc >d ⇒6.同向同正可乘性⎭⎬⎫a >b >0c >d >0⇒7.可乘方性a >b >0⇒ (n ∈N ,n ≥2)8.可开方性a >b >0⇒ (n ∈N ,n ≥2)两条常用性质① a >b ,ab >0⇒1a <1b;② 若a >b >0,m >0,则b a <b +ma +m;双基自测1.若x +y >0,a <0,ay >0,x -y 的值为 ( ) A .大于0 B .等于0 C .小于0D .不确定2.(教材习题改编)已知a ,b ,c 满足c <b <a ,且ac <0.那么下列选项中一定成立的是 ( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2D .ac (a -c )>03.已知a ,b ,c ,d 均为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.(教材习题改编)3+7与25的大小关系是________. 5.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c以上命题中正确的是____________(请把正确命题的序号都填上).1.不等式性质使用时注意的问题:在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加、“同向且两边同正的不等式”才可相乘;可乘性中的“c 的符号”等都需要注意.2.作差法是比较两数(式)大小的常用方法,也是证明不等式的基本方法.要注意强化化归意识,同时注意函数性质在大小比较中的作用.典例分析考点一、比较大小[例1] (2012·珠海模拟)已知b >a >0,x >y >0,求证:x x +a >yy +b .[巧练模拟]——————(课堂突破保分题,分分必保!) 1.(2012·杭州模拟)已知a >b ≥2.现有下列不等式: ①b 2>3b -a ;②ab >a +b .其中正确的是 ( ) A .① B .② C .①② D .都不正确2.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )[冲关锦囊] 比较大小的方法 1.作差法:其一般步骤是:(1)作差;(2)变形;(3)定号;(4)结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,也可以先平方再作差. 2.作商法:其一般步骤是:(1)作商;(2)变形;(3)判断商与1的大小;(4)结论. 3.特例法:若是选择题还可以用特殊值法比较大小,若是解答题,也可以用特殊值法探路.考点二、不等式的性质[例2] (2011·全国卷)下面四个条件中,使a >b 成立的充分而不必要的条件是 ( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3[巧练模拟]———————(课堂突破保分题,分分必保!)3.(2012·义乌模拟)设a ,b ∈R ,若b -|a |>0,则下列不等式中正确的是( )A .a -b >0B .a +b >0C .a 2-b 2>0D .a 3+b 3<04.(2012·天津调研)已知三个不等式:①ab >0;②c a >db ;③bc >ad .以其中两个作条件,余下一个作结论,则可组成________个正确 命题. [冲关锦囊](1)判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的 性质.(2)特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立, 则该命题为假命题. 考点三、不等式性质的应用[例3] (2011·浙江高考)若a ,b 为实数,则“0<ab <1”是“b <1a”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[巧练模拟]—————(课堂突破保分题,分分必保!)5.(2012·金华质检)已知a ∈R ,则“a >2”是“a 2>2a ”成立的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(2012·山西四校第二次联考)设实数x ,y 满足3≤xy 2≤8,4≤x 2y≤9,则x 3y 4的最大值是 ( )A .27B .3 C.818 D .72一、选择题1.(2011·长沙一模)若a ,b ∈R ,则下列命题正确的是( ) A .若a >b ,则a 2>b 2 B .若|a |>b ,则a 2>b 2 C .若a >|b |,则a 2>b 2D .若a ≠|b |,则a 2≠b 22.(2011·泉州质检)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .不确定3.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2 B .ab 2<a 2b C.1ab 2<1a 2bD.b a <a b4.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .12log b <12log a <0C .2b <2a <2D .a 2<ab <15.(2012·厦门模拟)设命题p :若a >b ,则1a <1b ,q :若1ab <0,则ab <0.给出以下3个复合命题,①p ∧q ;②p ∨q ;③綈p ∧綈q .其中真命题的个数为( )A .0个B .1个C .2个D .3个二、填空题6.若1<α<3,-4<β<2,则α-|β|的取值范围是________. 解析:∵-4<β<2,∴0≤|β|<4. ∴-4<-|β|≤0.∴-3<α-|β|<3. 答案:(-3,3)7.若x >y ,a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤ay >bx这五个式子中,恒成立的所有不等式的序号是________. 解析:令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y .因此①不成立.又∵ax =-6,by =-6,∴ax =by .因此③也不正确. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx .因此⑤不正确.由不等式的性质可推出②④成立. 答案:②④ 三、解答题8.已知a >0,b >0,试比较M =a +b 与N =a +b 的大小. 解:∵M 2-N 2=(a +b )2-(a +b )2 =a +b +2ab -a -b =2ab >0, ∴M >N .9.已知奇函数f (x )在区间(-∞,+∞)上是单调递减函数,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试说明f (α)+f (β)+f (γ)的值的与0的关系.解:由α+β>0,得α>-β.∵f (x )在R 上是单调减函数,∴f (α)<f (-β). 又∵f (x )为奇函数,∴f (-β)=-f (β). ∴f (α)<-f (β).∴f (α)+f (β)<0. 同理f (β)+f (γ)<0,f (γ)+f (α)<0. ∴f (α)+f (β)+f (γ)<0.10.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,试判断谁先到教室?解:设从寝室到教室的路程为s ,甲、乙两人的步行速度为v 1,跑步速度为v 2,且v 1<v 2. 甲所用的时间t 甲=s 2v 1+s 2v 2=s (v 1+v 2)2v 1v 2,乙所用的时间t 乙=2sv 1+v 2,∴t 甲t 乙=s (v 1+v 2)2v 1v 2×v 1+v 22s =(v 1+v 2)24v 1v 2=v 21+v 22+2v 1v 24v 1v 2>4v 1v 24v 1v 2=1. ∵t 甲>0,t 乙>0,∴t 甲>t 乙,即乙先到教室.。