飞行程序设计6(复飞)
飞行程序设计大纲

《飞行程序设计》课程考试大纲课程名称:《飞行程序设计》课程代码:0800第一部分课程性质与目标一、课程性质与特点《飞行程序设计》是高等教育自学考试交通运输专业独立本科段的一门专业课,是本专业学生学习和掌握空域规划和设计基本理论和方法的课程。
设置本课程的目的是使学生从理论和实践上掌握以NDB、VOR、ILS等设备作为航迹引导设备时,离场程序、进场程序、进近程序、复飞程序和等待程序,以及航路的设计原理和方法。
通过对本课程的学习,使学生熟练掌握目视与仪表飞行程序设计的有关知识,使之能独立完成有关机场的飞行程序设计和优化调整。
二、课程设置目的与基本要求了解飞行程序的总体结构、设计方法;了解飞行程序的分类原则;掌握飞行程序设计的基本准则;能够独立完成有关机场的飞行程序设计和优化调整。
本课程的基本要求如下:1.了解飞行程序的基本结构和基本概念。
2.了解终端区内定位点的定位方法、定位容差和定位的有关限制。
3.了解离场程序的基本概念,掌握直线离场、指定高度转弯离场、指定点转弯离场和全向离场的航迹设计准则、保护区的确定方法、超障余度和最小净爬升梯度的计算方法,以及相应的调整方法;4.掌握航路设计的国际民航组织标准和我国的标准;5.掌握进近程序各个航段的航迹设置准则;6.掌握各种情况下,进近程序各个航段保护区的确定原则;7.掌握进近程序各个航段超障余度和超障高度的计算方法;8.掌握进近各个航段下降梯度的规定,以及梯度超过标准时的调整方法。
9.掌握基线转弯程序的基本概念,出航时间的确定方法,保护区的确定原则,超障余度和超障高度的计算方法;10.掌握直角航线的基本概念,出航时间的确定方法,保护区的确定原则,超障余度和超障高度的计算方法;11.掌握ILS进近的基本概念,精密航段障碍物评价方法,以及超障高度的计算方法;12.了解等待程序的基本概念,掌握保护区的确定方法,以及超障余度和超障高度的计算方法;13.了解区域导航程序设计的基本概念。
飞行程序设计-第6章-转弯离场

转弯区内边界(转弯角度≤ 75°)
15 °
平行线
中国民航大学空中交通管理学院
转弯区内边界(转弯角度>75°)
15 ° 平行线
中国民航大学空中交通管理学院
转弯区外边界画法 (转弯角度≤ 90°)
15 °
Ca
r TP b E f
(r2+E2)0.5
P
15 °
平行线
C=(TAS+W)×6 R=(562tgα)/v
以上两种方法可以单独使用,也可以同时使用。
中国民航大学空中交通管理学院
四、指定点(TP)转弯离场
在有条件的机场,为了避开直线离场方向上的高大障碍物, 或受空域等条件限制,需要设计转弯离场时,可以要求航空 器在一个指定点(TP)开始转弯,我们称之为在指定点(TP) 转弯离场。 ➢ 位置适当的导航台和定位点
7.88
1.34
1.04
0.95
9.51
1.047
中国民航大学空中交通管理学院
用最后复飞速度加10% 画转弯区。 很明显,D类必须考虑O1和O3 , C类只需考虑O3 。 若限制指示空速IAS为490km/h,所有航空器都能避开O1 。 O3必须考虑转弯区所需MOC。 ➢ 0.008×(3 500+6 006)=76m,因此,MOC O3 =90m。 ➢ (3 500+6 006)×0.033+5-90=229m。 ➢ O3 =256m>229m 所以不能接受。 还需增加27m(256-229=27)[O3仍高出27m]。
须以适当的余度飞越;或 ➢ 受空域等条件限制,程序要求航空器在规定的航向或由
航迹引导,上升至一个规定的高度再开始转弯。
中国民航大学空中交通管理学院
飞行程序设计(非精密直线进近)

减小至3.7km。保护区外边界与标称航迹成7.80。
40.5km
半宽 9.3km IAF
3.7km IF VOR
如果IAF到VOR台的距离小于40.5km,标称航迹每
一侧的保护区宽度,在IAF为9.26km,均匀减小至VOR 台位臵为3.7km。 小于40.5km
3.7km
VOR
– IF为NDB导航台
3.7km(2.0NM) 4.6km(2.5NM) 5.6km(3.0NM) 6.5km(3.5NM) 7.4km(4.0NM)
5. 保护区
VOR(1.9km,7.80)NDB(2.3km,10.30)
4.4.2盘旋进近
盘旋进近是完成仪表进近之后的目视飞行阶段。由于运 行方面的原因,跑道不适于直线进近着陆时,通过盘旋进 近使航空器处于可着陆位臵。另外,当最后进近航迹对正 或下降梯度不符合直线进近着陆的准则时,也应进行盘旋
第四章
非精密直线进近程序设计
精密进近与非精密进近的区别:
精密进近:导航精度高,在着陆前的航段提供垂直引
导如:ILS、MLS、 PAR 非精密进近:导航精度较低,在着陆前的航段不提供 垂直引导如:NDB、VOR
等待航段: 如果本场繁忙或者空中交通管制需要,航空器可以在等待点排 队等待空管的进近指令。 起始进近航段:消耗高度和着陆前的主要航向调整工作。 中间进近航段:调整航空器至着陆外形,减速,调整位臵,为最后进 近作准备。
进近。理想情况为航迹对正着陆区的中心,必要时,可对
正可用着陆道面的某个部分。在特殊情况下,航迹可对正 机场外,但离可用着陆道面的距离不能超过1.9km。
4.5 中间进近航段保护区 一般情况:直接连接起始进近和最后进近保护区 IF和FAF都有导航台 IF处 FAF处 VOR ±3.7KM 7.8° VOR ±1.9KM 7.8° NDB ±4.6KM 10.3° NDB ±2.3KM 10.3°
飞行程序设计

飞行程序设计概述飞行程序设计是指为飞行器编写程序,控制其飞行行为和执行任务。
飞行程序设计涉及到飞行器的导航、自动驾驶、飞行模式切换等功能,是飞行器能够完成各种任务的重要组成部分。
飞行程序设计原则在进行飞行程序设计时,需要遵循一些基本原则,以确保飞行器的安全和性能。
1. 模块化设计:将飞行程序分解为多个模块,每个模块负责完成特定的功能。
这样做可以提高程序的可维护性和可扩展性。
2. 容错设计:在程序中引入适当的容错机制,以应对可能出现的意外情况,如传感器故障、通信中断等。
容错设计可以增加飞行器的鲁棒性。
3. 优化算法:使用高效的算法来处理飞行器的导航和控制问题,以提高飞行器的性能和响应速度。
4. 人机交互设计:考虑到飞行程序的操作性和可用性,设计人机界面,使操作员可以方便地进行程序的设置和调整。
飞行程序设计流程飞行程序设计通常包括以下几个步骤:1. 需求分析:明确飞行器的任务和功能需求,确定需要实现的飞行程序功能。
2. 界面设计:设计人机界面,使操作员可以方便地进行程序的设置和调整。
3. 算法设计:设计飞行控制算法和导航算法,用于控制飞行器的姿态和路径。
4. 模块设计:将飞行程序分解为多个模块,并对每个模块进行详细设计。
5. 编码实现:根据设计完成对应的编码工作,实现飞行程序。
6. 调试优化:进行系统调试和优化工作,确保飞行程序的正确性和稳定性。
7. 测试验证:对飞行程序进行全面的测试验证,确保程序能够按照预期完成飞行任务。
飞行程序设计工具进行飞行程序设计时,可以使用一些专门的工具来辅助开发工作。
1. 集成开发环境(IDE):使用IDE可以提供代码编辑、调试、编译和运行等一体化的开发环境,提高开发效率。
2. 仿真工具:仿真工具可以模拟飞行器的运行环境,帮助进行飞行程序的调试和测试。
3. 数据分析工具:使用数据分析工具对飞行器的传感器数据和飞行记录进行分析,以评估飞行程序的性能和稳定性。
飞行程序设计的挑战飞行程序设计面临一些挑战,需要解决一些问题。
飞行程序设计-第6章-气压垂直导航

VPA
MOC
D
RDH
FAS 跑道入口
D ATT
平
FAP
30°
MAPt
面 图
XFAS
MOCAPP
VPA
剖 面
图
FAP
αFAS
XFAS 跑道入口
最后进近航段超过5NM的OAS
为保护装备有垂直角度调节(Vertical Angular Scaling)功能的 航空器,当最后进近航段长度超过5NM时,需要对障碍物进 行额外的评估;
(MOCapp – 50)/TAN Z
结果: - 在坐标X处复飞面的高HZi = (XZi – X)TAN Z
HZf = (XZf – X)TAN Z - 若HOBST>HOAS,计算当量障碍物高。
(MDA/H); 没有MAPt; 使用OAS评估障碍物并计算OCA/H。
APV Baro-VNAV程序的关键特征:
考虑低温修正 需要公布运行的最低温度 Baro-VNAV在供垂直引导时没有辅助地面导航设施,障碍物
评估使用类似于ILS的障碍物评估面,但此面的建立却是基于 特定的水平引导系统,Baro-VNAV本身没有水平引导。因此 只能与水平区域导航程序LNAV结合使用。 不能使用远距的高度表拨正值 最低运行标准的分类名称为“LANV/VNAV”
APV SBAS
ILS MLS
GNSS-SBAS
GNSS-GBAS
气压垂直导航(Barometric Vertical Navigation)是一个导 航系统,该系统能够向飞行员显示参考指定垂直航径角 (VPA,通常是3°)的计算得来的垂直引导信息;
由计算机模拟的垂直引导信息是基于气压高度的,表现形式 是从RDH延伸的一个垂直航径角。
part3-飞行程序设计(普及版)

离场方式
直线离场
起始离场航迹与跑道中线方向夹角≤15°为直线离场。当 起始离场航迹不经过跑道起飞末端(DER)时,在正切跑道起飞 末端处的横向距离不得超过300m。直线离场航线必须在20.0km (10.8NM)以内取得航迹引导。直线离场允许不超过15°的航 迹调整,航空器在航迹调整前, 应保持跑道方向至少达到跑 道之上120m(394ft)
转弯离场 (指定高度和指定点)
离场航线要求大于15°的转弯的离场方式;转弯离场时,航 空器必须在转弯之后10km(5.4NM)之内 取得航迹引导。转弯 最低高度:DER标高之上120m;
全向离场
除去障碍物片区以外
----影响起飞的因素: 避开不利地形和障碍物; 航空器的操作能力和性能(航空公司考虑); 可用的目视助航设施; 跑道特性; 可用的导航设施; 发动机失效等不正常情况(航空公司考虑); 跑道污染、侧风影响等不利天气(航空公司考 虑)。
进场
进场程序种类
进场程序实际上是进近程序中的进场航段 我国许多机场的离场程序以走廊口作为进 场程序的开始点 在为一个机场设计进场程序时,应为每一 条可用于着陆的跑 道设计所使用的进场 程序 一个机场为所有进场的航空器规定了仪表 飞行条件下的进场 航线时,我们将这些 航转弯复飞两种类型
转弯复飞有三种形式: a)指定高度转弯复飞,即规定转弯起始于一个高度/高; b)指定点转弯复飞,即规定转弯起始于一个定位点或电 台; c)立即转弯复飞,即规定转弯起始于MAPt。 复飞程序必须规定一个点为复飞程序的开始和一个点为复 飞程 序的终点. 复飞程序终止的高度/高必须 足以允许: 开始另一次进近; 回到指定的等待航线; 重新开始航线飞行。 复飞爬升梯度 2.5%
飞行程序设计-第6章-转弯离场分解

(b)位于TP(K-K线)之后的障碍物:
MOC max 90m, 0.008 dr d0
其中: d0为从转弯起始区边界到障碍物的最短距离,dr为丛
DER到K-K线的水平距离
转弯起始区内最高障碍物的标高应≤ TNA-90m。
中国民航大学空中交通管理学院
(2)转弯区内障碍物高度要求:
转弯区内最小超障余度(MOC)按下列方法计算:
(a)位于TP(K-K线)之前的障碍物:
MOC max 90m, 0.008 d r d0
*
其中:d0为从转弯起始区边界到障碍物的最短距离,dr*为转
转弯区内边界(转弯角度≤ 75°)
15 ° 平行线
中国民航大学空中交通管理学院
转弯区内边界(转弯角度>75°)
15 °
平行线
中国民航大学空中交通管理学院
转弯区外边界画法 (转弯角度≤ 90°)
C
a
(r2+E2)0.5
r
TP 15 ° 平行线 C=(TAS+W)×6 R=(562tgα)/v r=180v/∏R E=(90/ R )×W 风螺旋线半径=(r2+E2)0.5
185 100 250 135 335 180 380 205 445 240
185 100 240 130 295 160 345 185 425 230
205 110 280 150 445 240 490 265 510 275
D
E
注:Vat是在标准大气条件,最大着陆重量,着陆外型时,航空器失速速度的1.3倍。 * 反向和直角航线的最大速度。
飞行程序设计-第6章-直线离场

指示空速(IAS):最后复飞的最大速度; 温度:ISA+15°; 风速(W):56km/h; 时间:3秒驾驶员反应+3秒建立坡度延迟; C=(TAS+W)×6秒 转弯最早/最晚点:[d1,d2+C]——距离TP
PDG=8.1%。
第2步: 确定用8.1% PDG达到的高(高度),以保证用3.3% 正常爬升梯度能飞越障碍物O2 一般的方法是确定代表两个爬升剖面的两条线的交点。
线1为起始于DER之上5m处的PDG; 线2为3.3%正常爬升梯度, 按要求高飞越O2 (障碍物高+MOC)。
斜线的公式是z = sd + c。此处: c = DER起始高 d = 离DER的距离 s = 线的坡度(垂直角的正切) z = 距离d处的高 PDG为8.1%的公式(线1)z = 0.081d + 5。 PDG为3.3%梯度的公式(线2)z = 0.033d + c。
向距离); O2高250m,位于跑道中线右侧1325m,离DER 5500m (横向
距离) (横向距离) 。
中国民航大学空中交通管理学院
第1步: 确定障碍物是否在离场保护区内
O1在中线上并在保护区内; O2在保护区内。 在O2处离场保护区的半宽 = 150 + 5500× tan 15°= 1623.7m 。 第2步: 确定在每个障碍物处的OIS面高
爬升梯度规定(单个障碍物)
爬升梯度规定(多个障碍物)
计算爬升梯度不予考虑的障碍物
对于那些离跑道末端较近,而且穿透OIS面的障碍物, 如果障碍物标高加超障余度之和与跑道末端的高差 ≤60m,则在计算程序设计梯度(PDG)时不予考虑,但障 碍物资料应予以公布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 非精密直线进近程序设计(续)
六、立即转弯复飞 立即转弯复飞是转弯高度等于OCA/Hfm的指定高度转弯
复飞。其设计准则与指定高度转弯复飞相似,但有以下不 同: 计算保护区的“C”容差时:
使用最后进近的最大指示空速、风速使用19km/h。 七、指定点转弯复飞
第四章 非精密直线进近程序设计(续)
第四节 复飞航段设计
每个仪表进近必须设计一个复飞程序,且只准公布一种 复飞程序。 复飞程序终止
a) 开始另一次进近;或 b) 回到指定的等待航线;或 c) 重新开始航线飞行。 一、复飞航段的结构及复飞的类型 1.复飞航段的三个阶段 :复飞起始阶段、复飞中间阶段、
复飞最后阶段
2.保护区
保护区的确定原则:
导航台类型 在导航台处的宽度
扩展角
VOR台
±1.9km(1.0NM) 7.8°
NDB台
±2.3km(1.5NM)
10.3°
第四章 非精密直线进近程序设计(续)
3.超障余度 a)复飞起始阶段
障碍物必须满足:hO≤OCA/Hf-MOC 调整方法
提高OCA/Hf 向FAF方向移动MAPt
2. 用距FAF的距离确 定的复飞点的纵向容 差
第四章 非精密直线进近程序设计(续)
三、过渡容差(X) 过渡容差是航空器从进近下降过渡到复飞爬升用于航 空器外形和飞行航径的改变所需的修正量。过渡容差 的未端规定为开始爬升点(SOC)。 如果MAPt是一个定位点,过渡容差X是根据航空器最 后进近最大速度,按机场标高,ISA+15℃计算的真空 速(TAS)加上19km/h(10kt)顺风飞行15秒的距离。
第四章 非精密直线进近程序设计(续)
b)复飞中间阶段和复飞最后阶段 障碍物的高度(hO)应满足 :hO≤OCA/Hfm+dOtgZ-MOC 调整方法: 提高复飞梯度; 提高OCA/Hfm; 向FAF方向移动复飞点 采用转弯复飞
第四章 非精密直线进近程序设计(续)
五、指定高度转弯复飞 1.保护区 转弯起始区 转弯区 确定保护区所使用的参数:
1.转弯点的类型及容差区
转弯点为一个导航台时,定位容差区可取±0.9km
转弯点为交叉定位点时,依照第一章的有关准则确定 仅有侧方台的一条径向线、方位线或一个DME距离确
定转弯点时,定位容差区的确定方法如图所示
第四章 非精密直线进近程序设计(续)
2.转弯保护区 转弯保护区的确定方法与指定点转弯离场相同。
第四章 非精密直线进近程序设计(续)
四、不考虑超障余度的目视盘旋区 在目视盘旋区内,最后进近区和复飞区之外有显著障
碍物的特定的扇区,可以允许不考虑超障余度。在盘 旋区内这个特定扇区的边界按照附件14规定的仪表进 近面的大小确定。 当使用上述规定时,公布的程序必须禁止驾驶员在有 障碍物的扇区内作盘旋飞行
第四章 非精密直线进近程序设计(续)
第四章 非精密直线进近程序设计(续)
2.确定转弯点(TP)及计算转弯高度/高(TA/H) 3.超障余度
转弯起始区内,障碍物的高度/高(hO)应满足:
hO≤TA/H-MOC 转弯角度≤15°时,MOC为30m 转弯角度>15°时,MOC为50m 调整方法:提高tgZ、提高OCA/Hfm 、移动MAPt、移动TP 转弯区内,障碍物的高度/高(hO)应满足
a)高度:机场标高加上300m(1000ft) b)温度:ISA+15°C c)指示空速:使用最后复飞速度。如需要可使用中间复飞速
度,但在程序中应注明“复飞转弯的最大速度限制为IAS xxx km/h(kt)”。 d)真空速 e)风 f)平均达到的转弯坡度角:15° g)定位容差 h)飞行技术容差(c):
e)转弯坡度:平均达到20°或取得每秒3° 目视盘旋区半径(R)通过下列公式计算求出:
R = 2r + d 式中:r为转弯半径,计算转弯半径时,速度用真空速加
风速(即TAS + W); d为航空器在无风天气条件下,10秒钟时间内飞行的 距离。
D类 C类 B类
A类
R
R
第四章 非精密直线进近程序设计(续)
三、超障余度 目视盘旋区超障余度及有关限制
航空器分类 超障余度
m(ft)
A
90(295)
B
90(295 )
C
120()
D
120 ( 394 )
E
150(394 )
最低OCH m(ft) 120(394) 150(492) 180(591) 210(689) 240(787)
最低能见度 Km(NM) 1.9(1.0) 2.8(1.5) 3.7(2.0) 4.6(2.5) 6.5(3.5)
第四章 非精密直线进近程序设计(续)
3.确定转弯点(TP) 4.超障余度 转弯区内的障碍物的高度(hO)应满足下式:
hO≤OCA/Hfm +(dZ + dO)tgZ – MOC 调整方法 —提高复飞梯度; —提高OCA/Hfm; —移动复飞点;
—移动复飞转弯点。
第四章 非精密直线进近程序设计(续)
第五节 目视机动(盘旋)进近
一、航迹对正
正常的限 制
理想的最后进近 航迹
最大限制 导航台 最大限制
正常的限 制
第四章 非精密直线进近程序设计(续)
二、目视盘旋区 计算目视盘旋区半径(R)所需参数:
a) 指示空速(IAS) b) 温度:ISA+15°C; c)高度:计算真空速使用机场标高; d)风:整个转弯使用46km/h(25kt)风速;
四、直线复飞 1. 航迹设置
a)复飞起始阶段 复飞起始阶段的复飞航迹应该是最后进近航迹的延续, 不允许改变航向。
第四章 非精密直线进近程序设计(续)
b)复飞中间阶段和复飞最后阶段
可以要求航空器改变航向。转弯角度不得大于15°
该飞行阶段最好有航迹引导,但可以有部分无航迹
引导。中间复飞阶段和最后复飞阶段均无长度限制。
第四章 非精密直线进近程序设计(续)
2. 复飞的类型 —直线复飞 —指定点转弯复飞 —指定高度转弯复飞 —立即转弯复飞
二、复飞点(MAPt)及其容差区 非精密进近程序的复飞点可以是:
一个电台;或 一个定位点;或 离FAF一个距离的点。
第四章 非精密直线进近程序设计(续)
1. 由电台或定位点确定的复飞点的纵向容差 1)复飞点容差区的最早限制 2)复飞点容差区的最晚限制 从复飞点的标称位置到复飞点容差区的最晚限制之间的 距离称为纵向容差。