分析化学实验中误差及分析数据的处理精讲
化学实验中常见的实验误差及其处理方法

化学实验中常见的实验误差及其处理方法实验误差是化学实验过程中不可避免的现象,可能会对实验结果的准确性和可靠性产生一定的影响。
本文将介绍化学实验中常见的实验误差及其处理方法,以提高实验数据的可信度和可靠性。
一、系统误差系统误差是由于实验仪器的固有缺陷或使用不当而引起的。
它常常是持续性的,会使实验结果整体上偏离真实值。
以下是常见的系统误差及其处理方法:1.仪器偏差仪器偏差是仪器的漂移或示值误差引起的,可以通过仪器的调校、校正或更换来解决。
在实验中,应首先对仪器进行校准,确保其准确度和可靠性。
2.环境影响环境因素如温度、湿度等会对实验结果产生影响。
为了减少环境引起的误差,应在实验过程中控制好环境条件,并进行相应的修正计算。
二、随机误差随机误差是由于实验条件的不确定性而引起的,其大小和正负方向无法预测。
以下是常见的随机误差及其处理方法:1.个别观察值偏离若个别观察值偏离较大,可以进行多次实验并求平均值以减小随机误差的影响。
2.仪器读数误差仪器读数误差是实验者在读数过程中引起的误差,可以通过提高读数仪器的精密度,或者多人协作、多次测量并取平均值的方法来减小。
三、人为误差人为误差是由于实验操作者个人技术和经验等方面引起的误差。
以下是常见的人为误差及其处理方法:1.操作不规范操作不规范可能导致实验结果的不准确性,因此在实验过程中应严格按照操作步骤和实验要求进行操作,尽可能提高实验的可重复性。
2.实验记录错误实验记录错误可能导致数据的失真,为了避免这种错误的发生,应在实验过程中认真记录实验数据,并反复核对。
综上所述,要提高化学实验中实验结果的准确性和可靠性,需要注意系统误差、随机误差和人为误差等方面的处理。
在实验前应对仪器进行校准,控制好环境条件。
在实验过程中,要规范操作、减小个别观察值偏离以及仪器读数误差等。
同时,实验记录的准确性也是十分重要的。
通过这些方法和技巧,我们可以有效地处理实验误差,提高实验数据的质量和可靠性。
分析化学第三章 分析化学中的误差与数据处理_OK

分类
方法误差、仪器与试剂 环境的变化因素、主
误差、主观误差
观的变化因素等
性质
重现性、单向性(或周 服从概率统计规律、
期性)、可测性
不可测性
影响
准确度
精密度
消除或减 小的方法
校正
增加测定的次数 12
系统误差的校正
• 方法系统误差——方法校正 • 主观系统误差——对照实验校正(外检) • 仪器系统误差——对照实验校正 • 试剂系统误差——空白实验校正
误差
10
• 随机误差: • 由某些不固定偶然原因造成,使测定结果在一定范围内波动,大小、正负不定,难以
找到原因,无法测量。 • 特点:不确定性;不可避免性。 • 只能减小,不能消除。每次测定结果无规律性,多次测量符合统计规律。 • 过失、错误误差
11
系统误差与随机误差的比较
项目
系统误差
随机误差
产生原因 固定因素,有时不存在 不定因素,总是存在
相对误差: 绝对误差占真值的百分比,用Er表示
Er =E/xT = x - xT /xT×100%
2
相对误差反映误差在真值中所占的比例
误差以真值为标准
真值:某一物理量本身具有的客观存在的真实值。真值是
未知的、客观存在的量。在特定情况下认为 是已知的:
理论真值(如化合物的理论组成)(如,NaCl中Cl的 含量) 计量学约定真值(如国际计量大会确定的长度、质 量、物质的量单位等等) 相对真值(如高一级精度的测量值相对于低一级精 度的测量值)(例如,标准样品的标准值)
6 15.99 34 0.172
7 16.02 55 0.278
8 16.06 40 0.202
9 16.09 20 0.101
分析化学实验中误差及分析数据的处理

* 有界性:大误差出现概率很小,误差很大的测量 值,往往由过失误差造成的。对这种数据应作适 当处理。
标准正态分布曲线 N(0 ,1 ) 为了将不同精密度的正态分布曲线统一起来, 令u=x-u/σ为横坐标表示的正态分布曲线
u
x
横坐标:u 纵坐标:误差出现的概率大小。
二. 随机误差的区间概率
特点:
随机性(大小、正负不定) 不可消除(原因不定) 但可减小(测定次数↑,一般平行测定3- 4次) 分布服从统计学规律(正态分布) (三)过失误差 由于操作者的过失而引起的误差(损失试 样、加错试样、记录或计算错误等 )--错 误。
(四)如何提高分析结果准确度?
减少误差的方法
1. 选择合适的分析方法 根据待测组分的含量、性质、试样的组成及对 准确度的要求。 2. 减少测量误差 控制取样量 : 天平称量取样 0.2g (为什么?)以 上,滴定剂体积大于20mL(为什么?)。 3. 增加平行测定次数,减小偶然误差 化学分析中通常要求平行测定3~4次。 4. 消除系统误差
二.精密度与偏差
1.几个定义
精密度 一组平行测定值相互接近的程度。
偏差 是衡量数据精密度高低的尺度。偏差越小,
数据的分散性越小,测定值的精密度越高。
第一组 第二组 1.10 1.10 1.12 1.18 1.11 1.15 1.11 1.13 1.10 1.16
在实际分析中,真实值难以得到,常以多次平行测定结果
平均偏差
| d | | d 2 | | d 3 | | d 4 | | d n | d 1 n
| d
i 1
n
i
|
n
相对平均偏差:
d d r 100% X
第二章 误差和分析数据的处理

第二章误差和分析数据的处理第一节误差及其产生的原因定量分析的任务是准确测定试样中各组分的含量,因此必须使分析结果具有一定的准确度。
不准确的分析结果将会导致生产上的损失、资源上的浪费和科学上的错误结论。
在定量分析中,由于受到分析方法、测量仪器、所用试剂和分析人员主观条件等方面的限制,故使测定的结果不可能和真实含量完全一致;即使是分析技术非常熟练的分析人员,用最完善的分析方法、最精密的仪器和最纯的试剂,在同一时间,同样条件下,对同一试样进行多次测定,其结果也不会完全一样。
这说明客观存在着难于避免的误差。
因此,人们在进行定量分析时,不仅要得到被测组分的含量,而且必须对分析结果进行评价,判断分析结果的准确性(可靠程度),检查产生误差的原因,采取减小误差的有效措施,从而不断提高分析结果的准确程度。
分析结果与真实结果之间的差值称为误差。
分析结果大于真实结果,误差为正;分析结果小于真实结果,误差为负。
一、误差的分类根据误差的性质与产生的原因,可将误差区分为系统误差和偶然误差两类。
(一)系统误差系统误差(systematic error)也叫可定误差(determination error),它是由某种确定的原因引起的,一般有固定的方向(正或负)和大小,重复测定可重复出现。
根据系统误差的来源,可区分为方法误差、仪器误差、试剂误差及操作误差等四种。
(1)方法误差:由于分析方法本身的缺陷或不够完善所引起的误差。
例如,在质量分析法中,由于沉淀的溶解或非被测组分的共沉淀;在滴定分析法中,由于滴定反应进行不完全,干扰离子的影响,测定终点和化学计量点不符合等,都会产生这种误差。
(2)仪器误差:由于所用仪器本身不够准确或未经校正所引起的误差。
例如,天平两臂不等长,砝码、滴定管刻度不够准确等,会使测定结果产生误差。
(3)试剂误差:由于试剂不纯和蒸馏水中含有杂质引入的误差。
(4)操作误差:由于操作人员的习惯与偏向而引起的误差。
例如,读取滴定管的读数时偏高或偏低,对某种颜色的变化辨别不够敏锐等所造成的误差。
第三章 分析化学中的误差与数据处理解读

平均偏差
例4:有两组测定值 甲组:2.9 2.9 3.0 3.1 3.1
乙组:2.8 解:甲组:
ቤተ መጻሕፍቲ ባይዱ
3.0
3.0
3.0
3.2
平均值=3.0 平均偏差=0.08
乙组:
平均值=3.0 平均偏差=0.08
5)标准偏差:又称均方根偏差,当测定次数趋于无限 多时,称为总体标准偏差,用σ 表示。
总体标准差:
d
i 1
n
xi x n
4)相对平均偏差:平均偏差与测量平均值的比值
d 相对平均偏差 % 100% x
x
i 1
n
i
x 100%
nx
说明:平均偏差不计正负号.
缺点:小偏差的测定总是占多数,大偏差的测定总
是占少数,按总的测定次数去求平均偏差所得的结
果偏小,大偏差得不到充分的反映。
标准参考物质:指某些具有确定含量的组分,在实际
样品定量测定中用作计算被测组分含量的直接或间接 的参照标准的一类物质。 经公认的权威机构鉴定并给予证书的 具有很好的均匀性和稳定性 含量测量的准确度至少高于实际测量3倍
例1:用分析天平称量两物体的质量各为1.6380g和0.1637g, 假定两者的真实质量分别为1.6381g和0.1638g,求两者称量的 绝对误差 和相对误差。 解:两者称量的绝对误差分别为
精密度: 平行测定结果相互靠近的程度,用偏差衡量。
偏差: 测量值与平均值的差值,用 d表示
1)绝对偏差:个别测量值与平均值之间的差值, 用 d表示。 各单次测定的偏差相 加,其和为零。
∑ di = 0
2)相对偏差:绝对偏差与平均值的比值。
dr
分析化学中的误差与数据处理讲义

• (3) 随机事件:在每次试验结果中,可能发生也 可能不发生的事件。(偶然事件、概率事件)
• 数理统计是一门研究随机现象统计规律的数学 分支学科,它是建立在概率论基础上的。
一、随机误差的正态分布
• 随机误差是由一些偶然因素造成的误 差,其大小、方向都不固定,难以预 计,不能测量也无法消除。它的出现 似乎很不规律,但实质上,它的出现 和分布服从统计规律
S
数n,所费劳力、
随n增加,
S x
的变化已不显著
时间与所获精
S
密ห้องสมุดไป่ตู้的提高相
比较,是很不
合算的!
在日常分析中: 一般平行测定:3-4次 较高要求:5-9次 最多:10-12次
(标样、物理常数、原子量的测定则次数较多)
事件:在一定条件下的试验结果中,所发生的现 象。
• (1) 必然事件:在每次试验结果中,一定会发生 的事件。
统计测定值落在每组内的个数称为频数,再计算 出数据出现在各组内的频率(即相对频数)。
公平、公正,实事求是 (2)
回顾
偏差(d):测定结果与平均值之间的差值。
di xi x
显然,偏差有正有负或零,则 n
各单次测定的偏差之和应为零: di 0 i 1
平均偏差: d d1 d2 dn
n
相对平均偏差:d d 100% rx
当测定次数不多时,常用平均偏差表示分析结 果的精密度。
准确度与精密度
准确度:分析结果和真值相符合的程度。 误差 —— 衡量准确度的尺度 精密度:各次平行测定的分析结果相互接近的程度 偏差 —— 衡量精密度的尺度
数理统计是一门研究随机现象统计规律的数 学分支学科,它是建立在概率论基础上的。
化学实验中的数据处理与误差分析

化学实验中的数据处理与误差分析化学实验是研究和应用化学知识的重要方法之一。
而在进行化学实验过程中,正确处理实验数据并准确分析实验误差是确保实验结果可靠性的关键步骤。
本文将探讨化学实验中的数据处理方法以及误差分析,以期提供一些有益的指导和参考。
1. 数据处理方法在化学实验中,我们常常需要测量物质的质量、体积、温度等参数。
为了保证实验结果的准确性和可靠性,我们需要针对不同的数据类型采用不同的处理方法。
(1)质量数据处理质量是一个常见的实验参数。
在实验中,我们通常使用天平等仪器来测量物质的质量。
为了减小实验误差,我们需要注意以下几点:- 在称量前,应确保天平的准确性和稳定性,及时校准。
- 称取时,应注意避免托盘受到外力的影响,并尽量减小环境因素对称量的影响,如风力等。
- 若需要多次称量同一种物质,应注意清洁托盘,避免残留物导致误差。
- 在使用不同天平进行称量时,要确认其准确度和重复性,并进行标定。
(2)体积数据处理体积是化学实验中常用的参数。
在实验中,我们常用量筒、瓶口分液器等工具来测量物质的体积。
为了保证实验结果的准确性,需要注意以下几点:- 在使用量筒等工具时,要注意容器清洁,避免附着物影响测量结果。
- 测量液体时,要保持平视视线与液面平行,避免视差引起误差。
- 若液体温度与实验室温度存在差异时,应根据液体热胀冷缩的特性进行修正。
(3)温度数据处理温度是化学实验中一个重要的参数。
在实验中,我们通常使用温度计等工具来测量温度。
为了减小误差,需要注意以下几点:- 在使用温度计时,要确保其准确性和灵敏度,并进行校准。
- 测量温度时,要确保温度计与被测物质完全接触,避免温度梯度引起的误差。
2. 误差分析在化学实验中,误差是无法完全避免的。
对于实验误差的分析和评估可以帮助我们了解实验结果的可靠性,并采取相应措施减小误差。
(1)系统误差系统误差是由仪器、环境等因素引起的固定误差。
常见的系统误差包括仪器漂移、杂散光、环境温度变化等。
分析化学第二章误差与分析数据处理

根据待测组分的性质和含量选择合适的分析 方法。
空白实验
通过扣除空白值来减小误差。
标准化样品分析
使用标准样品对实验过程进行质量控制。
回收率实验
通过添加已知量的标准物质来评估分析方法 的准确性。
04
有效数字及其运算规则
有效数字的定义与表示
01
有效数字是指测量或计算中能够反映被测量大小的部分数字 ,其位数与被测量的精密度有关。
数据统计
计算平均值、中位数、众数等统计量,以反映数据的集 中趋势和离散程度。
实验结果的评价与表达
误差分析
计算误差、偏差、相对误差 等,评估实验结果的可靠性
。
1
精密度与偏差
通过多次重复实验,评估实 验结果的精密度和偏差。
置信区间
根据实验数据,计算结果的 置信区间,反映结果的可靠 性。
结果表达
选择合适的单位和量纲,将 实验结果以表格、图表等形 式表达,便于分析和比较。
02
表示有效数字时,需保留一位不确定位,采用指数或修约的 形式表示。
03
有效数字的表示方法:科学记数法(a x 10^n)或一般表示法。
有效数字的运算规则
加减法
以小数点后位数最少的数字为标准,对 其他数字进行修约,然后再进行运算。
乘方和开方
运算结果的有效数字位数与原数相同。
乘除法
以有效数字位数最少的数为标准,对 其他数字进行修约,然后再进行运算。
THANKS
准确度检验
通过标准物质或标准方法对比,检验分析结 果的准确性。
线性检验
验证测量系统是否符合线性关系,确保数据 在一定范围内准确可靠。
范围检验
评估分析方法在一定浓度或含量范围内的适 用性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习意义:
定量分析:准确测定试样中物质的含量 分析方法 仪器和试剂 工作环境 分析者等
误差:分析结果与真值之差。 误差是客观存在不可避免 对试样准确测量 对分析结果的可靠性 和准确性作出评价 对产生误差的原因进 行分析提出改进措施
分析工作者的任务
真值:客观存在,但绝对真值不可测
理论真值:如纯物质的理论组成或含量 约定真值:国际计量大会确定的质量、长 度等,标准参考物质证书上给出的数值等 相对真值:标准样品、基准物质、标准方 法,校正过的仪器等
误差有正负之分
E> 0 E< 0
误差为正,测定值较真值偏高 误差为负,测定值较真值偏低
如:对于1000kg和10kg ,绝对误差相同(±1kg),但产生的 相对误差却不同。
4.1 误差的基本概念
一. 准确度与误差
准确度: 测定结果与真值(T)接近的程度,用误差衡量。 绝对误差: 测量值与真值间的差值, 用 Ea表示 Ea= xi– T
式中xi为单次测定值。如果进行了数次平行测定, xi为
全部测定结果的算术平均值 X (测定平均值)
误差
相对误差: 绝对误差占真值的百分比,用Er表示 Er = ( Ea / T ) ×100%(更为实用)
解:平均值
2512 . 25 . 21 25 . 09 X 2514 . (% ) 3
0 . 02 0 . 07 0 . 05 0 . 05 (% ) 3
平均偏差
d
相对平均偏差=(0.05/25.14)×100%=0.2% 绝对误差 相对误差
Ea=25.14-25.10=+0.04(%) Er=(+0.04/25.10)×100%=+0.2%
| d
i 1
n
i
|
n
相对平均偏差:
d d r 100% X
平均偏差没有正负号,平均偏差小,表明这一组分析结果
的精密度好,平均偏差是平均值,它可以代表一组测得值 中任何一个数据的偏差。
例:测定某试样中氯的百分含量,三次分析结果分别为
25.12、25.21和25.09,计算平均偏差和相对平均偏差。 如果真实百分含量为25.10,计算绝对误差和相对误差。
X
d
dr
平均偏差和相对平均偏差不能准确的反映大 偏差的存在。
总体 在一定的条件下,对某试样进行 无限多次测定,所得数据的全体。 ------总体标准偏差б
样本 随机从总体中抽出的一组数据。 ------ 样本标准偏差:s
样本容量 样本中所包含测定值的数目。
(二)标准偏差(均方根偏差) 在数理统计中常用标准偏差来衡量数据 的精密度 有限测定次数: 样本标准偏差:s
在科研论文中,常用标准偏差表示精密度; 在学生实验中,常用平均偏差表示精密度。
三.准确度与精密度的关系
系统误差 准确度 随机误差
sx s n
一般:3-4次
有
增加(过多) 测量次数的 代价不一定 能从减小误 差得到补偿
一般:3-4次
n<5 随n增加 n>5 迅速减小 n>10 减小变慢
减小不明显
小结:
准确度常用误差来表示,误差越小,准确度 越高,而且用相对误差更为确切。
精密度的大小常用偏差表示。在偏差的表示 中,用标准偏差更合理,因为将单次测定值 的偏差平方后,能将较大的偏差显著地表现 出来。
甲组
平均值 3.0
乙组
3.0
平均偏差 标准偏差
0.08 0.08
0.08 0.14
∴标准偏差能很好地反映测定的精密度
(三)平均值的标准偏差
m个n次平行测定的平均值:
X1 , X 2 , X 3 , X m
增加测量 次数可以 提高精密 度。
由统计学可得:
平均值的标准偏差与测定次数
的平方根成反比
•第四章
误差与实验数据的处理
第四章
误差与实验数据的处理
4.1 误差的基本概念
4.2 随机误差的正态分布 4.3 有限数据的统计处理 4.4 有效数字及其运算规则
教学要求
1、了解误差的基本概念、产生的 原因、规律性以及减免误差的有 效措施 2、学会处理实验数据的基本方法Βιβλιοθήκη 3、对分析结果的可靠性和准确性
结果相互吻合的程度
在一般的分析工作中,常用平均偏差和相对平均偏差来衡
量一组测得值的精密度,
平均偏差是各个偏差的绝对值的平均值, 如果不取绝对值,各个偏差之和可能等于零。
平均偏差
| d | | d 2 | | d 3 | | d 4 | | d n | d 1 n
第一组 第二组 1.10 1.10 1.12 1.18 1.11 1.15 1.11 1.13 1.10 1.16
在实际分析中,真实值难以得到,常以多次平行测定结果
的算术平均值代替真实值。 2.偏差的表示方法 (一)绝对偏差 、平均偏差与相对平均偏差
绝对偏差(d)=个别测定值xi-测定平均值 有正负号,偏差的大小反映了精密度的好坏,即多次测定
1 RE% 100% 0.1% 1000 1 RE% 100% 10% 10
结论:相对误差可用来比较不同情况下测定 结果的准确度,更具有实用意义。
二.精密度与偏差
1.几个定义
精密度
偏差
一组平行测定值相互接近的程度。
是衡量数据精密度高低的尺度。偏差越小,
数据的分散性越小,测定值的精密度越高。
S
(x
i 1
n
i
x)2
n 1
f=n-1 -自由度,指独立变量的个数,可供选择的机会
样本相对标准偏差(变异系数):
Sr,RSD或CV(变异系数)表示
实际工作中:常用样本相对标准偏差表示分析 结果的精密度
Sr
s x
100%
请看下面两组测定值: 甲组:2.9 2.9 3.0 3.1 3.1 乙组:2.8 3.0 3.0 3.0 3.2
例:测定合金中铜含量(%)的两组结果如下
测定数据/%
第一 10.3,9.8,9.4,10.2,10.1, 组 10.4,10.0,9.7,10.2,9.7 10.0 0.24% 2.4%
第二 10.0,10.1,9.3*,10.2,9.9, 10.0 0.24% 2.4% 组 9.8,10.5*,9.8,10.3,9.9