弹性与塑性力学基础 第1章 应力分析

合集下载

000弹塑性力学-应力理论

000弹塑性力学-应力理论
y 32
zl323
2 xyl31l32
2 yzl32l33
2 zxl33l31
(2-4)
x'y' xl11l21 yl12l22 zl13l23 xy (l11l22 l12l21) yz (l12l23 l13l22 ) zx (l13l21 l11l23 ) y'z' xl21l31 yl22l32 zl23l33 xy (l21l32 l22l31) yz (l22l33 l23l32 ) zx (l23l31 l21l33) z'x' xl31l11 yl32l12 zl33l13 xy (l31l12 l32l11) yz (l32l13 l33l12 ) zx (l33l11 l31l13 )
砂土 粘 ( 半 土 透 水 )
毛细张力力 总应力
中和应力 有效应力
px
τ xz
τ O yz τ zy
τ zx
σz
n x'
σx
py
A
x
z'
B
y
假定不计体力,且斜截面上的外法线n 的余弦分别为:
cos(n, x) l1
cos(n, y) l2
(a)
cos(n, z) l3
若令斜截面ABC的面积为1,则三角形 OBC、OAC、OAB的面积分别为:
第一章 概述
1. 弹塑性力学的任务 2. 基本假设 3. 发展概况 4. 主要内容 5. 主要参考文献
第二章 应力理论
§2-1 应力的概念
若一物体受到外力 P1、P2…….Pn 的作用,它必然产生变形,也即其形 状或尺寸会发生变化,同时物体内各 部分之间将产生相互平衡的内力(附 加内力)。现假想用一个平面K将物 体分成两部分,如图2-1所示。显然 这两部分将通过K截面有分布内力的 相互作用。

(完整)弹塑性力学简答题

(完整)弹塑性力学简答题

弹塑性力学简答题第一章 应力1、 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。

2、应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。

3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系?相同。

110220330S S S σσσσσσ=+=+=+.4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法?不规则,内部受力不一样。

5、解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。

连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。

6、Pie 平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。

固体力学解答必须满足的三个条件是什么?可否忽略其中一个?第二章 应变1、从数学和物理的不同角度,阐述相容方程的意义。

从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值.从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入",即产生不连续.2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。

应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关.3、应力状态是否可以位于加载面外?为什么?不可以.保证位移单值连续。

连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续.4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。

塑性力学 ppt课件

塑性力学 ppt课件

或者
l l n ij i j S n ij l i 2 S n n
2 n
(求和约定的缩写形式)
一点的应力状态及应力张量


一点的应力状态:是指通过变形体内某点的单元体所有 截面上的应力的有无、大小、方向等情况。 一点的应力状态的描述: 数值表达:x=50MPa,xz=35MPa 图示表达:在单元体的三个正交面上标出(如图 1-2) 张量表达: (i,j=x,y,z) x xy xz
1 2 2 3 3 1
x
I3 . .
xy xz y yz . z
23 1
讨论:
1. 2. 3. 4. 5. 6. 可以证明,在应力空间,主应力平面是存在的; 三个主平面是相互正交的; 三个主应力均为实根,不可能为虚根; 应力特征方程的解是唯一的; 对于给定的应力状态,应力不变量也具有唯一性; 应力第一不变量I1反映变形体体积变形的剧烈程 度,与塑性变形无关;I3也与塑性变形无关; I2与塑性 变形有关。 7. 应力不变量不随坐标而改变,是点的确定性的判据。
弹性、塑性变形的力学特征




可逆性:弹性变形——可逆;塑性变形——不可逆 -关系:弹性变形——线性;塑性变形——非线性 与加载路径的关系:弹性——无关;塑性——有关 对组织和性能的影响:弹性变形——无影响;塑性变形—— 影响大(加工硬化、晶粒细化、位错密度增加、形成织构等) 变形机理:弹性变形——原子间距的变化; 塑性变形——位错运动为主 弹塑性共存:整体变形中包含弹性变形和塑性变形;塑性变 形的发生必先经历弹性变形;在材料加工过程中,工件的塑 性变形与工模具的弹性变形共存。
金属塑性加工原理

工程弹塑性力学题库及答案

工程弹塑性力学题库及答案

(2)如将该曲线表示成
解:(1)由 在
处连续,有
形式,试给出 的表达式。
(a)
由在
处连续,有
(a)、(b)两式相除,有
由(a)式,有
(2)取
形式时,




:应力相等,有
解出得,
(代入 值)
(b) (c) (d)
(代入 值) 5.6已知简单拉伸时的应力-应变曲线
如图5-1所示,并表示如下:
问当采用刚塑性模型是,应力-应变曲线应如何表 示?
解:1) OD 边:
GD 边:
沿
线,

2)
沿 OB 线,

8.7 Mises 线性等强化材料,在平面应变( 试导出用表示的强化规律和本构关系。
解:当 时,在弹性阶段有
)和泊松比 条件下,

平均应力 因此在弹性阶段有
,进入塑性后有
对平均应变
刚进入塑性时
。由上式导出
。因此进入塑性
后还满足
(2)当 = 时,继续加载,使 解:1)开始屈服时
,求此时的 、 、 。 ,代入 Mises 屈服准则


2)屈服后对应的塑性应变增量为
由 及屈服条件的微分形式
, 式子得到答案结果。
7.9 在如下两种情况下,试求塑性应变增量的比。
(1)单向拉伸应力状态,

,联列可得 ,代入
(2)纯剪力状态,

解:(1)单向拉伸应力状态

中:
沿
线,
中: ,
中:
,


, 情况二见图(1),与①一样
所以
8.6 已知具有尖角为 的楔体,在外力 P 的作用下,插入具有相同角度的 V 形缺口 内,试分别按如下两中情况画出滑移线场并求出两种情况的极限荷载。 1)、楔体与 V 形缺口之间完全光滑;2)、楔体与 V 形缺口接触处因摩擦作用其剪应 力为 k。

弹塑性力学第01章

弹塑性力学第01章

研究完全弹性体,如板,三维物体等。因此问题分析只能从 微分单元体入手,分析单元体的平衡、变形和应力应变关系,
因此问题综合分析的结果是满足一定边界条件的偏微分方程。
也就是说,问题的基本方程是偏微分方程的边值问题。而偏 微分方程边值问题,在数学上求解困难重重,除了少数特殊
边界问题,一般弹性体问题很难得到解答。
广义变分原理,环壳解析解和汉字宏观字形编码(钱码)等。他早期提出的“浅壳大
扰度方程”被国际学术界誉为“钱伟长方程”;在圆薄板大扰度问题上,他提出的以
中心扰度为小参数的摄动法,在国际上称“钱伟长法”。有关圆薄板大扰度问题的工
作,在1955年获中国科学院颁发的国家科学奖二等奖,广义变分原理方面的工作在 1982年获国家自然科学奖二等奖,此外还有多项科研成果分别获北京市、上海市科 学技术进步奖。最近,钱伟长教授关于非克希霍夫--拉夫假设板壳理论的工作,是对 固体力学基础理论的新贡献。1997年获何梁何利基金“科学与技术成就奖”。
▪ 近似计算方法(数值计算方法)的产生和应用
学习目的
▪ 弹性力学作为一门基础技术学科,是近 代工程技术的必要基础之一。在现代工程结 构分析,特别是航空、航天、机械、土建和 水利工程等大型结构的设计中,广泛应用着 弹性力学的基本公式和结论。弹性力学又是 一门基础理论学科,它的研究方法被应用于 其他学科。近年来,科技界将弹性力学的研 究方法用于生物力学和地质力学等边缘学科 的研究中。
▪ 钱伟长教授是我国著名的科学家、教育家、社会活动家,为我国的教育事业作出 了重要的贡献。
▪ 钱学森,著名科学家。我国 近代力学事业的奠基人之一。
在空气动力学、航空工程、
喷气推进、工程控制论、物
理力学等技术科学领域做出

弹塑性力学第一章

弹塑性力学第一章
ij 0
当i 当i
jj时时(i,
j
1,2,3)
2019/9/9
27
§1-5 笛卡尔坐标系下的矢量、张 量基本知识
由 ij 定义9个
元素组成矩 阵为单位阵:
11 21 31
12 22 32
13 1

23


0
33 0
一个下标。
x3


3
u u1e1 u2e2 u3e3 ui ei
i 1
r
e3 x2
x1 e1 e2
2019/9/9
21
§1-5 笛卡尔坐标系下的矢量、 张量基本知识
3. 张量:有大小,并具有多重方向性的量
如应力 、应变 ,张量的符号记法。


3 3
同样位移矢量u,用ui表示位移,ij 表示 应力 张量。
2019/9/9
25
§1-5 笛卡尔坐标系下的矢量、 张量基本知识
x a y i
ij
j


x1 x2

a11 y1 a21 y1

a12 y2 a22 y2
a13 y3 a23 y3

x3

a31 y1





2019/9/9
7
§1-1 弹塑性力学的任务和对象
如果当外因去掉,变形体未能恢复原状并 存在永久变形,变形固体在外因作用时已进
入塑性阶段, 曲线不是单值函数。

当然变形体常遇到在物 体某一局部处于弹性、而另 一区域处于塑性状态,弹塑
性交织在一起 。
2019/9/9

弹塑性力学课件-塑性基本概念

弹塑性力学课件-塑性基本概念

(2)随动强化模型
由于Bauschinger效应减小了反方向加载时的屈服应力,认为拉伸屈
服应力和压缩屈服应力(的代数值)之差,即弹性响应的范围始终是不变
的。其表达式可写为
| ˆ( p ) | s 其中,ˆ ( p ) 背应力(back stress)是塑性应变 p的单调递增函数。相
塑性基本概念
1.基本实验 2.基本假设 3.简化模型 4.应力分析
1.基本实验
1.1材料简单拉压实验
弹性与塑性的根本区别不在于应力-应 变关系是否线性,而在于卸载后变形 是否可恢复
没有明显屈服平台的应力应变曲线 有明显屈服阶段的拉伸曲线(低碳钢类) (铝合金类)
卸载后再加载
经过屈服阶段后,材料又恢复了抵抗变形的能力。 在第二次加载过程中,弹性系数仍保持不变,但 弹性极限及屈服极限有升高现象,后继屈服应力 升高程度与塑性变形的历史有关,决定于前面塑 性变形的程度。这种现象称为材料的应变强化。
(1)等向(各向同性)强化模型
认为拉伸时的强化屈服应力和压缩时的强化屈服应力(绝对值)相等,也
就是 ' ''
Bauschinger效应。
,即在拉伸和压缩两个方向对称强化。不考虑
( )
是反映塑性变形历史的参数。例如可取为累积塑性应变: d p
或取为塑性功 W P d p
(2)静水压力对塑性变形的影响 材料的塑性变形与静水压力无关。对钢试件做了有静水压力的拉伸试验
,并同无静水压力的拉伸试验对比发现,静水压力对初始屈服应力影响很小 ,可以忽略不计。
因而,对钢等金属材料,可以认为塑性变形不受静水压力的影响。但对 于铸铁、岩石、土壤等内部较疏松的材料,静水压力对屈服应力和塑性变形 的大小都有显著的影响,不能忽略。

工程塑性力学(第一章)

工程塑性力学(第一章)
σ σ
σ′
σ′
σs
σs
O
εp ε
εe
ε
O
εp ε
εe
ε
图 1-2
卸载和再加载
σ ′′
图 1-3 卸载后反向加载到屈服
1.2.2 没有明显屈服阶段的拉伸曲线(铝合金类)
屈服极限(应力)规定:0.2%塑性应变对应的应力, σ 0.2
σ σb σ0.2
σ′
O
0.2%
ε
σ ′′
图 1-4 没有明显屈服平台的应力应变曲线
1.5.2 卸载
从介于 Ps 和 Pe 之间的某一值 P * 卸载 ΔP ,服从弹性规律。应力应变的改变 量为
Δσ 1 = Δσ 3 =
Δε 1 = Δε 3 =
σ s ⎛ ΔP ⎞
⎛ ΔP ⎞ ⎜ ⎟ , Δσ 2 = σ s ⎜ ⎜ ⎟ ⎜ P ⎟ ⎟ 2 ⎝ Pe ⎠ ⎝ e ⎠
(1-20) (1-21)
σ
σs
E’
E
εs
图 1-7
ε
幂强化模型
σ = Aε n , 0 ≤ n ≤ 1
(1-3)
σ
n =1
A
n = 1/ 2 n = 1/ 3 n=0
1
ε
图 1-8
Ramberg-Osgood 模型
σ /σ0
ε / ε 0 = σ / σ 0 + (σ / σ 0 ) n
3 7
(1-4)
1
n = 0 n =1 n=2 n=5 n=∞
位移:
(1-18)
δ y = ε 2 ⋅ l = 2ε1l =

2σ 1 l E
δy P = (1 + 2 ) − 2 δe Pe
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


1 1 2 2 1 2 1 2 2 4
2
(1-7)
应力圆:任一截面正应力与剪应力关系图 确定任一截面上 的 和。 坐标系: - 圆 半 应力圆 心: 轴上点 径:
1 ( 1 2 ) 2
1 ( 1 2 ) 2
单 向 拉 伸 时 轴 与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.2 应力的方向性
为了便于研究,通常将任意方向
截面上的应力分解为两个分量:
σ-垂直于截面的分量(正应力) τ-平行于截面的分量(剪应力)
即:
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
1 cos2 2 sin 2
(1-4)
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系 沿a-a方向,力的平衡方程为:
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系
任一截面上 的 和 确定方法:
取任一截面上法向 和 的值。第一主应力截面法向夹角的二倍 2 ,由 轴逆时针旋转,应力圆上对应于2点的轴上的 和
弹性与塑性力学基础
哈工大(威海) 材料学院
第 一 章
应 力 分 析
弹性与塑性 力 学 基 础
第一章 应力分析
1.1.1 应力定义
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.2 应力的方向性
1.1.3 平面应力状态应力关系
§1-2 三维应力状态分析
1.2.1 任意倾斜面上的应力分量表示方法 1.2.2 任意倾斜面上的正应力、全应力S、剪应力表示方法
显然,有:
P / A0 cos2 ( P / A0 ) cos sin
单 向 拉 伸 时 轴 向 应 力 值 随 截 面 方 位 变 化
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系
ΔP与ΔA比值的极限,即
lim P / A
A 0
(1-1)
当物体受外力P1、P2、P3、…作用时,产生与诸外力相平衡的内力。
作用于变形体 中某一微元面 积的内力ΔP
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.2 应力的方向性
§1-3 三维应力状态的主应力及应力莫尔圆
1.3.1 主方向、主平面、主应力的概念 1.3.2 应力不变量的概念
1.3.3 任意方向截面应力的主应力的表达
1.3.4 三维应力状态应力莫尔圆
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-4 主剪应力 §1-5 正八面体剪应力
边界同时存
在正应力、 剪应力时斜 截面受力图
沿BC面的法线方向力的平衡方程为:
A ( x A cos ) cos ( y A sin )sin ( xy A cos )sin ( xy A sin ) cos
沿BC面的切线方向力的平衡方程为:
边界只存在正应力情况
平面应力状态如图所示, 假设z=0。x-1 ,y-2 ,
任意截面上BC:(, )
设截面BC的面积A, AC面积为Acos,
AB的面积为Asin 。
沿BC面的法线方向力的平衡方程为:
A ( 1 A cos ) cos ( 2 A sin ) sin
A ( 1 A cos )sin ( 2 A sin ) cos
即:
( 1 2 ) sin cos
(1-5)
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系
由式(1-4)和(1-5),将 消去后,可得:
的值。
最大剪应力确定方法:出现于 2

2
或 2
出现在图中的 1 ( 1 2 ) 2 =0 2 情况下应力圆:应力圆将切于上,最大剪应力值等于1
的截面上,最大剪应力的值为 4
3 的截面上,即 2

2 1= 2 =0 的情况下:应力圆将变成一个点,此时在任一截面上
A ( x A cos )sin ( y A sin )cos ( xy A sin )sin ( xy A cos )cos
弹性与塑性 力 学 基 础
§1-6 应力张量及应力偏量
1.6.1 张量概念 1.6.2 应力张量概念 1.6.3 应力张量球张量与偏张量 1.6.4 应变速率张量
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.1 应力定义
应力是指当物体中一微元面积M趋近于零时,作用在该面积上的内力
应力与方向有关,例如简单拉伸。
垂直于轴线平面上的应力
0 P / A0
式中:P—轴向力;
(1-2)
A0——垂直于轴线的横截面面积。 而当所截平面的法线与轴线成α角时,
由于斜面的面积增大(由A0→A0/cosα) ,
相应的轴向应力为
1 P / A0 cos
(1-3)
随着α增大,截平面越来越倾斜, 应力也就越来越小。
将有 =0。
1

弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系
边界同时存在正应力、剪应力情况
如图所示, x-x、 ;y-y、 任意截面上BC:( ,)
设截面BC的面积A,
AC面积为Acos , AB的面积为Asin 。
相关文档
最新文档