弹性与塑性力学基础第四章广义胡克定律和弹性力学解题的基本方程与方法

合集下载

6弹塑性4_弹性基本问题与解法_2012课件第一部分

6弹塑性4_弹性基本问题与解法_2012课件第一部分

第四章一、线性弹性理论适定问题的基本方程和边界条件对于线弹性体小变形的线性问题,建立了一组线性方程组可以描述为在S 为边界的域V 上以u ,ε,σ作为求解变量的偏微分方程边值问题:微分提法2变分提法积分提法第四章第四章适定问题:第四章均匀变形状态()()1222111 1d d E c d d E c νν−=−=第四章弹性力学的基本方程和解法一、线性弹性理论适定问题的基本方程和边界条件 适定问题与非适定问题简例蓝色:边界给定量红色:边界未知量6适定问题例一第四章蓝色:边界给定量红色:边界未知量7适定问题例二第四章蓝色:边界给定量红色:边界未知量8适定问题例三边界全部给定面力时约束刚体位移才能求得确定位移边界全部给定面力时给定面力和体积力必须整体平衡第四章蓝色:边界给定量红色:边界未知量9非适定问题例一有多余边界条件情况一般无解第四章蓝色:边界给定量红色:边界未知量10非适定问题例二边界条件识别(逆问题)复杂!第四章 1.3 界面连续条件第四章弹性力学的基本方程和解法一、线性弹性理论适定问题的基本方程和边界条件II I u u =IIIi i u u =位移面力3个条件0t t =+II I 0II II I I =+ji j ji j n n σσIII S IIS +−u3个条件+12∀X ∈S It I I t0)(II I I =−ji ji j n σσ界面连续条件应为边界条件个数的两倍I S第四章第四章第四章第四章第四章第四章第四章第四章第四章第四章第四章。

弹塑性力学部分讲义(PDF)

弹塑性力学部分讲义(PDF)

弹塑性力学引言一、固体力学在工程中的作用工程中的各种机械都是用固体材料制造而成的、各种结构物也都是用固体材料建造的。

为了使机械结构正常使用、实现其设计的功能,首先要保证它们在工作载荷与环境作用下不发生材料的破坏或影响使用的过大的变形,即保证它们具有足够的强度、刚度和稳定性。

在设计阶段,要根据要求实现的功能,对于设计的机械结构的形式按强度要求确定其各部分的形状和尺寸,以及所需选择的材料。

要完成这样的任务,首先要解决如下基本问题:在给定形状尺寸与材料的机械结构在设计规定载荷与环境(如温度)作用下所产生的变形与应力。

对于柔性结构,如细长梁、薄板、薄壳,以及它们的组合结构,还要分析其是否会丧失稳定性。

这些都是固体力学的基本问题。

如果机械结构所受载荷或环境的作用是随时间变化的,那么,它们的振动特性也对其性能有重要的影响。

在设计时往往要对其进行模态分析,求出影响最大的各个低阶固有频率与相应的振型,以确保不会与主要的激振载荷产生共振,导致过大的交变应力与变形,影响强度和舒适性。

有些情况下还要考虑它们在瞬态或冲击载荷作用下的瞬态响应。

这些也是固体力学的基本问题。

此外、许多机械零件和结构元件在制造工程中,采用各种成型工艺,材料要产生很大的塑性变形。

如何保证加工质量,提高形状准确性、减少残余应力、避免产生裂纹、皱曲等缺陷?如何设计加工用的各种模具,加工的压力,以及整个工艺流程,这里也都有固体力学问题。

正因为工程中提出了各种各样的固体力学问题,有时还有流体力学问题,在19世纪产生了弹性力学和流体力学,才导致力学逐渐从物理学中独立出来。

工程技术发展的要求是工程力学,包括固体力学、流体力学等发展的最重要的推动力。

而工程力学的发展则大大推动了许多工程技术的飞速发展。

因此,力学是许多工程部门设计研究人员的基本素质之一。

二、力学发展概况力学曾经是物理学的一个部分,最初也是物理学中最重要的组成部分。

力学知识最早起源于人们对自然现象的观察和在生产劳动中积累的经验。

弹塑性力学第四章

弹塑性力学第四章

代入广义胡克定律
x c11 x c12 y c13 z c14 xy c15 yz c16 zx
x c11 x c12 y c13 z c14 xy c15 yz c16 zx
c11 x c12 y c13 z c14 xy c15 yz c16 zx
b
广义胡克定律
由应力分量的坐标变换公式(2-20)可得:
广 西 工 学 院 汽 车 工 程 系
xy l11l22 xy xy 2 x l11 x x 2 y l22 y y 2 z l33 z z
上述关系式是胡克(Hooke)定律在复杂应力条件下 的推广,因此又称作广义胡克定律。
广义胡克定律
广义胡克定律的张量表示: ij cijkl kl cijkl 称为弹性系数,一共有36个。
i, j, k , l 1, 2.3
广 西 工 学 院 汽 车 工 程 系
如果物体是非均匀材料构成的,物体内各点受力后将 有不同的弹性效应,因此一般的讲,cmn 是坐标x,y,z 的函数。 如果物体是由均匀材料构成的,那么物体内部各点, 如果受同样的应力,将有相同的应变;反之,物体内各 点如果有相同的应变,必承受同样的应力。 因此cmn为弹 性常数,与坐标无关。 各向同性材料,独立的弹性常数只有两个。
xy yz zx
xy
G
yz
G
zx
G
式中, G
E 2 1 v
为各向同性物体的剪切弹性模量。
表示材料弹性性能的常数有3个,但只有两个是独立的。 张量记法:
1 v v ij ij E E vE ij e E ij ij 1 v 1 v 1 2v

弹塑性力学第4章—弹性本构关系

弹塑性力学第4章—弹性本构关系

用张量形式表示为
1 ε ij = [(1 +ν )σ ij −νσ kkδ ij ] E
vEδ ij ε kk E σ ij = ε ij + (1 + v )(1 − 2v ) 1+ v
反之也可以用应变表示应力
4.2 广义胡克定律的推论
4.2.1 广义胡克定律的偏量表达式
由广义胡克定律 得到
vEδ ij ε kk E σ ij = ε ij + (1 + v )(1 − 2v ) 1+ v
ቤተ መጻሕፍቲ ባይዱ弹性与塑性力学引论
课件制作: 丁 勇 配套教材:《弹性与塑性力学引论》
中国水利水电出版社,丁勇 宁波大学 建筑工程与环境学院
联系方式:137210762@
弹性与塑性力学引论
第4章 弹性本构关系
4.1 广义胡克定律
4.1.1 广义胡克定律的一般形式
三维情况下,线弹性材料的广义胡克定律的一般形式为
将上式代入各向同性材料的广义胡克定律,得到
τ yz ⎫ 1 ε x = [σ x − ν (σ y + σ z )], γ yz = ⎪ E G ⎪ τ ⎪ 1 ε y = [σ y − ν (σ x + σ z )], γ xz = xz ⎬ E G⎪ τ xy ⎪ 1 ε z = [σ z − ν (σ x + σ y )], γ xy = ⎪ E G⎭
化简可得 即
E sij = ε ij − ε mδ ij ) ( 1+ v
sij = 2Geij
σ m = 3Kε m
上式即为广义胡克定律的偏量表达式 由于存在关系式 sii = 0,上式需要补充 σ m = 3Kε m ,才 是完整的广义胡克定律的偏量表达式。

弹塑性力学第四章

弹塑性力学第四章

若通过物体每一点可作这
样的轴(如x3轴),在此轴 成垂直的平面内,所有射
线方向的弹性性质都是相
同的,称这个平面为各向
同性面,如地层属于此类。
[C]中独立系数为5个:
x1
x3 x2’
x2Fra bibliotek各向同性面
x1’
2019/10/18
28
§4-2 线弹性体的本构关系
2.4 横观各向同性材料——弹性体对一个轴对称
ij
2019/10/18
12
§4-1 应变能、应变能密度与弹性材料的
本构关系
W ijij
比较上面二式,得:
W

W
ij
ij
ij

W
ij

fij ( kl )——本构关系(方程)
适用于各种弹性情况(线性、非线性)
2019/10/18
13
§4-1 应变能、应变能密度与弹性材料的 本构关系
本构关系
时刻达到 应变增量
t
+t:位移有增量 u

ijeie j

uiei
外力功增量 :


A V f udV SF udS
2019/10/18
8
§4-1 应变能、应变能密度与弹性材料的
本构关系


:函数增量

A V f udV SF udS
WdV
V
S Fi uidS S (ij ui )njdS V ( ji ui ), j dV
代入外力功增量
2019/10/18
10
§4-1 应变能、应变能密度与弹性材料的 本构关系

弹塑性力学 弹性与塑性力学的解题方法

弹塑性力学  弹性与塑性力学的解题方法
既能找出变形体中各点的应力分量,也能找出相 对的位移增量分量。
➢主应力法
➢ 主应力法是金属塑性成形中所经常使用的 一种简化方法。在分析问题时,认为剪应 力对材料的屈服影响很小,因而在屈服条 件中略去剪应力,这时平面应变问题中的 屈服条件可简化为
x - y = 2k
➢ 在分析中,还假设应力在一个方向的分布 是均匀的。因此在计算中,数学形式比较 简便。
➢ 平面应力问题,平面应变问题,结果转换 ➢ 平面问题的平衡方程(无体力)
x
xy
0
x y
yx x
y
y
0
➢ 艾里(Airy)应力函数
x
2
y 2
,
y
2
x 2
,
xy
2
xy
➢ 用应力函数表示的物理方程
➢ 变形协调条件
x
1 2G(1
)
2
y 2
2
x 2
y
2G
1 (1
)
2
x 2
几种应力函数所对应的边界条件
➢ = ax + by + c 矩形弹性体处于无应力状态,
即在边界上无面力。
➢ = ax2 + bxy + cy2 矩形弹性体受双向荷载。
a > 0, c > 0, b = 0
a = c = 0, b 0
➢ = ax3 + bx2y + cxy2 + dy3 复杂应力状态, 当a = c = b = 0, d 0时,xy = 6dy,为纯弯
2
y 2
xy
1 G
2
xy
4 x
y 4
4 y
x 4

4-弹塑性力学-物理方程与边界条件

4-弹塑性力学-物理方程与边界条件
பைடு நூலகம்

第四章 物理方程与边界条件
求和约定(The arrnagement for summation) 求和约定
例3 将y1 = εijδij 按求和约定展开. 和y2 = σijεijδij (i, j =1,2,3) 按求和约定展开.
i 为克氏符号, 为克氏符号,= j, δ ij = 1; i ≠ j, δ ij = 0.
1 E
1 E 其中E, , 分别为各向同性材料的弹性模量, 其中 ,G, 分别为各向同性材料的弹性模量,泊松比和剪切弹性 模量,并有: 模量,并有: E
ε z = [σ z (σ x + σ y )],
G =
1 1 ε xy = γ xy = τ xy 2 2G 1 1 ε yz = γ yz = τ yz 2 2G 1 1 ε zx = γ zx = τ zx 2 2G
2 (1 + )
可见,各向同性材料只有两个独立的弹性常数. 可见,各向同性材料只有两个独立的弹性常数.
第四章 物理方程与边界条件
思考题: 思考题:
1. 如何将三维广义虎克定律写成应力对应变的函数? 如何将三维广义虎克定律写成应力对应变的函数? 2.何将广义虎克定律写成矩阵的形式? .何将广义虎克定律写成矩阵的形式? ) {σ } = C {ε },或{ε } = S {σ }(i,j,k,l = x,y,z)
ij ijkl kl ij ijkl kl
其中 Cijkl 称为刚度矩阵,Sijkl 称为柔度矩阵. 称为刚度矩阵, 称为柔度矩阵.
第四章 物理方程与边界条件
体积应变
由广义虎克定律
三式相加,则有 三式相加 则有
1 [σ x (σ y + σ z )] E 1 ε y = [σ y (σ z + σ x )] E 1 ε z = [σ z (σ x + σ y )] E

弹塑性力学第四章

弹塑性力学第四章

y c21 x c22 y c23 z z c31 x c32 y c33 z
x 对 x 的影响应与 y 对 y 及 z 对 z 的影响相同,即 c11 c22 c33
y , z 对 x 的影响应相同,即 同理,
因而有:
c12 c13
c11 c22 c33 a c12 c21 c13 c31 c23 c23 b
对于应变主轴,弹性常数只有两个。
广义胡克定律
各向异性弹性体独立的常数有21个。 系数矩阵对称 Cmn Cnm 广 西 工 具有一个弹性对称面的各向异性弹性体的独立常数有13个。 学 院
广义胡克定律
x x , y y , z z , xy xy , yz yz , xz xz
广 西 工 学 院 汽 车 工 程 系
x x , y y , z z , xy xy , yz yz , xz xz
广 西 工 学 院
x 汽 x 车 工 2 2 2 x l11 y l12 z l13 2 xy l11l12 yz l12l13 xz l11l13 x x 程 系 ,
y y z z
z
y
y
z
ij liil jj ij
车 工 程 系
弹性对称面:如果物体内存在这样一个平面,和该平面对称的 汽 两个方向都具有相同的弹性,则该面称为物体的弹性对称面。 弹性主方向:垂直于弹性对称面的方向 具有三个弹性对称面的各向异性弹性体(正交各向异性)的 独立常数有9个。
广义胡克定律
证明:正交各向异性弹性体的独立常数有9个。 证明:取弹性主轴为三个坐标轴,将z轴旋转180度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x y
1 E
[
x
1 E
[
y
( y ( x
z )]
z )]
z
1 E
[
z
( x
y )]
xy
xy
G
(4-4)
yz
yz
G
zx
zx
G
9
弹性与塑性 力学基础
第四章 广义胡克定律和弹性力学解题的 基本方程与方法
§4-1 广义胡克定律
4.1.4 广义胡克定律的不同形式 ➢ 将式(4-4)的前三式左右两边相加后,则有
xy
xy
G
式中,G E
为剪切弹性模量
2(1 )
纯剪应力状态
8
弹性与塑性 力学基础
第四章 广义胡克定律和弹性力学解题的 基本方程与方法
§4-1 广义胡克定律
4.1.3 广义胡克定律
➢ 用相同的方法,可以导 出三维应力状态下的各
向同性均匀材料的广义 胡克定律,其形式为:
(各向同性均匀材料的 含义,即材料内部各处 的不同方向具有相同的 μ、E、G 值)
第四章 广义胡克定律和弹性力学解题的 基本方程与方法
§4-1 广义胡克定律
4.1.4 广义胡克定律的不同形式 ➢ 引入以上表达式后,广义胡克定律又可写为:
x
1 E
[(1
) x
],
xy
1 G
xy
y
1 E
[(1
) y
],
yz
1 G
yz
(4-6)
z
1 [(1 E
) z
],
zx
1 G
zx
x
式中: ex=x- 0 为应变偏量分量, x x m 为应力偏量分量。
用相同的方法,可得:
ey
1
E
y
1 2G
y
ez
1
E
z
1 2G
z
12
弹性与塑性 力学基础
第四章 广义胡克定律和弹性力学解题的 基本方程与方法
§4-1 广义胡克定律
4.1.4 广义胡克定律的不同形式
ex
1
E
x
1 2G
11
弹性与塑性 力学基础
第四章 广义胡克定律和弹性力学解题的 基本方程与方法
§4-1 广义胡克定律
4.1.4 广义胡克定律的不同形式 ➢ 由式(4-6)及式(4-5),可得
x
0
1 [(1 E
) x
]
1
2
E
m
1 E
[(1
)
x
3 m ]
1 2
E
m
1
E
(
x
m)
即:
ex
1
E
x
1 2G
x
ey
1
E
y
1 2G
y
ez
1
E
z
1 2G
z
➢ 因此,弹性阶段应力莫尔圆和应变莫尔圆是成比例的,因为:
ex ey ez xy yz zx 1 x y z 2 xy 2 yz 2 zx 2G
(4-7)
➢ 弹性阶段应力主轴和应变主轴重合(注意:应力或应变球张量对
应力主轴或应变主轴无影响)
4.3.1 边界问题类型 4.3.3 应力边界问题
4.1.2 胡克定律 4.1.4 广义胡克定律
4.2.2 平衡方程 4.2.4 本构方程
4.3.2 位移边界问题 4.3.4 混合边界问题
2
§4-4 按位移求解弹性力学问题 §4-5 按应力求解弹性力学问题 §4-6 平面问题和应力函数 §4-7 圣维南原理 §4-8 叠加原理 §4-9 悬臂梁受均匀分布载荷作用 §4-10 简支梁受均匀分布载荷作用 §4-11 具有小圆孔的平板的均匀拉伸 §4-12 位错引起的应力与弹性应变能
x y
x
E
y
E
y
E
x
E
1 E
(
x
1 E
(
y
y ) (4-3)
x )
7
弹性与塑性 力学基础
第四章 广义胡克定律和弹性力学解题的 基本方程与方法
§4-1 广义胡克定律
2、平面应力状态:
在x和y作用下,z方向的应变
εz= -μ(x+y)/E
在剪应力作用下, X-Y 平面内的剪 应变与纯剪时相同,即:
3
弹性与塑性 力学基础
第四章 广义胡克定律和弹性力学解题的 基本方程与方法
§4-1 广义胡克定律
4.1.1 问题的提出 ➢ 弹性力学问题中,物体的受力与变形情况,需用15个变量来 描述。即:6个应力分量,3个位移分量,6个应变分量。
➢ 已学的基本方程-9个。包括:变形体的平衡微分方程(微元 体的力平衡)3个,几何方程(应变-位移关系)6个。
拉伸或压缩方向:x =·x 与拉伸或压缩垂直的方向: y = z=-μ·x
式中: -弹性模量, μ-泊松比
5
弹性与塑性 力学基础
第四章 广义胡克定律和弹性力学解题的 基本方程与方法
§4-1 广义胡克定律
2、平面应力状态:
➢ 对于各向同性的均匀材料,根据实验结果,在小变形的情况下, 正应力和剪应变没有关系,而剪应力只与剪应变有关,且应力的 叠加原理是适用的。
平面双向拉(压)应力
纯剪应力状态
6
弹性与塑性 力学基础
第四章 广义胡克定律和弹性力学解题的 基本方程与方法
§4-1 广义胡克定律


2、平面应力状态:


由于应力x的作用:

x方向应变为 x
的 胡
E

y方向应变为 x
定 律
E
由于应力y的作用: y方向应变为 y
E
x方向应变为 y
E
同时有x和y作用在x方向及y方向的应变为
Hale Waihona Puke xyz1 E
[(
x
y
z ) 2( x
y
z )]
1 2
E
(
x
y
z)
如令
x y z 30,x y z 3m
则上式可写为
1 2
E

0
1
2
E
m
(4-5)
(4-5)表明:弹性变形时,体积变化与三个正应力之和即应力张量的
球张量成正比,而与应力偏量无关。
10
弹性与塑性 力学基础
➢ 未知变量的个数(15)多于方程数(9)→必须研究受力物体 的应力与应变之间的关系→物理方程。对于弹性问题,即广义 胡克定律。
4
弹性与塑性 力学基础
第四章 广义胡克定律和弹性力学解题的 基本方程与方法
§4-1 广义胡克定律
4.1.2 胡克定律
1、单向拉伸(压缩):
➢ 材料的应变小于弹性比例极限时,应力和应变之间的关系是线弹 性的,两者之间满足胡克定律。其表达式如下:
13
弹性与塑性 力学基础
第四章 广义胡克定律和弹性力学解题的 基本方程与方法
§4-1 广义胡克定律
4.1.3 广义胡克定律的不同形式
➢ 各向同性体的胡克定律(4-4)是以应力表示应变,在求解某些问题
时,有时需要用应变表示应力关系。将式(4-4)第一式作如下改变
x
1 E
[ x
弹性与塑性力学基础
第四章
广义胡克定律和弹性力学解题 的基本方程与方法
1
弹性与塑性 力学基础
第四章 广义胡克定律和弹性力学解题的 基本方程与方法
§4-1 广义胡克定律
4.1.1 应力与应变关系的提出 4.1.3 泊松比
§4-2 基本方程
4.2.1 弹性阶段本构关系 4.2.3 几何方程
§4-3 边界条件
相关文档
最新文档