飞行程序设计-第3章 进场进近程序设计
飞行程序设计

目前,全球主要采用的设计仪表进近程序的标准有三种
美国联邦航空管理局(FAA-Federal Aviation Administration) 的“终端区仪表飞行程序美国标准(TERPS-United States Standard for Terminal Instrument Procedures)”, 国际民航组织推荐的“航空器运行-空中航行服务程序 (PANS-OPS-Aircraft Operations-Procedures for Air Navigation Services)”, 联合航空运行规则(JAR OPS-Joint Aviation Regulations Operations)。 TERPS主要应用于美国和加拿大等少数几个国家,制定了各种 进近程序的特殊标准和相应的标准航图术语;PANS-OPS则广泛地应 用于欧洲、非洲、澳大利亚和亚洲的国家和地区;采用JAR-OPS的 国家和地区相对来说较少。
精密进近和非精密进近
精密进近:使用仪表着陆系统(ILS),微波着陆系统 (MLS)或精密进近雷达(PAR)提供方位和下滑引导 的仪表进近。 Baro-VNAV:使用气压高度计做垂直引导。 非精密进近:使用VOR、NDB或航向台LOC(ILS下滑台 不工作)等地面导航设施,只提供方位引导,不具备下 滑引导的仪表进近。现在还包含RNAV导航方式。
我国从上个世纪80年代开始自主设计民用机 场飞行程序,经过20多年的发展和几代人的不懈 努力,确保了约150个民用机场(含军民合用机 场民用部分)的安全有效运行。在这期间,飞行 程序工作实现了三个重大转变:
一是飞行程序设计规范标准从前苏联模式逐 步转变到与国际民航组织接轨; 二是工作方式从手工作业逐步转变到计算机 辅助设计; 三是随着飞行流量的增长,飞行程序加强了 与空域规划和空管运行的紧密联系。
飞行程序设计2

第四节 最低扇区高度(MSA)
最低扇区高度也称扇区最低安全高度,是紧急情况下 所在扇区可以使用的最低高度。它也是确定仪表进近 程序起始高度的一个依据。每个已建立仪表进近程序 的机场都应规定最低扇区高度。 一、扇区的范围及划分方法 1.扇区必须以用于仪表进近所依据的归航台为中心, 46km(25NM)为半径所确定的区域内。 2.扇区的划分通常与罗盘象限一致,即根据0°、90°、 180°和270°向台磁航向分为四个扇区。 3.如果由于地形或其他条件,扇区边界也可选择其他方 位使之取得最好的最低扇区高度。 4.在每个扇区的边界外有一个9km(5NM)的缓冲区。
第三节 终端区定位点及定位容差
定位点是指利用一个或一个以上的导航设备确 定的地理位置点。 定位点在飞行程序中起着控制航空器位置的重 要作用,其定位精度对飞行程序的安全性和可 靠性有着直接的影响。 在程序设计时,必须确定和检查各定位点的定 位误差范围,以确保其不超过规定的标准。
第三节 终端区定位点及定位容差
一、定位方法及定位容差
(一)飞越导航台的定位容差区 1. 飞越 VOR
(一)飞越导航台的定位容差区
2.飞越NDB
(一)飞越导航台的定位容差区
3. 飞越指点标
(二)交叉定位定位容差
交差定位就是通过测定航空器与两个或两个以 上导航设备的相对方位或距离来确定航空器的 位置。 交差定位定位容差的大小决定于提供定位信息 的导航系统使用的精度。 决定系统精度的参数为:地面设备容差,机载 接收系统容差和飞行技术容差。 根据导航设备在定位时所起的作用,其交叉定 位的误差可分为:航迹引导误差和侧方定位误 差。
(二)交叉定位定位容差
NDB:NDB台的航迹引导精度由以下三个参数组成: a) 士3°地面设备; b)±5.4°机载设备; c) 士3°飞行技术容差。 取以上三个数值的平方和根,即得 NDB 台的航迹 引导容差±6.9°。
飞行程序设计进场进近程序设计

减少飞行时间 易于航迹对正(跑道中心线) 提高标记和灯光的可视化 易于使用(易于飞行员理解) 改善引导方式 提高机场容量 可以同时使用传统导航和区域导航
9
“T”型与“Y”型设计概 念
• 优势(续) 避免使用反向程序; 具有NPA认证的GNSS接收 机,都能处理“T”型与“Y”型 程序; 可以根据定位点(传统) 位置确定航路点位置; 航迹保持更容易。
对于对正跑道的进近,复飞点须位于跑道入口或 跑道入口以前。
如果最后航段没有对正跑道中心线,最佳位置则 在最后进近航道与跑道中心延长线的交点处。
如有必要,可以将 MAPt 从跑道入口向 FAF 移 。前提是OCA/H 不低于按正常下降梯度 5.2%( 3°)或如果公布更陡的下降梯度时MAPt的高度/ 高。为满足这一条件,可能需要增加 OCA/H。
如果没有起始进近定位点,则以中间进近定位点 (IF)为圆心,圆弧末端与IF的连线为边界。一个程 序的联合TAA必须为一个以IF为中心的360°的区 域。
12
13
TAA——三个扇区
右四边区
直接进入区
IAF
IAF
IAF
IF
FAF Mapt
左四边区
侧边界: 左四边和右四边起始航段;
外边界:以IAF为圆心,25NM(46KM)为半径的圆弧;
IF FAF
MAPt
INITIAL SEGMENT
IAF
INTERMEDIATE SEGMENT
FINAL SEGMENT
5
T或Y型程序
基本构成 对正跑道的最后进近航段; 中间进近航段; 最多三条起始进近航段,包括直线起始进近航段和位于两侧的
偏置起始进近航段。 截获区(程序进入区) T或Y型布局允许从任何方向直接进入程序; 程序进入区以在IAF处的进入角度确定; 侧方的起始进近航段设置为与中间进近航段航迹有70°~90°
飞行程序设计各阶段工作流程和工作内容研究

link图1 飞行程序设计的一般流程CHINA SCIENCE AND TECHNOLOGY INFORMATION Oct.2018·中国科技信息2018年第20期航空航天◎机场选址阶段是从拟选区域范围内,选择场址条件较好的预选场址,对预选场址的空域和净空等条件进行综合论证和比选,推荐一个首选场址。
开展的工作内容和工作流程如下:项目启动:接到项目任务后,成立项目组,启动项目;提供资料清单和收集原始资料:需要收集的资料包括:地图资料、人工障碍物资料、气象资料等;基础数据处理:地图扫描和拼接、处理人工障碍物数据、周边航路航线和相关限制空域等数据;图上作业:结合地形资料、周边机场分布、空域和航路航线等情况,寻找可能的初选场址;现场踏勘:了解场址条件和周边人工障碍物情况;确定预选场址位置和跑道方向:与地面设计单位共同确定预选场址,并根据周边障碍物和周边军民航机场分布情况确定场址跑道方向;进离场方案设计:结合周边航路航线情况、空域分布情况,设计场址的初步进离场方案;军民航协调:与相关空管和军航单位就进离场初步方案进行协调,该阶段协调的主要内容是场址的可行性和进出港点设置方案;调整设计方案并编写选址报告;根据军民航协调会纪要,调整进离场设计方案,并按报告编制要求编写选址报告;项目审核:将设计方案和设计报告提交质量管理部门进行审核;项目评审:咨询单位组织相关部门进行评审;批复:项目上报民航局并获得批复。
(2)预可研/可研阶段预可研阶段需要重点明确机场的空域使用需求,同步进行军民航空域协调,明确空域使用框架或进离场使用方案;可研阶段要重点根据机场的气象统计资料和确定的运行最低标准,提出净空处理量和处理需求。
预可研/可研阶段工作内容和工作流程如下:项目启动;提供资料清单和收集原始资料:与选址阶段不同,预可研/可研阶段只需收集选址阶段批复的场址的相关资料;基础数据处理;调整场址位置和跑道方向:根据地面、空域和净空等因素微调跑道位置和方向;进离场方案设计:根据调整的跑道信息和相关变化情况设计进离场方案;征求意见:业主牵头征求军方、局方和空管等单位意见;军民航协调:与相关空管和军航单位就进离场初步方案进行协调,并形成会议纪要。
飞行程序设计

飞行程序设计目录•前言•第一章飞行程序理论基础• 1.1 飞行程序结构• 1.1.1 离场程序• 1.1.2 进近程序• 1.1.3 进场程序• 1.2 航空器分类• 1.3 飞行程序定位和容差规范• 1.3.1 定位方法分类• 1.3.2 定位容差限制•第二章飞行程序辅助设计系统设计• 2.1 系统功能划分• 2.1.1 航迹和保护区绘制• 2.1.2 障碍物评估• 2.2 几何算法实现• 2.2.1 风螺旋线算法设计• 2.2.2 风螺旋算法实现• 2.2.3 缓冲区算法设计• 2.2.4 缓冲区算法实现• 2.3 用户界面设计• 2.3.1 VBA程序菜单设计• 2.3.2 绘图程序界面设计• 2.3.3 评估程序界面设计•第三章离场程序设计• 3.1 流程描述• 3.2 离场程序要求的参数• 3.3 直线离场• 3.4 转弯离场•指定高度转弯离场•电台上空转弯•交叉定位或DME弧确定TP的转弯离场• 3.5 向台飞行• 3.6 全向离场•第四章等待程序设计• 4.1 流程描述• 4.2 等待程序• 4.2.1 等待程序作图参数• 4.2.2 等待程序模板绘制方法• 4.2.3 模板的作图• 4.2.4 确定定位容差• 4.2.5 基本区作图和交叉定位上空的全向进入作图• 4.2.6 区域缩减原则•第五章复飞程序设计• 5.1 流程描述• 5.2 直线复飞• 5.3 转弯复飞•第六章障碍物评估程序设计• 6.1 评估的一般准则• 6.2 直线离场障碍物评估• 6.3 转弯离场障碍物评估• 6.3.1 指定转弯点的障碍物评价• 6.3.2 指定高度转弯离场的障碍物评价• 6.4 复飞程序评估• 6.4.1 直线复飞障碍物评价• 6.4.2 转弯复飞的障碍物评价• 6.5 等待程序评估•第七章结论前言在国内,飞行程序设计一直以手工设计为主。
随着计算机技术的普及,设计人员在设计过程中使用了一些CAD辅助设计的技巧,但是并没有从根本上解决手工设计效率低下,工作繁重和结果不一致等问题。
飞行程序设计1

飞行程序设计基本步骤
1、根据机场的净空条件、导航设施的布局与 本机场进、出港有关的航路情况,确定离场
、进场、进近以及复飞程序的飞行路线;
2、根据各个阶段设计规范与准则,确定保护
区;
保护区:符合一定安全系数的前提下,飞机沿
航线飞行时可能产生的最大偏移范围。
飞行程序设计基本步骤
3、根据规范与准则,计算每一航段内可以保证航
飞行程序的组成 进近程序
根据一定的飞行规则,对障碍物保持 一定的超障余度所进行的一系列预定的机 动飞行。 始于起始进近定位点(IAF)或规定的进 场航路开始, 至能完成着陆的一点为止,或如果不能完 成着陆,至航空器复飞至等待点或具有航 路超障高度为止。
飞行程序的组成 进近程序分类
按照飞行规则:分为目视进近程序和仪表
飞行程序设计的基本参数 程序设计所采用的坐标系统
程序设计使用的速度
1. 航空器的分类 依据跑道入口速度(Vat):生产厂家所给的航空 器在最大着陆重量、标准大气条件和着陆外型时失 速速度(指示空速)的1.3倍; 2.各飞行阶段所使用的速度; 3.各飞行阶段程序设计使用的速度都要转换成真 空速;
空器不与其他地面障碍物相撞的最低安全高度;
超障高/高度(OCH/A)
4、检查各个航段的爬升、下降梯度是否满足规范
要求,如果不满足,调整以上各个阶段。
第二节 飞行程序设计的基本参数
本节主要内容为飞行程序设计的基础以及程序设计中误差的考虑和
计算。
坐标系统 使用的速度 风对飞行的影响 导航中影响飞行的因素和误差计算
飞行程序的组成?进近程序?起始进近航段?中间进近航段?最后进近航段?复飞航段?等待程序飞行程序的组成?起始进近航段?始于起始进近定位点iaf至中间进近定位点if或最后进近定位点faffap?消失高度使航空器对正中间或最后航迹飞行程序的组成?中间进近航段从中间进近定位点if开始至最后进近定位点faffap调整航空器至着陆外形减速调整航空器位置为最后进近作准备
民用机场飞行程序设计报告编制要求

民用机场飞行程序设计报告编制要求关于下发《民用机场飞行程序设计报告编制要求》的通知各地区管理局,各监管办,各地区空管局、各空管分局(站),各运输机场:为规范民用机场飞行程序设计报告编制内容、深度及上报格式,提高飞行程序设计质量,确保航空飞行安全,现将《民用机场飞行程序设计报告编制要求》下发你们,请各相关单位结合本地区、本单位的实际情况,认真组织学习,并遵照执行。
民航局空管办民航局空管局二九年一月二十三日目 录第一章 总则第二章 飞行程序初步设计报告上报要求第三章 飞行程序正式(竣工)设计报告上报要求第四章 飞行程序修改、优化设计报告上报要求第五章 飞行程序航图上报要求附件一 飞行程序设计报告主本上报格式附件二 飞行程序设计报告副本上报格式关于《民用机场飞行程序设计报告编制要求》编写说明第一章 总则第一条 本要求规范了国内所有民用运输机场、军民合用运输机场民用部分(以下简称运输机场)飞行程序的修改、优化及新、改、扩建机场飞行程序初步设计和正式(竣工)设计报告的编制内容、深度与上报格式。
第二条 本要求适用于我国民用航空飞行程序设计及相关活动。
民用航空空中交通管理机构和从事民用航空飞行程序相关活动的单位和个人应当遵守本要求的相关规定。
第三条 飞行程序是组织实施飞行、提供空中交通服务和建设导航设施的基本依据。
为规范飞行程序设计流程,健全科学管理模式,提高工作效率,保证运行安全,负责设计和维护本辖区运输机场飞行程序的民航地区空中交通管理局(以下简称地区空管局)在新、改、扩建机场飞行程序初步设计、正式(竣工)设计或飞行程序修改、优化设计后,需形成飞行程序设计报告(以下简称设计报告),设计报告内容须符合本要求有关章节规定,并应征求相关空管和导航设备部门意见后进行上报。
第四条 设计报告可以分为设计报告主本和设计报告副本(主要包括飞行程序保护区图)两部分。
第五条 设计报告主本内容包括:设计报告名称、设计号、设计单位、设计完成日期;设计报告项目负责人、程序设计人、项目复核人、飞行程序设计保护区图绘制人签字;前言或说明,介绍飞行程序设计背景和上级审核注意事项;目录;设计报告主体内容:详见第二章、第三章、第四章的有关条款;结论和建议;附录(附表和附图)。
PBN飞行程序设计 进场程序设计

进场程序设计的方法
1 2
基于性能导航(PBN)方法 利用卫星导航系统,结合飞机性能,制定精确的 进场航路。
传统方法
基于地面导航设施,如VOR、NDB等,设计进 场程序。
3
混合方法
结合PBN和传统方法,根据实际情况选择最优方 案。
进场程序设计的步骤
航路规划
根据飞行条件、机场布局和航 路要求,规划安全、高效的进 场航路。
01
通过分析各种可能发生的故障模式及其对飞行安全的
影响,确定关键风险点。
风险矩阵评估法
02 将风险因素按照发生的可能性与后果严重程度进行分
类和排序。
模拟飞行实验
03
通过模拟实际飞行条件,评估飞行程序设计的可行性
和安全性。
风险控制的策略
预防性控制
通过定期维护和检查,确保设备 处于良好状态,降低故障发生的
灵活适应
航路规划应适应不同的飞行条件和 需求,具有一定的灵活性。
03
02
经济高效
优化航路,降低飞行成本,提高飞 行效率。
环境保护
考虑环境保护,合理规划航路以降 低噪音和排放。
04
航路规划的方法
基于规则的方法
根据规定的规则和标准进行航路规划。
人工智能方法
利用人工智能技术进行航路规划。
基于模型的方法
利用飞行模型进行模拟和优化。
验证与审批
对优化后的进场程序进行实地验证和审批,确保其符合相关标准和规 范的要求。
进场程序设计的应用与发展
随着PBN技术的不断发展和普及,进场程序设 计在航空运输领域的应用也越来越广泛。
目前,国内外许多机场已经采用了PBN技术进 行进场程序设计,提高了飞行安全和运行效率。