《数学分析》(604)考研大纲
2024数学三考研大纲

2024数学三考研大纲第一部分:基本概念和基本规则1.数论基本概念(1)整数、自然数、有理数和无理数的概念和性质;(2)素数、合数、互质数的定义和性质;(3)数论中的基本定理:费马小定理、中国剩余定理等。
2.代数基本概念(1)集合、集合的运算和集合的性质;(2)函数的概念、函数的性质和函数的运算;(3)多项式的概念、多项式的系数与次数、多项式的运算和多项式的因式分解;(4)方程和不等式的基本性质;(5)向量的概念、向量的线性运算和向量的数量积与向量积。
3.几何基本概念(1)点、线、面的性质;(2)平面几何和立体几何的基本概念和性质;(3)圆的基本性质和相关定理;(4)三角形、四边形、多边形的基本性质和相关定理;(5)坐标系和坐标变换的基本概念。
4.微积分基本概念(1)极限的概念和性质;(2)导数的定义、性质和运算法则;(3)不定积分的概念、性质和运算法则;(4)定积分的概念、性质和运算法则;(5)微分方程的基本概念和解法。
第二部分:数理方法和数学应用1.数论方法和应用(1)递推关系与生成函数;(2)整数的分解和数论函数的应用;(3)同余方程和同余定理的应用;(4)素数分布和素数定理。
2.代数方法和应用(1)行列式的性质和应用;(2)矩阵的基本性质和运算法则;(3)线性方程组的解法和相关定理;(4)群、环、域的概念和基本性质;(5)多项式方程的根与系数的关系。
3.几何方法和应用(1)几何图形的对称性和相似性;(2)几何证明的方法和技巧;(3)三角函数和相关三角恒等式的证明和应用;(4)几何体的体积和表面积的计算方法。
4.微积分方法和应用(1)函数的极值和最值的求解;(2)曲线的长度、曲率和弧长的计算方法;(3)定积分在几何、物理、经济等领域的应用。
第三部分:数学理论和数学研究1.数论的理论和研究(1)数论中的经典问题和研究方向;(2)数论在密码学和信息安全中的应用;(3)数论在算法设计和计算复杂性理论中的应用。
《数学分析》考试大纲

《数学分析》考试大纲一、课程名称:数学分析二、适用专业: 数学与应用数学三、考试方法:闭卷考试四、考试时间:100分钟五、试卷结构:总分:100分,选择题15分,填空题15分,计算题40分,证明题30分。
六、参考书目:1、华东师范大学数学系编著,《数学分析》(上、下册),高等教育出版社,2010年第4版。
2、中国科学技术大学常庚哲史济怀编著,《数学分析教程》(上、下册),高等教育出版社,2003年第1版。
七、考试的基本要求:数学分析是数学与应用数学专业专升本入学考试中专业课考试内容,考生应理解和掌握《数学分析》中函数、极限、连续、微分学、积分学和级数的基本概念、基本理论、基本方法。
应具有抽象思维能力、逻辑推理能力、运算能力和空间想象能力,能运用所学知识正确拙推理证明,准确、简捷地计算。
能综合运用数学分析中的基本理论、基本方法分析和解决实际问题。
八、考试范围第一章实数集与函数(一)考核内容实数及其性质,绝对值与不等式。
区间与邻域,有界集与确界原理。
函数概念,函数的表示法。
函数的四则运算,复合函数,反函数,初等函数。
具有某些特性的函数:有界函数、单调函数、奇函数与偶函数、周期函数。
(二)考核知识点1、实数:实数的概念,实数的性质,绝对值与不等式;2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。
(三)考核要求1、了解实数域及性质;2、掌握几种不等式及应用;3、熟练掌握数域,上确界,下确界,确界原理;4、牢固掌握函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
第二章数列极限(一)考核内容数列。
数列极限的定义,无穷小数列。
收敛数列性质:唯一性、有界性、保号性、不等式性质、迫敛性、四则运算法则。
子列及子列定理。
2024数学三考研大纲

2024数学三考研大纲第一部分:数学分析1.实数与实数的基本性质1.1实数的完备性1.2实数序列的性质1.3实数级数的收敛性与发散性2.极限与连续2.1极限的定义与性质2.2函数的极限与连续2.3一元函数的微分学3.不定积分与定积分3.1不定积分的概念与性质3.2定积分的概念与性质3.3定积分的计算方法4.函数列与函数项级数4.1函数列的收敛性4.2函数项级数的收敛性4.3函数项级数的一致收敛性5.幂级数与傅里叶级数5.1幂级数的收敛半径与收敛域5.2幂级数的常用运算5.3傅里叶级数的性质与应用第二部分:代数与几何1.线性代数1.1实数向量空间与内积空间1.2矩阵与行列式1.3向量空间的基与维数2.线性方程组与矩阵的应用2.1线性方程组的基本概念与解法2.2矩阵的特征值与特征向量2.3矩阵的对角化与相似变换3.多元函数的微分学3.1多元函数的偏导数与全微分3.2多元函数的极值与条件极值3.3隐函数与参数方程的微分4.曲线积分与曲面积分4.1曲线积分的定义与性质4.2曲面积分的定义与性质4.3绿公式与高斯公式5.空间解析几何5.1空间中的直线与平面5.2空间曲线与曲面的方程5.3空间中的向量与坐标系第三部分:概率与统计1.随机事件与概率1.1随机事件的概念与性质1.2概率的基本概念与公理1.3概率的运算与应用2.随机变量与概率分布2.1随机变量的概念与分类2.2离散型随机变量的概率分布2.3连续型随机变量的概率密度函数3.随机变量的特征与分布3.1随机变量的数学期望与方差3.2常见离散型与连续型分布3.3多维随机变量的联合分布与边缘分布4.大数定律与中心极限定理4.1大数定律的概念与证明4.2中心极限定理的概念与应用4.3样本统计量的极限分布5.统计推断与假设检验5.1参数估计与区间估计5.2假设检验的基本原理5.3常用假设检验的方法与步骤第四部分:数学建模与应用1.数学建模的基本概念1.1数学建模的过程与方法1.2数学建模的评价标准与特点1.3数学建模在实际问题中的应用2.线性规划模型2.1线性规划问题的数学描述2.2单纯形法与对偶问题2.3整数线性规划问题与解法3.非线性规划模型3.1非线性规划的基本概念与性质3.2非线性规划的解法与应用3.3动态规划与整数规划问题4.数学建模实例分析4.1数学建模实例的选择与分析4.2实际问题的数学建模过程4.3数学建模结果的解释与应用5.模拟与优化算法5.1随机模拟与蒙特卡洛方法5.2优化算法的基本概念与分类5.3优化算法在数学建模中的应用结语数学三考研大纲是考生备战考研数学的重要参考资料,内容涵盖了数学分析、代数与几何、概率与统计、数学建模与应用等多个领域,全面系统地呈现了数学学科的基本知识与方法。
考研数学一大纲完整版

考研数学一大纲完整版一、线性代数部分1.1 矩阵与行列式•矩阵的定义和基本运算•线性方程组及其求解•行列式及其性质•特征值与特征向量1.2 向量空间•向量空间的概念和性质•子空间及其判定•基与维数1.3 线性变换•线性变换的定义与性质•线性变换的矩阵表示•线性变换的相似性二、概率统计部分2.1 随机事件与概率•随机试验与样本空间•随机事件及其概率•分类求概率法•条件概率与乘法定理2.2 随机变量与分布律•随机变量与分布函数•离散型随机变量及其概率分布•连续型随机变量及其概率密度函数•边缘分布和条件分布2.3 数理统计•抽样与抽样分布•参数估计与点估计•区间估计与假设检验•正态总体的统计推断三、高等代数部分3.1 线性方程组•线性方程组的解的存在唯一性•线性方程组的参数表示与齐次线性方程组•等价方程组与初等变换•向量方程组与矩阵方程3.2 线性空间•线性空间的概念与性质•子空间与线性子空间•基与维数•对偶空间与线性映射3.3 线性变换•线性变换的定义与性质•标准和矩阵表示•相似矩阵与对角化四、高等数学(第一册、第二册)部分4.1 极限与连续•数列极限•函数极限•连续与间断点•无穷小与无穷大4.2 导数与微分•函数的导数及其计算•高阶导数与导数的应用•微分与微分中值定理•函数的连续性4.3 积分与应用•不定积分和定积分•牛顿—莱布尼茨公式•反常积分•定积分的应用五、数学分析部分5.1 实数与数列函数•数列极限和函数极限•函数的连续性•实数的完备性与相关定理•紧致性与连续函数的性质5.2 导数与微分•函数的导数与微分•导数与函数的几何应用•函数的高阶导数•泰勒公式与函数的局部性质5.3 积分与应用•不定积分和定积分•回顾微积分基本公式•牛顿—莱布尼茨公式•表达式与变量替换法以上为考研数学一大纲的完整内容,包括线性代数、概率统计、高等代数、高等数学和数学分析的各个知识点。
通过学习这些内容,将有助于考生全面掌握数学知识,提高考试的综合能力。
硕士研究生入学考试大纲-601数学分析

全国硕士研究生入学统一考试数学专业《数学分析》考试大纲I 考查目标全国硕士研究生入学统一考试数学专业《数学分析》考试是为我校招收数学硕士生设置的具有选拔性质的考试科目。
其目的是科学、公平、有效地测试考生是否具备攻读数学专业硕士所必须的基本素质、一般能力和培养潜能,以利于选拔具有发展潜力的优秀人才入学,为数学学科及社会的发展培养具有良好职业道德、法制观念和国际视野、具有较强分析与解决问题能力的高层次、应用型、复合型的数学专业人才。
考试要求是测试考生掌握分析、表达与解决问题的一些基本能力和技能。
具体来说就是:要求考生理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
II 考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间180分钟。
二、答题方式答题方式为闭卷、笔试。
不得使用带有公式和文本存储功能的计算器。
三、试卷内容与题型结构一元函数微积分约占 60%,多元函数微积分约占 25%,无穷级数约占 20有以下三种题型:填空题或选择题(20%)、计算题(30%)、综合题(50%)III 考查内容1、极限和函数的连续性(1)熟练掌握数列极限与函数极限的概念;理解无穷小量、无穷大量的概念及基本性质。
(2)掌握极限的性质及四则运算法则,能够熟练运用迫敛性定理和两个重要极限。
(3)熟练掌握:区间套定理,确界存在定理,单调有界原理,聚点定理,有限覆盖定理,Cauchy收敛准则;并理解其相互关系。
(4)熟练掌握函数连续性的概念及相关的不连续点类型。
能够熟练地运用函数连续的四则运算与复合运算性质。
(5)熟练掌握闭区间上连续函数的基本性质:有界性定理、最值定理、介值定理,一致连续性。
(6)熟练掌握实数基本理论和性质,会用实数理论及性质表达和证明相关命题。
2、一元函数微分学(1)理解导数和微分的概念及其相互关系,理解导数的几何意义,理解函数可导性与连续性之间的关系。
考研数学一二三大纲详解教材分析

高等数学考研指定教材:同济大学数学系主编高等数学上下册第六版第一章函数与极限7天考小题学习内容复习知识点与对应习题大纲要求第一节:映射与函数一般章节函数的概念,常见的函数有界函数、奇函数与偶函数、单调函数、周期函数、复合函数、反函数、初等函数具体概念和形式.集合、映射不用看;双曲正弦,双曲余弦,双曲正切不用看习题1-1:4,5,6,7,8,9,13,15,16重点1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极第二节:数列的极限一般章节数列定义,数列极限的性质唯一性、有界性、保号性本节用极限定义证明极限的题目考纲不作要求,可不看,如P26例1,例2,例3,定理1,2,3的证明都不作要求,但要理解;定理4不用看习题1-2:1第三节:函数的极限一般章节函数极限的基本性质不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等 P33例4,例5例7不用做,定理2,3的证明不用看,定理4不用看习题1-3:1,2,3,4第四节:无穷大与无穷小重要无穷小与无穷大的定义,它们之间的关系,以及与极限的关系无穷小重要,无穷大了解例2不用看,定理2不用证明习题1-4:1,6第五节:极限的运算法则掌握极限的运算法则6个定理以及一些推论注意运算法则的前提条件是否各自极限存在定理1,2的证明理解,推论1,2,3,定理6的证明不用看P46例3,例4,P47例6习题1-5:1,2,3,4,5重点第六节:极限存在准则理解两个重要极限重要两个重要极限要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式,要会证明两个重要极限,函数极限的存在问题夹逼定理、单调有界数列必有极限,利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限准则1的证明理解,第一个重要极限的证明一定要会,另一个重要极限的证明不用看,柯西存在准则不用看P51例1习题1-6:1,2,4第七节:无穷小的比较重要无穷小阶的概念同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小,重要的等价无穷小尤其重要,一定要烂熟于心以及它们的重要性质和确定方法定理1,2的证明理解P57例1P58例5习题1-7:全做限.9.理解函数连续性的概念含左连续与右连续,会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质有界性、最大值和最小值定理、介值定理,并会应用这些性质.第八节:函数的连续性与间断点重要,基本必考小题函数的连续性,间断点的定义与分类第一类间断点与第二类间断点,判断函数的连续性连续性的四则运算法则,复合函数的连续性,反函数的连续性和间断点的类型;例1-例5习题1-8:1,2,3,4,5重点第九节:连续函数的运算与初等函数的连续性了解连续函数的运算与初等函数的连续性包括和,差,积,商的连续性,反函数与复合函数的连续性,初等函数的连续性定理3,4的证明不用看例4-例8 习题1-9:1,2,3,4,5,6重点第十节:闭区间上连续函数的性质重要,不单独考大题,但考大题特别是证明题会用到理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理零点定理对于证明根的存在是非常重要的一种方法.一致连续性不用看例1-例2习题1-10:1,2,3,5要会用5题的结论自我小结总复习题一:除了7,8,9以外均做,3,5,11,14重点本章测试题-检验自己是否对本章的复习合格合格成绩为80分以上,如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑;第二章导数与微分6天小题的必考章节学习内容复习知识点与对应习题大纲要求第一节: 导数的概念重要导数的定义、几何意义、物理意义数三不作要求,可不看,数三要知道导数的经济意义:边际与弹性,单侧与双侧可导的关系,可导与连续之间的关系非常重要,经常会出现在选择题中,函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导及其适用的情形,利用导数定义求极限. 会求平1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些面曲线的切线方程和法线方程.导数定义年年必考例1-例6习题2-1:3,4,5,6,7,8,11,15,16,17,18,19,重点20物理量,理解函数的可导性与连续性之间的关系.第二节:函数的求导法则考小题复合函数求导法、求初等函数的导数和多层复合函数的导数,由复合函数求导法则导出的微分法则,幂、指数函数求导法,反函数求导法,分段函数求导法基本求导法则与求导公式要非常熟定理1,3的证明不用看,例1,17不用做,定理2的证明理解,例6,7,8重点做习题2-2:除2,3,4,12不用做,其余全做,13,14重点做 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.第三节:高阶导数重要,考的可能性很大高阶导数和N阶导数的求法归纳法,分解法,用莱布尼兹法则用泰勒展开式求高阶导例1-例7 习题2-3:5,6,7,11不用做,其余全做,4,12重点做第四节:隐函数及由参数方程所确定的函数的导数考小题由参数方程确定的函数的求导法数三不用看,变限积分的求导法,隐函数的求导法相关变化率不用看例1-例10习题2-4:9,10,11,12均不用做,数三5,6,7,8也可以不做,其余全做,4重点做第五节:函数的微分考小题函数微分的定义,微分运算法则,微分几何意义微分在近似计算中的应用不用看,考纲不作要求例1-例6 习题2-5:5,6,7,8,9,10,11,12均不用做,其余全做自我小结总复习题二:4,10,15,16,17,18均不用做,其余全做,2,3,6,7,14重点做,数三不用做12,13第二章测试题第三章微分中值定理与导数的应用8天考大题难题经典章节学习内容复习知识点与对应习题大纲要求第一节:微分中值定理最重要,与中值定理应用有关的证明题微分中值定理及其应用费马定理及其几何意义,罗尔定理及其几何意义,拉格朗日定理及其几何意义、柯西定理及其几何意义四个定理要会证明,及其重要例1,习题3-1:除了13,15不用做,其余全部重点做1.理解并会用罗尔Rolle定理、拉格朗日Lagrange中值定理和泰勒Taylor定理,了解并会用柯西Cauchy中值定第二节:洛必达法则重要,基本必考洛比达法则及其应用洛比达法则要会证明,重要例1-例10,习题3-2:全做,1,3,4重点做理.2.掌握用洛必达法则求未定式极限的方法.3.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.4.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.5.了解曲率和曲率半径的概念,会计算曲率和曲率半径.第三节:泰勒公式掌握其应用泰勒中值定理,麦克劳林展开式可不看公式的证明例1-例3 习题3-3:8,9不用做,其余全做10123重点做第四节:函数的单调性与曲线的凹凸区间考小题求函数的单调性、凹凸性区间、极值点、拐点、渐近线选择题及大题会用到例1-例12习题3-4:3125,512,812,9135,102不用做,其余全做,3,4,5,6,13,15重点做第五节:函数极值与最大值最小值考小题为主函数的极值一个必要条件,两个充分条件,最大最小值问题.函数性的最值和应用性的最值问题,与最值问题有关的综合题例5,6,7不用看习题3-5:123698,9,10,11,12,13,14,15,16均不用做,其余全做第六节:函数图形的描绘重要简单了解利用导数作函数图形一般出选择题及判断图形题,对其中的渐进线和间断点要熟练掌握,一元函数的最值问题三种情形;例1-例3 习题3-6:2-5第七节:曲率数三不作要求,仅数一、数二要求曲率、曲率的计算公式,与曲率相关的问题弧微分、曲率中心计算公式、渐屈线、渐伸线不用看例1-例3,习题3-7:1-6第八节:方程近似解不用看自我小结总复习题三:数一、数二全做,数三15不用做;其中22,3,7,8,9,10,34,113,12,17,18,20重点做第三章测试题总结第四章不定积分7天重要,本章数二考大题可能性更大学习内容复习知识点与对应习题大纲要求第一节:不定积分的概念与原函数与不定积分的概念与基本性质它们各自的定义,之间的关系,求不定积分与求微分1.理解原函数概念,理解不定积分性质重要或导数的关系,基本的积分公式,原函数的存在性,原函数的几何意义和力学意义数三不作要求例1-例16 习题4-1:1,2,3,4,6的概念.2.掌握不定积分的基本公式,掌握不定积分换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.第二节:换元积分法重要,第二类换元积分法更为重要不定积分的换元积分法,第二类换元法例1-例27习题4-2:1,212389101325均不用做,其余全做第三节:分部积分法考研必考不定积分的分部积分法例1-例10 习题4-3:1-24第四节:有理函数积分重要有理函数积分法,可化为有理函数的积分, 例1-例8 习题4-4:1-24不定积分计算总复习题四:1-40第五节:积分表的使用不用看自我小结总结本章第五章定积分6天重要,考研必考学习内容复习知识点与对应习题大纲要求第一节:定积分的概念与性质理解定积分的概念与性质可积存在定理定积分的7个性质理解及熟练应用,性质7积分中值定理要会证明定积分近似计算不用看习题5-1:1,2,3,6,8,9,10均不用做,其余全做,5,11,12重点做1.理解原函数概念,理解定积分的概念.2.掌握定积分的基本公式,掌握定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解广义反常积分的概念,会计算广义反常积分.第二节:微积分基本公式重要微积分的基本公式积分上限函数及其导数极其重要,要会证明牛顿-莱布尼兹公式重要,要会证明例5不用做,例6极其重要,记住结论习题5-2:6124567,7,8均不用做,其余全做,2数三不做,92,10,11,12,13重点做第三节:定积分的换元积分法与分部积分法重要,分部积分法更为重要定积分的换元法与分部积分法例1-例10 例5,例6,例7,例12经典例题,记住结论习题5-3:1123612141516,71389不用做,其余全做,重点做147****2526,2,6,77101213第四节:反常积分考小题反常积分无界函数反常积分与无穷限反常积分例1-例5习题:5-4:全做,3题结论记住第五节:反常积分的审敛法不用看总复习题五:13,2345,15,16不用做,其余全做,重点做3,5,7,8,9,101238910,13,14,17自我小结总结本章第六章定积分的应用4天考小题为主学习内容复习知识点与对应习题大纲要求第一节:定积分的元素法理解定积分元素法 1. 掌握用定积分表达和计算一些几何量与物理量平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心等及函数的平均值等.第二节:定积分在几何学上的应用面积最重要一元函数积分学的几何应用求平面曲线的弧长与曲率仅数一看,求平面图形的面积,求旋转体的体积,求平行截面为已知的立体体积数三不作要求,求旋转面的面积定积分的几何应用相关计算定积分应用的一些计算习题6-2:数一全做;数二、数三21-30不用做第三节:定积分在物理学上的应用数三不用看,数一数二了解定积分的物理应用用定积分求引力,用定积分求液体静压力,用定积分求功;综合题目的求解;数三不用看,数一数二了解例1-例5 习题6-3:数一、数二做总复习题六:数一全做;数二6不用做;数三只做3,4,5自我小结总结本章第七章常微分方程 9天本章对数二相对重要,必考章节学习内容复习知识点与对应习题大纲要求第一节:微分方程基本概念了解微分方程及其阶、解、通解、初始条件和特解,例1、2、3、4,例2数三不用看习题7-1:134,224,32,423,51.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量第二节:可分离变量的微分方程理解可分离变量的微分方程的概念及其解法例1、2、3、4,例2,3,4数三不作要求习题7-2:1,2第三节:齐一阶齐次微分方程的形式及其解法次方程理解例2不用看,可化为齐次的方程不用看习题7-3:1,2代换解某些微分方程.4.会用降阶法解下列微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.第四节:一阶线性微分方程重要,熟记公式一阶线性微分方程、伯努利方程仅数一考,记住公式即可,例1,3,4,习题7-4:1,2,3,8仅数一做第五节:可降解的高阶微分方程仅数一、数二考,理解全微分方程会求全微分方程会用降阶法解下列微分方程:和,例1—6习题:7-5:数三不用做、数一数二只做1,2第六节:高阶线性微分方程理解线性微分方程解的结构重要微分方程的特解、通解二阶线性微分方程举例不用看;常数变易法不用看定理1,2,3,4重点看习题7-6:1,3,4第七节:常系数齐次线性微分方程最重要,考大题特征方程,微分方程通解中对应项例1,2,3,6,7例4,5不用做习题7-7:1,2第八节:常系数非齐次线性微分方程最重要,考大题会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程例1-4,例5不用看习题7-8:1,2,6重点做第九节:欧拉方程仅数一考,了解欧拉方程的通解习题7-9:数一只做5,8 第十节不用看自我小结总复习题十二:1124,22,313578,434,5,7,8,10其中8,10仅数一做第八章空间解析几何和向量代数4天仅数一考,考小题,了解学习内容复习知识点与对应习题大纲要求第一节:向量及其向量概念,向量的线性运算,空间直角坐标系,利用坐标作向量的线性运算,向量1.理解空间直角坐标系,理解向量的概念及其表示.线性运算的模、方向、投影例1-例2.掌握向量的运算线性运算、数量积、向量积、混合积,了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系平行、垂直、相交等解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程. 9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.第二节:数量积,向量积,混合积向量的数量积,向量的向量积例1-例7习题7-2:3,4,6,9,10第三节:曲面及其方程曲面方程旋转曲面、柱面、二次曲面;旋转轴为坐标轴的旋转曲面的方程,常用的二次曲面方程及其图形,空间曲线的参数方程和一般方程,空间曲线在坐标面上的投影曲线方程例1-例5 习题7-3:,8,9,10第四节:空间曲线及其方程空间直线及其方程空间直线的对称式方程与参数方程,两直线的夹角,直线与平面的夹角例1-例4 习题7-4:2,3,5,6第五节:平面及其方程平面, 平面方程,两平面之间的夹角例1-例5习题7-5:1,2,3,5,6,9第六节:空间直线及方程直线与直线的夹角以及平行,垂直的条件,点到平面和点到直线的距离,球面,母线平行于坐标轴的柱面例1-例7 习题7-6:1-9,11,12自我小结总复习题七:1,9-21第九章多元函数微分法及其应用 10天考大题的经典章节,但难度一般不大学习内容复习知识点与对应习题大纲要求第一节:多元函数基本概念了解二元函数的极限、连续性、有界性与最大值最小值定理、介值定理例1—8,习题8—1:2,3,4,5,6,81.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续性的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形第二节:偏导数理解偏导数的概念,高阶偏导数的求解重要例1—8,习题8—2:1,2,3,4,6,9第三节:全微分理解全微分的定义,可微分的必要条件和充分条件全微分在近似计算中应用不用看例1,2,3,习题8—3:1,2,3,4第四节:多元复合函数求导,全微分形式的不变性多元复合函数的求导法则理解,重要例1—6,习题8—4:1—12 式的不变性.4.理解方向导数与梯度的概念并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.会用隐函数的求导法则.7.了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.第五节:隐函数的求导公式理解,小题隐函数存在的3个定理方程组的情形不用看例1—4,习题8—5:1—9第六节:多元函数微分学的几何应用仅数一考,考小题了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程一元向量值函数及其导数不用看例2—7,习题8—6: 1—9第七节:方向导数与梯度仅数一考,考小题方向导数与梯度的概念与计算例1—5,习题8—7:1—8,10第八节:多元函数的极值及其求法重要,大题的常考题型多元函数极值与最值的概念,二元函数极值存在的必要条件和充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值例1-9,习题8—8:1—10第九节:二元函数的泰勒公式仅数一考,了解n阶泰勒公式,拉格朗日型余项极值充分条件的证明不用看第十节最小二乘法不用看例1,习题8—9:1,2,3自我小结总复习题八:1—3,5,6,8,11—19本章测试题——检验自己是否对本章的复习合格合格成绩为80分以上,如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑;第十章重积分7天重要,数二、数三相对于数一,本章更加重要,数二、数三基本必考大题学习内容复习知识点与对应习题大纲要求第一节:二重积分的概念与性质了解二重积分的定义及6个性质习题9—1:1,4,51. 理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法直角坐标、极坐标,会计算三重积分直角坐标、柱面坐标、球面坐标.3.会用重积分、曲线积分及曲面积分求一些几何量与物理量曲面面积、质量、质心、形心、转动惯量、引力.第二节:二重积分的计算法重要,数二、数三极其重要会利用直角坐标、极坐标计算二重积分二重积分换元法不用看例1-6,习题9—2:1,2,4,6,7,8,12,14,15,16第三节:三重积分仅数一考,理解三重积分的概念,利用直角坐标、柱面坐标、球面坐标计算三重积分的计算三重积分的计算重要例1-4,习题9—3:1,2,4—10第四节:重积分的应用仅数一考,了解曲面的面积、质心、转动惯量、引力第五节含参变量的积分不用看例1—7,习题9—4:2,5,6,8,10,11,14自我小结总复习题九:1,2,3,6,7,8,9,10总结第十一章曲线积分与曲面积分8天仅数一考,数二、数三均不考,数一考大题,考难题的经典章节学习内容复习知识点与对应习题大纲要求第一节:对弧长的曲线积分重要弧长的曲线积分的概念理解,性质了解及计算重要例1、2,习题10—1:1,3,4,51.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.2.掌握计算两类曲线积分的方法.3.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.4.了解两类曲面积分的概第二节:对坐标的曲线积分重要对坐标的曲线积分概念理解、性质了解及计算重要,两类曲线积分的联系了解例1-5,习题10—2:3—8第三节:格林公式及掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数,其应用重要曲线积分的基本定理不用看例1-7,习题10—3:1-6念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,会用高斯公式,斯托克斯公式计算曲面、曲线积分.5.了解散度与旋度的概念,并会计算.6.会用重积分、曲线积分及曲面积分求一些几何量与物理量平面图形的面积、体积、曲面面积、弧长、功及流量等.第四节:对面积的曲面积分重要对面积的曲面积分的概念理解、性质了解与计算重要例1、2,习题10—4:1,4,5,6,7,8第五节:对坐标的曲面积分重要对坐标的曲面积分的概念理解、性质了解及计算重要,两类曲面积分之间的联系了解例1-3,习题10—5:3,4第六节:高斯公式重要、通量不用看与散度了解会用高斯公式计算曲面、曲线积分,散度的概念及计算沿任意闭曲面的曲面积分为零的条件不用看例1-5,习题10—6:1,3第七节:斯托克斯公式重要、环流量不用看与旋度了解会用斯托克斯公式计算曲面、曲线积分,旋度的概念及计算空间曲面积分与路径无关的条件不用看例1-4,习题10—7: 1, 2自我小结总复习题十:1-4,6, 7总结第十二章无穷级数6天数二不考,数一、数三考大题,考难题经典章节学习内容复习知识点与对应习题大纲要求第一节:常数项级数的概念和性质一般考点级数收敛、发散的定义,收敛级数的基本性质考选择题柯西审敛原理不用看例1-3,习题11—1:1—41.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条第二节:常数项级数的审敛法理解正项级数及其审敛法;交错级数及其审敛法、绝对收敛与条件收敛绝对收敛级数的性质不用看例1-10,习题11—2:1—5第三节:幂级数重要函数项级数的概念了解;幂级数及其收敛性最重要;幂级数的运算乘、除不用看。
2024数学三考研大纲

2024数学三考研大纲第一部分:基本概念数学是一门关于数量、结构、空间和变化等概念的科学。
它涉及到形式逻辑、抽象代数、几何、拓扑、数论、分析、概率论、数理统计等多个领域。
考研数学三科的大纲主要包括以下内容:1.数论2.代数3.几何4.分析5.概率统计第二部分:数论数论是研究整数性质的数学分支,其重要性不言而喻。
数论包括以下几个方面的内容:1.整数性质2.素数3.同余4.数论函数5.数论定理6.数论方法第三部分:代数代数是数学的一个重要分支,研究数、符号和它们的代数结构及代数方程。
代数包括以下内容:1.群、环、域2.线性代数3.线性空间4.向量空间5.矩阵6.线性变换7.代数方程第四部分:几何几何是研究空间和形状的数学分支,包括以下内容:1.解析几何2.向量解析几何3.立体几何4.三角学5.概率统计第五部分:分析分析是研究极限、微积分和级数等概念的数学分支,包括以下内容:1.极限2.微积分3.泛函4.序列5.级数6.偏微分方程7.多元函数第六部分:概率统计概率统计是研究随机现象的概率和统计规律的数学分支,包括以下内容:1.概率2.随机变量3.概率分布4.统计推断5.方差分析6.回归分析7.抽样调查第七部分:考试范围数学三科的考试范围主要包括上述各个分支的知识点,考生需熟练掌握这些知识,并具备一定的解题能力和应用能力。
考试的形式包括选择题、填空题、解答题和证明题等。
考试内容主要测试考生的数学思维能力和解决问题的能力。
第八部分:备考建议备考数学三科需要考生具备扎实的数学基础知识,需要通过大量的练习来提高解题能力,并且需要阅读相关的数学教材和参考书籍来拓展自己的数学知识面。
此外,考生还需要针对性地进行一些重点知识的复习和强化训练,以及针对性地进行一些题型的练习和模拟考试,来提高解题能力和应试能力。
第九部分:总结数学三科的考试大纲内容涉及面广,难度较大,要想在考试中取得好成绩需要付出大量的努力和时间。
考生需要在备考过程中切记不要死记硬背,而应以理解和灵活运用为主,同时要注重知识点之间的联系和整体把握。
数学分析610研究生入学考试大纲

《数学分析》(610)研究生入学考试大纲一、参考书目:1.《数学分析》第四版(上、下册)华东师范大学数学系编(高等教育出版社)。
2.《数学分析》(上、下册)盛炎平等编(机械工业出版社)。
二、考试大纲:(第一章~第二十二章,所有带*号的部分不用看)第一章实数集与函数数集的确界,确界原理.第二章数列极限极限定义,收敛数列性质,单调有界原理,重要极限.第三章函数极限函数极限定义,函数极限性质,两个重要极限,无穷大量与无穷小量,渐近线.第四章函数连续性函数连续概念,间断点分类,连续函数的性质,一致连续的概念.第五章导数与微分导数概念,导数几何意义,求导法则,基本求导公式,参变量函数求导,高阶导数,微分的概念,几何意义.第六章微分中值定理及其应用罗尔定理,拉格朗日定理,函数单调性的判定,柯西中值定理,不定式极限的罗必达法则,泰勒公式,,函数极值的判定,最值问题,函数凹凸性的判定.第七章实数的完备性了解刻画实数完备性定理的内容.第八章不定积分原函数与不定积分概念,基本积分公式,换元法与分部积分法.第九章定积分定积分概念,定积分性质,牛顿-莱布尼兹公式,变限积分和原函数存在定理,积分中值定理,计算积分的换元法与分部积分法.第十章定积分应用计算平面图形面积,立体体积,曲线弧长,旋转曲面面积.第十一章反常积分无穷积分和瑕积分的概念和性质,非负无穷积分和瑕积分的比较判别法,一般无穷积分和瑕积分的狄立克莱判别法和阿贝尔判别法.第十二章数项级数级数收敛的定义,级数的性质,正项级数的比较、根值、比值判别法,一般项级数的阿贝尔判别法和狄立克雷判别法.第十三章函数列与函数项级数函数列的一致收敛性,一致收敛的柯西准则及充要条件,一致收敛函数列的极限函数的性质,函数项级数一致收敛概念,判别法,一致收敛函数项级数的性质.第十四章幂级数幂级数的收敛半径、收敛区间、收敛域,收敛半径的计算,幂级数的性质,泰勒级数,初等函数的幂级数展开.第十五章傅立叶级数三角级数,正交系,收敛定理,周期函数的傅里叶展开,偶函数与奇函数的傅里叶级数与展开.第十六章多元函数的极限与连续二元函数的极限与连续.第十七章多元函数微分学偏导数的概念,全微分的概念,偏导数的几何意义,复合函数的求导法则,方向导数与梯度的概念,多元函数的极值问题.第十八章隐函数定理及其应用了解隐函数定理,会隐函数求导,曲线的切线,曲面的切平面与法线,条件极值问题.第十九章含参积分该章不考察.第二十章曲线积分第一型曲线积分定义与计算,第二型曲线积分的定义与计算,两类积分的联系.第二十一章重积分二重积分的概念、性质,直角坐标计算,极坐标计算,格林公式,曲线积分与路径的无关性,三重积分的定义,性质,利用直角坐标计算,柱坐标计算,球坐标计算.第二十二章曲面积分第一型曲面积分定义与计算,第二型曲面积分的定义与计算,高斯公式与斯托克斯公式三、试卷结构:1.概念简答题;2.计算题;3.证明题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学分析》(604)考研大纲
(一)实数与函数
考试内容
绝对值与不等式,确界原理,函数及性质。
考试要求
理解和掌握邻域,有界集,上、下确界,函数,复合函数,反函数,有界函数,单调函数,奇、偶函数,周期函数等概念。
(二)极限与连续
考试内容
数列极限定义,收敛数列的性质,单调有界原理,柯西准则,函数极限定义(趋于无穷大时的极限,趋于某一定数时的极限),函数极限性质,归结原理,柯西准则,两个重要极限,无穷小量,无穷大量概念,无穷小量阶的比较,连续性概念,连续函数的局部性质,闭区间上连续函数的性质,反函数连续函数,一致连续性,指数函数的连续性,初等函数连续性,实数完备性定理:区间套定理,柯西准则,聚点定理,有限覆盖定理等。
考试要求
理解和掌握:数列极限的定义及计算,数列极限性质的原理及推导,单调有界原理,柯西准则及应用,函数极限的定义及计算,函数极限存在的归结原理,两个重要极限的计算,无穷小量,无穷大量概念,无穷小量阶的比较及应用,一致连续性及应用,连续性的定义及其证明,间断点及其分类,连续函数的局部性质,闭区间上连续函数的性质,区间套定理,柯西准则,聚点定理,有限覆盖定理原理及证明,闭区间上的连续函数性质的原理及证明及应用。
(三)导数与微分
考试内容
导数概念,导函数,导数的四则运算,反函数的导数,复合函数的导数,求导法则与公式,微分概念,微分的运算法则,高阶导数与高阶微分,参数方程的一阶及二阶导数。
考试要求
理解和掌握:导数概念,导数的四则运算,反函数的导数,复合函数的导数,求导法则与公式,微分概念,微分的运算法则,高阶导数与高阶微分,参数方程的一阶及二阶导数。
(四)微积分基本定理,不定式极限,导数研究函数
考试内容
中值定理,洛必达法则,不定式极限,泰勒公式,皮亚诺余项泰勒公式,函数的单调性与极值,函数的凸性,拐点,函数的图象讨论渐进线,作图。
考试要求
理解和掌握:费马定理,中值定理的原理及应用。
熟练计算不定式极限,熟练掌握泰勒公式,皮亚诺余项泰勒公式原理及应用,函数的单调性与极值,函数的凸性,拐点。
(五)积分
考试内容
原函数,不定积分及其运算法则,换元积分及分部积分法,有理函数的积分,三角函数的积分,定积分的定义,可积必要及充分条件,可积函数类,定积分的性质原理,微积分基本定理,换元积分法,分部积分法,非正常积分的定义和性质,平面图形的面积,由截面面积求立体体积,弧长的定义与弧长计算公式,旋转曲面的面积,定积分在物理上的应用:压力、功和重心。
考试要求
理解和掌握:不定积分的运算法则,换元积分,分部积分法,有理函数的积分,三角函数的积分,定积分的定义,可积必要及充分条件,可积函数类,熟练掌握定积分的性质原理,微积分基本定理,换元积分法,分部积分法,掌握非正常积分的定义,性质。
(六)级数
考试内容
级数的收敛性及发散,正项级数,一般判别原则,比较及根式判别方法,积分判别方法,一般项级数(如交错级数),绝对收敛,阿贝尔判别法,一致收敛性,函数列与一致收敛性,函数项级数函数项级数,函数项级数的一致收敛性判别法,一致收敛性函数列及函数项级数分析性质原理,幂级数及其收敛区间,幂级数的性质与运算,函数的幂级数展开。
考试要求
理解和掌握:级数一般判别原则,比较及根式判别方法,积分判别方法原理及使用,绝对收敛,阿尔判别法和狄里克里判别法,函数列的一致收敛性,函数项级数的一致收敛性判别法原理及应用,一致收敛性函数列及函数项级数分析性质原理及应用。
(七)傅里叶级数
考试内容
三角函数系,正交函数系,傅里叶级数及其收敛定理,傅里叶级数展开,偶函数与奇函数的傅里叶级数。
考试要求
理解和掌握:傅里叶级数展开,偶函数与奇函数的傅里叶级数展开。
(八)多元函数的极限与连续
考试内容
平面点集,完备性定理,函数概念,二元函数的极限,累次极限,连续性概念,闭域连续性的性质。
考试要求
理解和掌握:平面点集,多元函数概念,完备性定理,二元函数的极限和累次极限的计算,连续性概念,闭域上连续函数的性质。
(九)多元函数的微分学
考试内容
可微性,全微分,偏导数,可微性条件,复合函数的求导法则,复合函数的全微分,方向导数与梯度,泰勒公式与极值,中值定理和泰勒公式,极值问题,隐函数定理,隐函数组定理,隐函数求导,曲线切线,曲面的法平面。
考试要求
理解和掌握:可微性,全微分,偏导数,可微性条件概念,复合函数的求导法则,复合函数的全微分,理解方向导数与梯度概念,高阶偏导数,极值的充分及必要条件原理及应用,熟练掌握隐函数,隐函数组的求导原理及应用。
(十)重积分、参变量非正常积分、曲线积分与曲面积分
考试内容
二重与三重积分概念,重积分可积条件,累次积分,换元积分,参量积分求导,曲面面积,重心,转动惯量,引力,含参变量非正常积分判别方法,分析性质,欧拉积分概念及性质,第一型曲线积分与第一型曲面积分概念,计算公式,第二型曲线积分概念,计算公式,格林公式,曲线积分与路径无关,第二型曲面的侧的概念,计算公式,高斯公式及原理,斯托克斯公式及原理。
考试要求
理解和掌握:二重与三重积分概念与计算,曲面面积,重心,转动惯量,引力,第一型曲线积分与第一型曲面积分概念及其计算公式,第二型曲线积分与第二型曲面积分概念及其计算公式,含参量非正常积分概念,欧拉积分概念及性质,格林公式,路径无关定理,高斯公式及原理,斯托克斯公式及原理。
《数学分析》(604)考研题型
填空题、解答题、证明题和综合题
《数学分析》(604)参考书
1、数学分析(上、下册)第四版华东师范大学数学教研室编高等教育出版社
2、数学分析(上、下册)第五版东北师大高等教育出版社
3、数学分析习题解(相关教材配套课后习题解答,版本不限)
4、数学分析习题集吉米多维奇山东科学技术出版社。