飞行程序设计1
飞行程序设计-第2章-序论

八、飞行程序设计所需工具
设计规范ICAO Doc 8168
航行数据跑道信息、导航设施、空域限制、人工障碍物
等
合适比例尺的地图 绘图工具 直尺、 45°/30°三角板、量角器、圆规 、计
算器、 模板等
中国民航大学空中交通管理学院
九、飞行程序设计的工作过程
中国民航大学空中交通管理学院
中国民航大学空中交通管理学院
2.进场程序:提供从航路结构到终端区内的一点的过渡。 起始于航空器离开航路的那一点,至等待点或起始进近定位 点。
进场程序实际上是进近程序中的进场航段
我国许多机场的离场程序以走廊口作为进场程序的开始点
在为一个机场设计进场程序时,应为每一条可用于着陆的跑 道设计所使用的进场程序
等待、反向、直角程序模版手册(DOC9371-AN912)
在平行或接近平行的跑道上同时运行手册(DOC9463) II类仪表着陆系统(民航总局令57号)
中国民航大学空中交通管理学院
中国民用航空空中交通管理规则(民航总局令86号) 航空器机场运行最低标准的制定与实施规定(民航总局令 98号)
中国民航大学空中交通管理学院
二、飞行程序的类型
根据所执行的飞行规则划分:按目视飞行规则设计的程序称为目 视飞行程序;按仪表飞行规则设计的程序称为仪表飞行程序。
根据航空器定位方式划分:使用传统导航定位方式的飞行程序称 为传统飞行程序,使用PBN进行导航定位的飞行程序称为PBN飞 行程序。
根据发动机工作模式划分:一般飞行程序设计部门只考虑发动机
中国民航大学空中交通管理学院
飞行程序设计大纲

《飞行程序设计》课程考试大纲课程名称:《飞行程序设计》课程代码:0800第一部分课程性质与目标一、课程性质与特点《飞行程序设计》是高等教育自学考试交通运输专业独立本科段的一门专业课,是本专业学生学习和掌握空域规划和设计基本理论和方法的课程。
设置本课程的目的是使学生从理论和实践上掌握以NDB、VOR、ILS等设备作为航迹引导设备时,离场程序、进场程序、进近程序、复飞程序和等待程序,以及航路的设计原理和方法。
通过对本课程的学习,使学生熟练掌握目视与仪表飞行程序设计的有关知识,使之能独立完成有关机场的飞行程序设计和优化调整。
二、课程设置目的与基本要求了解飞行程序的总体结构、设计方法;了解飞行程序的分类原则;掌握飞行程序设计的基本准则;能够独立完成有关机场的飞行程序设计和优化调整。
本课程的基本要求如下:1.了解飞行程序的基本结构和基本概念。
2.了解终端区内定位点的定位方法、定位容差和定位的有关限制。
3.了解离场程序的基本概念,掌握直线离场、指定高度转弯离场、指定点转弯离场和全向离场的航迹设计准则、保护区的确定方法、超障余度和最小净爬升梯度的计算方法,以及相应的调整方法;4.掌握航路设计的国际民航组织标准和我国的标准;5.掌握进近程序各个航段的航迹设置准则;6.掌握各种情况下,进近程序各个航段保护区的确定原则;7.掌握进近程序各个航段超障余度和超障高度的计算方法;8.掌握进近各个航段下降梯度的规定,以及梯度超过标准时的调整方法。
9.掌握基线转弯程序的基本概念,出航时间的确定方法,保护区的确定原则,超障余度和超障高度的计算方法;10.掌握直角航线的基本概念,出航时间的确定方法,保护区的确定原则,超障余度和超障高度的计算方法;11.掌握ILS进近的基本概念,精密航段障碍物评价方法,以及超障高度的计算方法;12.了解等待程序的基本概念,掌握保护区的确定方法,以及超障余度和超障高度的计算方法;13.了解区域导航程序设计的基本概念。
飞行程序设计

飞行程序设计概述飞行程序设计是指为飞行器编写程序,控制其飞行行为和执行任务。
飞行程序设计涉及到飞行器的导航、自动驾驶、飞行模式切换等功能,是飞行器能够完成各种任务的重要组成部分。
飞行程序设计原则在进行飞行程序设计时,需要遵循一些基本原则,以确保飞行器的安全和性能。
1. 模块化设计:将飞行程序分解为多个模块,每个模块负责完成特定的功能。
这样做可以提高程序的可维护性和可扩展性。
2. 容错设计:在程序中引入适当的容错机制,以应对可能出现的意外情况,如传感器故障、通信中断等。
容错设计可以增加飞行器的鲁棒性。
3. 优化算法:使用高效的算法来处理飞行器的导航和控制问题,以提高飞行器的性能和响应速度。
4. 人机交互设计:考虑到飞行程序的操作性和可用性,设计人机界面,使操作员可以方便地进行程序的设置和调整。
飞行程序设计流程飞行程序设计通常包括以下几个步骤:1. 需求分析:明确飞行器的任务和功能需求,确定需要实现的飞行程序功能。
2. 界面设计:设计人机界面,使操作员可以方便地进行程序的设置和调整。
3. 算法设计:设计飞行控制算法和导航算法,用于控制飞行器的姿态和路径。
4. 模块设计:将飞行程序分解为多个模块,并对每个模块进行详细设计。
5. 编码实现:根据设计完成对应的编码工作,实现飞行程序。
6. 调试优化:进行系统调试和优化工作,确保飞行程序的正确性和稳定性。
7. 测试验证:对飞行程序进行全面的测试验证,确保程序能够按照预期完成飞行任务。
飞行程序设计工具进行飞行程序设计时,可以使用一些专门的工具来辅助开发工作。
1. 集成开发环境(IDE):使用IDE可以提供代码编辑、调试、编译和运行等一体化的开发环境,提高开发效率。
2. 仿真工具:仿真工具可以模拟飞行器的运行环境,帮助进行飞行程序的调试和测试。
3. 数据分析工具:使用数据分析工具对飞行器的传感器数据和飞行记录进行分析,以评估飞行程序的性能和稳定性。
飞行程序设计的挑战飞行程序设计面临一些挑战,需要解决一些问题。
飞行程序设计

飞行程序设计目录•前言•第一章飞行程序理论基础• 1.1 飞行程序结构• 1.1.1 离场程序• 1.1.2 进近程序• 1.1.3 进场程序• 1.2 航空器分类• 1.3 飞行程序定位和容差规范• 1.3.1 定位方法分类• 1.3.2 定位容差限制•第二章飞行程序辅助设计系统设计• 2.1 系统功能划分• 2.1.1 航迹和保护区绘制• 2.1.2 障碍物评估• 2.2 几何算法实现• 2.2.1 风螺旋线算法设计• 2.2.2 风螺旋算法实现• 2.2.3 缓冲区算法设计• 2.2.4 缓冲区算法实现• 2.3 用户界面设计• 2.3.1 VBA程序菜单设计• 2.3.2 绘图程序界面设计• 2.3.3 评估程序界面设计•第三章离场程序设计• 3.1 流程描述• 3.2 离场程序要求的参数• 3.3 直线离场• 3.4 转弯离场•指定高度转弯离场•电台上空转弯•交叉定位或DME弧确定TP的转弯离场• 3.5 向台飞行• 3.6 全向离场•第四章等待程序设计• 4.1 流程描述• 4.2 等待程序• 4.2.1 等待程序作图参数• 4.2.2 等待程序模板绘制方法• 4.2.3 模板的作图• 4.2.4 确定定位容差• 4.2.5 基本区作图和交叉定位上空的全向进入作图• 4.2.6 区域缩减原则•第五章复飞程序设计• 5.1 流程描述• 5.2 直线复飞• 5.3 转弯复飞•第六章障碍物评估程序设计• 6.1 评估的一般准则• 6.2 直线离场障碍物评估• 6.3 转弯离场障碍物评估• 6.3.1 指定转弯点的障碍物评价• 6.3.2 指定高度转弯离场的障碍物评价• 6.4 复飞程序评估• 6.4.1 直线复飞障碍物评价• 6.4.2 转弯复飞的障碍物评价• 6.5 等待程序评估•第七章结论前言在国内,飞行程序设计一直以手工设计为主。
随着计算机技术的普及,设计人员在设计过程中使用了一些CAD辅助设计的技巧,但是并没有从根本上解决手工设计效率低下,工作繁重和结果不一致等问题。
飞行程序设计简版

飞行程序设计飞行程序设计简介飞行程序设计是指在飞行器(如飞机、无人机等)中运行的程序的设计和开发。
随着航空技术和计算机技术的发展,飞行程序设计在航空航天领域中扮演着重要的角色。
本文将介绍飞行程序设计的基本概念、流程和工具,帮助初学者了解飞行程序设计的基本知识。
概述飞行程序设计是将计算机程序应用于飞机控制、导航、通信和飞行器系统管理等方面。
飞行程序设计需要考虑飞行器的特点、飞行环境以及飞行任务的需求。
一个有效的飞行程序能够提高飞行器的性能、安全性和可靠性。
设计流程飞行程序设计的一般流程如下:1. 需求分析:明确飞行任务的需求和约束条件,确定程序设计的目标。
2. 高层设计:根据需求分析,设计程序的整体架构和功能模块。
3. 详细设计:对程序的每个功能模块进行详细设计,包括算法选择、数据结构定义等。
4. 编码实现:根据详细设计,使用编程语言将程序实现。
5. 调试测试:进行程序的调试和测试,确保程序能够正确运行。
6. 验证验证:验证程序的正确性和性能是否满足需求,并进行优化和改进。
7. 部署运行:将程序部署到飞行器中,并进行实际飞行测试。
设计工具在飞行程序设计中,有许多工具可以辅助设计和开发工作。
以下是一些常用的设计工具:- UML建模工具:用于绘制程序的结构图、行为图和交互图等,如Visio、Enterprise Architect等。
- 集成开发环境(IDE):用于编写、调试和测试程序代码,如Eclipse、Visual Studio等。
- 仿真软件:用于模拟飞行环境和飞行器行为,如FlightGear、Prepar3D等。
- 静态代码分析工具:用于发现和修复代码中的潜在问题,如Cppcheck、Pylint等。
- 版本管理工具:用于管理程序代码的版本和变更,如Git、SVN等。
- 编辑器:用于编辑和查看程序源代码,如Sublime Text、Notepad++等。
常见挑战和解决方案在飞行程序设计过程中,常常面临一些挑战。
飞行程序设计

飞行程序设计在现代航空领域,飞行程序设计扮演着至关重要的角色。
飞行程序是一系列指导飞行员在特定飞行情境下操作飞机的步骤和指示。
这些程序涵盖了从起飞到降落的各个阶段,并确保飞行安全与效率。
本文将探讨飞行程序设计的重要性、设计原则以及未来的发展方向。
一、飞行程序设计的重要性飞行程序设计对于航空安全至关重要。
合理、准确地编写飞行程序能最大程度地避免人为失误和意外事故的发生。
不论是起飞、巡航还是降落,飞行程序都提供了一种标准化的方法,确保飞机在各种情况下的安全运行。
其次,飞行程序还能提高飞行效率。
通过设计简洁、明确的程序,飞行员能够更快速地执行各项操作。
合理利用飞行程序,可以减少时间浪费和资源消耗,提高飞行效率,进而降低航空公司的运营成本。
最重要的是,飞行程序设计是提供良好飞行体验的关键之一。
无论是乘客还是机组人员,都希望飞行过程中能感受到平稳、舒适的体验。
良好的飞行程序设计有助于减轻飞行员的工作负担,提升操作的流畅性,为乘客提供更好的旅行体验。
二、飞行程序设计的原则1. 操作简洁明确飞行程序设计应尽量遵循简洁明确的原则。
每个飞行步骤和指示都应该清晰、简明地描述,避免过多的冗余信息和复杂操作。
简洁明确的程序设计不仅有助于飞行员的理解和操作,还能够快速应对紧急情况。
2. 标准化和一致性飞行程序应该遵循国际统一的标准和规范,确保在不同航空公司之间的一致性。
标准化的程序设计可以减少飞行员的学习成本,降低操作错误的风险,并且有助于各种飞机和航空器型的通用性。
3. 实时更新和持续改进随着技术和飞行环境的不断变化,飞行程序需要实时更新和持续改进。
飞行程序设计者应该与飞行员和飞行技术人员保持紧密的沟通,并及时获得反馈。
基于反馈和数据分析,不断改进和优化飞行程序设计,以适应不断变化的需求和挑战。
三、飞行程序设计的未来发展随着先进技术的不断发展,飞行程序设计也将面临一系列新的机遇和挑战。
1. 自动化和智能化随着人工智能和自动化技术的进步,未来飞行程序设计可能更加智能化和自动化。
民航空管系统点融合飞行程序设计指南

民航空管系统点融合飞行程序设计指南一、背景介绍近年来,随着航空业的迅速发展,民航交通量不断增加,航空运输成为重要的交通方式。
而民航空中交通管理系统的发展和完善也成为了航空业发展的重要方向之一。
其中,点融合飞行程序设计成为了民航空管系统发展的重要内容之一。
二、点融合飞行程序设计的概念点融合飞行程序设计是一种新的航空运输体系的设计方法,它以点为基础,通过设计合理的航线和航路点,实现飞机的精准导航和飞行控制。
点融合飞行程序设计将航空交通管理与航空运输交通管理相结合,通过合理的点融合设计,提高了航空交通的效率和安全性。
三、点融合飞行程序设计的意义1. 提高了民航空管系统的效率和安全性点融合飞行程序设计通过合理的点融合设计,提高了飞行控制的精准度,减少了飞机的飞行时间和能耗,提高了民航空管系统的效率和安全性。
2. 降低了航空交通管理的成本点融合飞行程序设计通过优化航空交通管理系统,减少了航空交通管理的成本,降低了企业的运营成本,提高了企业的竞争力。
3. 推动了航空业的发展点融合飞行程序设计促进了航空业的发展,提高了航空运输的效率和安全性,提高了航空业的服务水平和竞争力。
四、点融合飞行程序设计的原则1. 安全第一在点融合飞行程序设计中,安全应该是首要考虑的因素,所有的设计都应该以确保航空运输的安全为前提。
2. 效率优先点融合飞行程序设计应该以提高航空运输的效率为目标,通过合理的点融合设计,实现航空运输的高效、准确和安全。
3. 环保节能点融合飞行程序设计应该考虑到环境保护和节能减排的要求,通过优化飞行路线和航空管理系统,减少飞行能耗和环境污染。
五、点融合飞行程序设计的关键技术1. 点融合的航线设计技术点融合的航线设计技术是点融合飞行程序设计的核心技术之一,它涉及到航线的选取和航路点的设置,通过合理的航线设计,实现飞行控制的精准导航和飞行控制。
2. 航空管理技术的优化航空管理技术的优化是点融合飞行程序设计的关键技术之一,它涉及到航空管理系统的优化和改进,通过合理的航空管理技术的优化,提高了航空交通管理系统的效率和安全性。
飞行程序设计-第1章-地图知识

中国民航大学空中交通管理学院
中国民航大学空中交通管理学院
一、地图的定义和分类
(六)按比例尺分类
国家测绘部门将1:5千、1:1万、1:2.5万、1:5万、1:10 万、1:25万、1:50万和1:100万八种比例尺地形图规定 为国家基本比例尺地形图,其中: 大比例尺地形图: 1:5千至1:10万地形图 中比例尺地形图: 1:25万和1:50万地形图 小比例尺地形图: 1:100万地形图
中国民航大学空中交通管理学院
一、地图的定义和分类
(七)其它分类 按使用方式分:桌面地图、挂图、野外地图 纸质地图,胶片地图,丝绸地图等 地图按其感受方式分:视觉地图、 触觉地图(盲文地图)。 地图按其结构分: 单幅图、多幅图、系列图和地图集等。 地图按其图形分: 线划地图、影像地图、数字地图。 地图按其印色数量分: 单色图、彩色图。
飞行程序设计
第一章
地图知识
主要内容
一.地图的定义和分类 二.地形图的数学基础 三.地形图要素的表示方法 四.图廓外要素
中国民航大学空中交通管理学院
一、地图的定义和分类
1. 定义
地图是根据一定的数学法则,将地球(或其他星体)上自 然和人文现象,使用地图语言,通过制图综合,缩小反 映在平面上,反映各种现象的空间分布、组合、联系、 数量和质量特征及其在时间中的发展变化。
中国民航大学空中交通管理学院
二、地形图的数学基础
新编号方法
1:100万不变 1:50万 J-50 B 001002 1:25万 J-50 C 001002 1:10万 J-50 D 011008 1:5万 1:1万 1:5千 J-50 E 001002 1:2.5万 J-50 F 001002 2×2 4×4 12×12 24×24 48×48
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞行程序设计
飞行程序设计原则
保证航空器与障碍物之间有足够的安全余度; 与当地的飞机流向相一致; 不同飞行阶段尽量使用不同的飞行航线; 当不同飞行阶段的航空器必须使用同一飞行航线时, 应尽可能使起飞离场的航空器在进场、进近的航空器 之上飞行; 尽量减少对起飞航空器爬升的限制;
进场的航空器尽可能连续下降;
转弯参数
转弯坡度 α 转弯速度 V ——真空速 转弯率(≤ 3°/s)
R=562tgα/ V 转弯半径 r = 180V / ΠR
风的影响
风速:国际民航风 W=(12h+87)km/h -〉95%概率风(5年 以上) 风向:全向风(风速一定,风向为任意方向的风)
r=风速 x 飞行时间
C kt
km/h
D kt km/h E kt
261/306
141/165 307/390 166/210
345/465
185/250 345/467 185/250
240/345
130/185 285/425 155/230
380
205 445 240
345
185 425 230
490
265 510 275
飞行程序设计
一、绪论 二、飞行程序设计的基本参数
三、终端区定位点及定位容差
四、思考题
飞行程序设计绪论
飞行程序设计——空域规划的一个子集 何为飞行程序设计?
飞行程序设计
定义:飞行程序设计是在分析终端区净空条件和空 域布局的基础上,根据航空器的飞行性能,确定航空
器的飞行路径以及有关限制的一门科学。
2.各飞行阶段所使用的速度
航空 器分 类 速度 单位
vat
﹤169 ﹤91
起始进近 速度范围
最后进近 速度范围
目视机动 (盘旋) 最大速度
复飞最大速度
中间
最后
A
km/h kt
165/280(205*) 90/150(110*)
130/185 70/100
185 100
185 100
205 110
B
空器不与其他地面障碍物相撞的最低安全高度;
超障高/高度(OCH/A)
4、检查各个航段的爬升、下降梯度是否满足规范
要求,如果不满足,调整以上各个阶段。
第二节 飞行程序设计的基本参数
本节主要内容为飞行程序设计的基础以及程序设计中误差的考虑和
计算。
坐标系统 使用的速度 风对飞行的影响 导航中影响飞行的因素和误差计算
程序设计使用的速度
指示空速转化为真空速
TAS=k×IAS [K值查表]
换算因数
高度 (m) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 ISA-30 ISA-20 0.9465 0.9647 0.9690 0.9878 0.9922 1.0118 1.0163 1.0366 1.0413 1.0623 1.0672 1.0890 1.0940 1.1167 1.1219 1.1455 1.1507 1.1753 1.1807 1.2063 1.2119 1.2385 1.2443 1.2720 1.2779 1.3068 1.3130 1.3430 1.3494 1.3808 1.3873 1.4201 换 算 因 ISA-10 ISA ISA+10 0.9825 1.0000 1.0172 1.0063 1.0244 1.0423 1.0309 1.0497 1.0682 1.0565 1.0760 1.0952 1.0830 1.1032 1.1231 1.1105 1.1315 1.1521 1.1390 1.1608 1.1822 1.1686 1.1912 1.2135 1.1993 1.2229 1.2460 1.2313 1.2558 1.2798 1.2645 1.2900 1.3150 1.2991 1.3256 1.3516 1.3350 1.3627 1.3897 1.3725 1.4013 1.4295 1.4115 1.4415 1.4709 1.4521 1.4835 1.5141 数(K) ISA+15 ISA+20 1.0257 1.0341 1.0511 1.0598 1.0774 1.0864 1.1046 1.1140 1.1329 1.1426 1.1623 1.1724 1.1928 1.2032 1.2245 1.2353 1.2574 1.2687 1.2917 1.3034 1.3273 1.3395 1.3644 1.3771 1.4031 1.4163 1.4434 1.4572 1.4854 1.4998 1.5292 1.5442 ISA+30 1.0508 1.0770 1.1043 1.1325 1.1618 1.1923 1.2239 1.2568 1.2910 1.3266 1.3636 1.4022 1.4424 1.4843 1.5281 1.5737
尽量减少迂回航线。
飞行程序的组成——范围
航空器的飞行过程
起飞离场、航路飞行、进场、 进近; 从飞行来讲,除了巡航阶段外 都属于飞行程序设计范畴;
飞行程序的组成
起飞离场:提供从终端区至航路结构的过渡航 线。
从
跑道的起飞末端DER(跑道或净空道末端)至
下一飞行阶段允许的最低安全高度/高( 进近
进近程序
按照程序使用的导航设备类型与精度,仪
表进近程序分为:非精密进近程序和精密 进近程序
飞行程序的组成
非精密进近程序:使用只提供水平方向 引导的设备(VOR/DME,NDB,VOR) 精密进近程序:使用既提供水平方向 引导又提供垂直方向引导的设备(ILS, MLS,PAR)
对每一个着陆跑道可使用的所有导航设 备类型,都必须为其设计相应的仪表进近 程序。
飞行程序的组成 进近程序
根据一定的飞行规则,对障碍物保持 一定的超障余度所进行的一系列预定的机 动飞行。 始于起始进近定位点(IAF)或规定的进 场航路开始, 至能完成着陆的一点为止,或如果不能完 成着陆,至航空器复飞至等待点或具有航 路超障高度为止。
飞行程序的组成 进近程序分类
按照飞行规则:分为目视进近程序和仪表飞行源自序设计飞行程序设计要求及规范
按航空器偏离我们所考虑的空间范围与障碍物或其他 航线上飞行的航空器相碰撞的概率小于10-7
方法:对试飞和飞行数据进行模拟,使用概率统计的 方法得到一些数据——形成一些规范或参考文件 以ICAO-8168文件《航空器运行 Aircraft operation 》为规范---飞行设计的指导性文件
飞行程序设计基本步骤
1、根据机场的净空条件、导航设施的布局与 本机场进、出港有关的航路情况,确定离场
、进场、进近以及复飞程序的飞行路线;
2、根据各个阶段设计规范与准则,确定保护
区;
保护区:符合一定安全系数的前提下,飞机沿
航线飞行时可能产生的最大偏移范围。
飞行程序设计基本步骤
3、根据规范与准则,计算每一航段内可以保证航
km/h
kt km/h
169/223
91/120 224/260 121/140
220/335(260*)
120/180(140*) 295/445 160/240
155/240
85/130 215/295 115/160
250
135 335 180
240
130 295 160
280
150 445 240
、等待、加入航路)
通常情况:航路高度或走廊口 要为每条跑道每种机型设计离场程序 发布:标准仪表离场图(SID)
飞行程序的组成
进场程序
提供从航路结构到终端区内的一点的过渡。 起始于航空器离开航路的那一点,至等待点或 起始进近定位点。 为每一条可用跑道设计进场程序 发布:标准仪表进场图(STAR) 单独制图:进场的设计与离场对应,所考虑的 方法一致,与进近其他航段设计方法与内容不 一样。
END
飞行程序的组成
进近程序
起始进近航段 中间进近航段
最后进近航段
复飞航段
等待程序
飞行程序的组成
起始进近航段
始于起始进近定位点(IAF),至中间进近定 位点(IF)或最后进近定位点(FAF/FAP) 消失高度,使航空器对正中间或最后航迹
飞行程序的组成
中间进近航段
从中间进近定位点(IF)开始,至最后进近 定位点(FAF/FAP)
飞行程序设计的基本参数 程序设计所采用的坐标系统
程序设计使用的速度
1. 航空器的分类 依据跑道入口速度(Vat):生产厂家所给的航空 器在最大着陆重量、标准大气条件和着陆外型时失 速速度(指示空速)的1.3倍; 2.各飞行阶段所使用的速度; 3.各飞行阶段程序设计使用的速度都要转换成真 空速;
风螺旋线:r + W(θ/R)
风速 x 飞行时间 o ↓ 角度/转弯率 b a
ANY QUESTION?
思考题
(一)飞行程序设计的定义 (二)飞行程序设计的组成部分,各自的范围 (三)组成进近程序的各个航段,以及他们各自的主 要作用 (四)简述飞行程序设计的基本过程 (五)程序设计中,飞机的分类及分类标准 (六)在海拔4320米高度,国际标准大气加15℃的温 度条件下,某飞机的空速表上指示的速度为220千 米每小时,请计算其真空速 (七)在上题中,如果转弯坡度为25°,请计算转弯 率和转弯半径
调整航空器至着陆外形,减速,调整航空 器位置,为最后进近作准备。
飞行程序的组成
最后进近航段
从最后进近定位点至建立目视飞行或复飞 点(MAPt)结束 完成对正跑道、着陆