2014年秋季新版新人教版七年级数学上学期4.1.1、立体图形与平面图形同步练习3
七年级数学上册 4.1 几何图形 4.1.1 立体图形与平面图形(1)教案 (新版)新人教版

课题:4.1.1立体图形与平面图形(1)教学目标:1.通过实物和具体模型,了解从物体外形抽象出来的几何体、平面、直线和点的概念.2.能识别一些基本几何体.3.初步了解立体图形和平面图形的概念.重点:识别一些基本几何体.难点:了解从物体外形抽象出来的几何体、平面、直线和点的概念.教学流程:一、情境引入从城市建筑到乡村住宅,从立交桥到交通标志,从剪纸艺术到城市雕塑,从动物形态到申奥标志……图形世界是多姿多彩的!物体的形状、大小和位置关系是几何研究的内容.二、探究1问题1:观察纸盒,你能看出哪些图形?答案:从整体上看,它的形状是长方体;看不同的侧面,得到的是正方形或长方形;看棱得到的是线段;看顶点得到的是点.问题2:观察罐头、乒乓球,你能得到哪些图形?答案:强调:从实物中抽象出的各种图形统称为几何图形.三、探究2问题3:观察:下面这些几何图形有什么共同特点?指出:有些几何图形的各部分不都在同一平面内,它们是立体图形.强调:属于棱柱属于圆柱它们都属于柱体;属于棱锥属于圆锥它们都属于锥体;属于球问题4:观察:下面的实物可以抽象成什么立体图形?答案:三棱柱六棱柱四棱锥追问:你能再找出一些棱柱、棱锥的实例吗?练习1 :1.下列物体的形状类似于球的是( )A.乒乓球B.羽毛球C.茶杯D.文具盒答案:A2.正方体属于( )A.圆柱B.圆锥C.棱柱D.棱锥答案:C3.下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连接起来.正方体球六棱柱圆锥长方体四棱锥答案:四、探究3问题5:观察:下面这些几何图形有什么共同特点?强调:有些几何图形的各部分都在同一平面内,它们是平面图形.练习2:1.下列图形中,属于平面图形的有( )A.2个B.3个C.4个D.5个答案:A2.下面各图中包含哪些简单的平面图形?请再举出一些平面图形的例子.五、巩固提高1.几何体简称为体,按其形体可分为三类:柱体、锥体、球体,下面图形中:(1)属于柱体的有_____________;(2)属于锥体的有_____________;(3)属于球体的有_____________.(填序号)答案:①②③⑤⑦;④⑧;⑥2.下图中共有多少个正方形?答:共有35个正方形.六、体验收获今天我们学习了哪些知识?1.几何主要研究物体的什么?2.举例说明几何图形、立体图形与平面图形?3. 立体图形与平面图形的联系?七、达标检测1.如图是一座房子的平面图,组成这幅图的几何图形有( )A.三角形、长方形B.三角形、正方形、长方形C.三角形、长方形、梯形D.正方形、长方形、梯形答案:C2.下列说法正确的是( )①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形.A.①②B.①③C.②③D.①②③答案:C3.观察下列几何图形,写出几何图形的名称.答案:圆柱;圆锥;四棱锥;长方体;球;三棱柱;六棱柱4.下图中共有多少个三角形?答案:共有14个三角形.八、布置作业教材121页习题4.1第1、2、3题.。
人教版七年级数学上册4.1.1第1课时《认识立体图形与平面图形》说课稿1

人教版七年级数学上册4.1.1 第1课时《认识立体图形与平面图形》说课稿1一. 教材分析《认识立体图形与平面图形》是人教版七年级数学上册4.1.1第1课时的内容。
本节课的主要内容是让学生认识立体图形和平面图形,了解它们的特点和区别。
教材通过生动的图片和实例,引导学生观察、思考和交流,从而培养学生的空间想象能力和抽象思维能力。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面图形和立体图形有一定的了解。
但学生在学习过程中容易混淆平面图形和立体图形,对它们的特点和区别认识不清晰。
因此,在教学过程中,教师需要注重引导学生观察、思考和交流,帮助学生建立清晰的空间观念。
三. 说教学目标1.知识与技能目标:让学生了解立体图形和平面图形的概念,掌握它们的特点和区别。
2.过程与方法目标:通过观察、思考和交流,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探究的精神。
四. 说教学重难点1.教学重点:立体图形和平面图形的概念及其特点。
2.教学难点:立体图形和平面图形的区别,以及如何运用它们解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法进行教学。
2.教学手段:利用多媒体课件、实物模型和黑板进行教学。
六. 说教学过程1.导入新课:通过展示生活中常见的立体图形和平面图形,引导学生关注它们,激发学生的学习兴趣。
2.探究新知:(1)教师提问:同学们,你们在生活中见到过哪些立体图形和平面图形?它们有什么特点?(2)学生回答,教师总结:立体图形是有长度、宽度和高度的图形,如正方体、长方体等;平面图形是有边和角的图形,如三角形、矩形等。
(3)教师展示立体图形和平面图形的图片,引导学生观察、思考和交流,从而掌握它们的特点和区别。
3.巩固新知:(1)教师发放实物模型,让学生触摸和观察,进一步加深对立体图形和平面图形的认识。
人教版七年级上册数学教案 第四章4.1.1立体图形与平面图形(三) 教案

4.1.1立体图形与平面图形(三)教学目标知识与技能⒈了解直棱柱、圆锥等简单立体图形的展开图。
2.进一步认识立体图形与平面图形之间的关系。
3.通过描述展开图,发展学生运用几何语言表述问题的能力。
过程与方法⒈在平面图形和立体图形互相转化的过程中,初步建立空间观念,发展几何直觉。
⒉通过动手观察、操作、类比、推断等数学活动,积累数学活动经验,感受数学思考过程的条理性,发展形象思维。
⒊通过展开与折叠的活动,体会数学的应用价值。
情感、态度与价值观:⒈通过学生之间的交流活动,培养主动与他人合作交流的意识。
⒉通过探讨现实生活中的实物制作,提高学生学习热情。
教学重点:了解多面体与其展开图形之间的关系,多面体可以由平面图形围成,一个多面体可以按不同的方式展开成不同的平面图形,并能初步感受到研究空间问题的思维方法。
教学难点:能够正确判断哪些平面图形可以折叠成立体图形,能够正确判断某个立体图形的展开图是哪些平面图形。
教学过程:一、情景导入问题:你知道圆柱、圆锥的侧面展开图吗?这节课我们继续更加深入地研究立体图形的展开图。
二、自学指导(8分钟),完成118页探究。
1.熟读课本P117-1182.许多立体图形是由一些平面图形围成的,将它们适当地剪开,就得到它的平面展开图,这说明了体是由围成的,同一立体图形按不同的方式展开,得到的展开图是的如:你能想象出下面的平面图形可以折叠成什么多面体?动手做做看。
3.把一个圆锥沿着底面圆上一点和圆锥顶点所在直线剪开,并把底面沿圆剪开会得到什么图形呢?和。
4.如图,四种图形各是哪种立体图形的表面展开所形成的?说出相应的四种立体图形.设计意图:给出一些提示性的线索把教材内容组织成一定的尝试层次,通过问题启发,让学生通过积极主动的探索活动来学习知识。
引导学生概括出:多面体是由平面图形围成的立体图形,沿着它的一些棱剪开,就能展成平面图形,立体图形都可以展开成平面图形。
三、自学检测(5分钟)1.下列图形能折叠成什么图形?2.用一个宽2 cm,长3 cm的矩形卷成一个圆柱,则此圆柱的侧面积为。
人教版数学七年级上册4.1.1几何图形(2)立体图形与平面图形(教案)

1.培养学生的空间观念:通过观察、操作立体图形,使学生能够理解立体图形的特征,形成对空间物体的直观认识,提高空间想象力和几何直观能力。
2.培养学生的逻辑思维:在探讨立体图形与平面图形的关系过程中,训练学生运用逻辑推理能力,发现规律,提高解决问题的能力。
3.培养学生的数据分析观念:学会通过观察、测量、计算等手段,分析立体图形的尺寸、面积和体积等数据,培养数据分析与处理能力。
-圆柱有两个底面(圆形)和一个侧面(曲面)。
-圆锥有一个底面(圆形)和一个侧面(曲面)。
-球体没有面,是由无数个等半径的同心圆组成。
-平面图形与立体图形的关系:理解立体图形的各个面是如何由平面图形组成的。
-正方体的每个面是一个正方形。
-长方体的每个面是一个长方形。
-圆柱的侧面是一个矩形,展开后可看到一个长方形。
其次,在实践活动和小组讨论中,我发现学生在解决问题时,空间想象力和逻辑思维能力有待提高。针对这一点,我在教学中加入了更多的问题解决环节,引导学生运用所学知识解决实际问题。同时,鼓励学生在小组内进行讨论和交流,取长补短,共同提高。
此外,对于教学难点,如立体图形与平面图形的转换、尺寸计算等,学生在理解上存在一定的难度。在今后的教学中,我需要更加关注这部分内容的教学,通过设置不同难度的练习题,让学生逐步掌握这些知识点。
人教版数学七年级上册4.1.1几何图形(2)立体图形与平面图形(教案)
一、教学内容
本节课选自人教版数学七年级上册第四章第一节第一部分“几何图形(2)立体图形与平面图形”。教学内容主要包括以下两个方面:
1.立体图形的认识:正方体、长方体、圆柱、圆锥、球等基本立体图形的识别及其特点。
2.平面图形与立体图形的关系:了解立体图形的各个面是由哪些平面图形组成的,例如正方体的六个面是正方形,长方体的六个面是由长方形组成等。
七年级数学上册4.1.1立体图形和平面图形教案1(新版)新人教版

立体图形与平面图形一、教学目标1.知识与技能:使学生初步认识立体图形和平面图形的概念,能从具体实物中抽象出圆柱、圆锥、棱柱、棱锥、球等简单立体图形,能找到这些立体图形在生活中的原型.2.过程与方法:培养学生用图形描述现实世界的意识,激发学生对几何图形的好奇心,培养几何直觉.3.情感态度和价值观:通过揭示几何图形与丰富多彩的图形世界的密切联系,使学生感受到几何图形的美及实用价值,培养热爱数学的情感.二、教学重点与难点重点:认识简单的立体图形,发展几何直觉.难点:从实物中抽象出立体图形.三、教学方法采用情境式和问题式教学模式,结合多媒体和学案实施教学.四、学法指导通过动口、动手、动脑等活动,主动探索、发现问题、互动合作、归纳概括、解决问题.五、教学准备教师:多媒体课件、学案等;学生:预习课题内容;六、教学过程1、感悟与体味【多媒体展示】分别展示建筑、生活物品等立体图形和平面图形各6副,让学生感悟生活中处处存在图形,注意引导学生有意识的进行分类.教师引导学生给出几何图形的概念,并提出问题:你能列举出你所熟知的几何图形有哪些吗?2、过程与体验【多媒体展示】情景1:文具盒、魔方、篮球、螺母等图片,提出问题:生活中你会常见很多实物,由下列实物能想象出你熟悉的几何体吗?学生讨论完成问题答案,教师总结立体图形概念:立体图形:图形所表示的各部分不都在同一平面内,这样的图形叫做立体图形。
【多媒体展示】常见的立体图形:长方体、正方体、圆柱、圆锥、球等;及三棱柱、三棱锥、六棱柱等.教师引导学生完成对立体图形的分类:柱体、球体、椎体.【多媒体展示】情景2:国旗、汽车标志、奥运五环等图片,提出问题:找一找下列各组图片中各有哪些熟悉的平面图形?学生讨论完成问题答案,教师总结平面图形的概念:平面图形:图形所表示的各部分都在同一平面内,这样的图形叫做平面图形。
【多媒体展示】常见的平面图形:三角形、长方形、五边形、圆等。
3.归纳与总结教师与学生共同总结几何图形的概念及分类:几何图形分为立体图形和平面图形两类,以及立体图形有柱体、球体、椎体等.4.练习与应用【多媒体展示】下图中的一些物体与我们学过的哪些图形相类似?把相应的物体和图形连接起来!学生自主做答,教师做好指导与订正工作.5.收获小结:1.本节课学到哪些知识?2.本节课有哪些疑惑?6、布置作业:(1)书面作业:课本练习题;(2)搜集身边的几何图形,并进行分类;七、板书设计:4.1.1 立体图形与几何图形立体图形:柱体、球体、椎体几何图形:平面图形:三角形、多边形、圆中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
人教版初中数学七年级上册《4.1.1 立体图形与平面图形》同步练习卷

人教新版七年级上学期《4.1.1 立体图形与平面图形》同步练习卷一.选择题(共22小题)1.如图,这个立体图形中小正方体的个数是()A.9个B.10个C.11个D.12个2.如图的几何体由5个相同的小正方体搭成.从正面看,这个几何体的形状是()A.B.C.D.3.下列几何图中,是棱锥的是()A.B.C.D.4.下列几何体中,是圆锥的为()A.B.C.D.5.下列所述物体中,是球体的是()A.铅笔B.打足气的自行车内胎C.乒乓球D.电视机6.下面几何体中,既不是柱体,又不是锥体的是()A.B.C.D.7.下列几何体中,面的个数最少的是()A.B.C.D.8.如图所示的四种物体中,哪种物体最接近于圆柱()A.B.C.D.9.在一个正方体的玻璃容器内装了一些水,把容器按不同方式倾斜,容器内水面的形状不可能是以下哪些图形()A.锐角三角形B.钝角三角形C.等腰梯形D.五边形10.下列图形中,是棱柱的是()A.B.C.D.11.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()A.B.C.D.12.下列各组图形中都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体13.下列图形中,含有曲面的立体图形是()A.B.C.D.14.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学,它有6条棱,则该模型对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥15.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个16.下列立体图形中,不属于多面体的是()A.四棱柱B.圆锥C.五棱柱D.长方体17.如图,下列图形全部属于柱体的是()A.B.C.D.18.下列几何体中,是柱体的是()A.B.C.D.19.把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的表面包括下底面共有多少朵花朵.()A.60B.61C.62个D.63个20.下列各图是立体图形的是()A.B.C.D.21.下列几何体中,属于棱柱的有()A.3个B.4个C.5个D.6个22.下列说法中,不正确的是()A.棱柱的侧面可以是三角形B.棱柱的侧面展开图是一个长方形C.若一个棱柱的底面为5边形、则可知该棱柱侧面是由5个长方形组成的D.棱柱的上底面与下底面的形状与大小是完全一样的二.填空题(共8小题)23.一个棱柱共有21条棱,则这个棱柱共有个面.24.四棱柱有条侧棱.25.六棱柱有条棱,顶点,个面.26.六棱柱是一个立体图形,它是由个面,条棱,个顶点组成的.27.下面的几何体中,属于柱体的有个.28.正六棱柱有个顶点.29.若一个棱柱有7个面,则它是棱柱.30.如图,一个正方体的表面上分别写着连续的6个整数,且每两个相对面上的两个数的和都相等,则这6个整数的和为.三.解答题(共2小题)31.如图所示为8个立体图形.其中,柱体的序号为,锥体的序号为,有曲面的序号为.32.(1)下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.()()()()()(2)将这些几何体分类,并写出分类的理由.人教新版七年级上学期《4.1.1 立体图形与平面图形》2019年同步练习卷参考答案与试题解析一.选择题(共22小题)1.如图,这个立体图形中小正方体的个数是()A.9个B.10个C.11个D.12个【分析】按照每层的小正方体的个数,相加即可得到这个立体图形中小正方体的个数.【解答】解:由图可得,第一层有7个;第二层有5个;故这个立体图形中小正方体的个数是12个,故选:D.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.2.如图的几何体由5个相同的小正方体搭成.从正面看,这个几何体的形状是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:A.【点评】本题考查了简单几何体的三视图,从正面看得到的图形是主视图.3.下列几何图中,是棱锥的是()A.B.C.D.【分析】根据棱锥的定义判断即可.【解答】解:A、是圆柱,B、是圆锥,C、是正方体,D、是三棱锥,故选:D.【点评】本题考查了认识立体几何,正确的认识几何体是解题的关键.4.下列几何体中,是圆锥的为()A.B.C.D.【分析】根据圆锥的定义解答.【解答】解:观察可知,C选项图形是圆锥.故选:C.【点评】本题考查了认识立体图形,熟悉常见的立体图形是解题的关键.5.下列所述物体中,是球体的是()A.铅笔B.打足气的自行车内胎C.乒乓球D.电视机【分析】结合实物进行解答.【解答】解:A、铅笔是圆柱体,故本选项错误;B、打足气的自行车内胎不是球体,故本选项错误;C、乒乓球是球体,故本选项正确;D、电视机不是球体,故本选项错误;故选:C.【点评】此题主要考查了认识立体图形,结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.6.下面几何体中,既不是柱体,又不是锥体的是()A.B.C.D.【分析】解这类题首先要明确柱体,椎体、球体的概念,然后根据图示进行解答.【解答】解:A、是三棱柱,是柱体,不符合题意;B、是圆柱,是柱体,不符合题意;C、是球,属球体,符号题意;D、是圆锥,是锥体,不符合题意;故选:C.【点评】本题考查了立体图形的定义,注意几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.7.下列几何体中,面的个数最少的是()A.B.C.D.【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【解答】解:三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥,故选:C.【点评】考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.8.如图所示的四种物体中,哪种物体最接近于圆柱()A.B.C.D.【分析】观察所给图形,根据圆柱体的特点即可做出判断.【解答】解:最接近圆柱的是生日蛋糕.故选:A.【点评】本题考查了认识立体图形,比较简单,熟悉圆柱体是解题的关键.9.在一个正方体的玻璃容器内装了一些水,把容器按不同方式倾斜,容器内水面的形状不可能是以下哪些图形()A.锐角三角形B.钝角三角形C.等腰梯形D.五边形【分析】根据正方体的截面性质判断即可.【解答】解:在一个正方体的玻璃容器内装了一些水,把容器按不同方式倾斜,容器内水面的形状不可能是钝角三角形,故选:B.【点评】此题考查了认识立体图形,弄清正方体截面的特征是解本题的关键.10.下列图形中,是棱柱的是()A.B.C.D.【分析】根据棱柱与棱锥的区别进行判断.【解答】解:A、是三棱锥,故A错误;B、是圆柱,故B错误;C、是圆锥,故C错误;D、是三棱柱,故D正确;故选:D.【点评】本题考查了认识立体图形:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.11.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()A.B.C.D.【分析】根据圆柱体的截面图形可得.【解答】解:将这杯水斜着放可得到A选项的形状,将水杯倒着放可得到B选项的形状,将水杯正着放可得到D选项的形状,不能得到三角形的形状,故选:C.【点评】本题主要考查认识几何体,解题的关键是掌握圆柱体的截面形状.12.下列各组图形中都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体【分析】根据平面图形定义:一个图形的各部分都在同一个平面内的图形是平面图形可得答案.【解答】解:A、球、圆锥是立体图形,错误;B、棱锥、棱柱是立体图形,错误;C、角、三角形、正方形、圆是平面图形,正确;D、长方体是立体图形,错误;故选:C.【点评】此题主要考查了平面图形,关键是掌握平面图形的定义.13.下列图形中,含有曲面的立体图形是()A.B.C.D.【分析】根据立体图形的特征,可得答案.【解答】解:A、角是平面图形,故A不符合题意;B、半圆环是平面图形,故B不符合题意;C、棱台不含曲面,故C不符合题意;D、侧面是曲面的立体图形,故D符合题意;故选:D.【点评】本题考查了认识立体图形,正确区分平面图形与立体图形是解题关键.14.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学,它有6条棱,则该模型对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥【分析】根据三棱锥的特点,可得答案.【解答】解:侧面是三角形,说明它是棱锥,底面是三角形,说明它是三棱锥,故选:C.【点评】本题考查了认识立体图形,熟记常见几何体的特征是解题关键.15.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个【分析】根据棱柱的概念、结合图形解得即可.【解答】解:第一、二、四个几何体是棱柱,故选:B.【点评】本题考查的是立体图形的认识,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥是解题的关键.16.下列立体图形中,不属于多面体的是()A.四棱柱B.圆锥C.五棱柱D.长方体【分析】根据由多个平面组成的几何体是多面体,可得答案.【解答】解:∵圆锥是旋转体,四棱柱、长方体、五棱柱都是多面体,∴圆锥不是多面体,故选:B.【点评】本题考查了认识立体图形,多面体是由多个平面组成的几何体,注意圆锥是旋转体.17.如图,下列图形全部属于柱体的是()A.B.C.D.【分析】根据柱体的定义,结合图形即可作出判断.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选:C.【点评】此题考查了认识立体图形的知识,属于基础题,解答本题的关键是掌握柱体和锥体的定义和特点,难度一般.18.下列几何体中,是柱体的是()A.B.C.D.【分析】根据柱体的概念和定义即可解.【解答】解:A、该图形是圆锥体,故本选项错误;B、该图形是三棱锥,故本选项错误;C、该图形上下两底面不全等,不是柱体,故本选项错误;D、该图形是正方体,属于柱体,故本选项正确.故选:D.【点评】本题考查的棱柱的定义,关键点在于:棱柱的侧面是几个长方形围成,且上下底面是相等的.19.把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的表面包括下底面共有多少朵花朵.()A.60B.61C.62个D.63个【分析】先根据图形得出最右边的正方体是:上蓝,下白,左绿,右红,前黄,后紫,即可推出其它正方形,代入朵数即可得出答案.【解答】解:∵大小颜色花朵分布完全一样,∴最左边的正方体告诉我们:黄色紧邻的面是白色;最右边的正方体告诉我们:黄色紧邻着红色和蓝色;∴可以推断出最右边的正方体的白色面是在它的左侧面或下底面;又∵右数第二个正方体告诉我们红色紧邻着白色;∴对于最右边的正方体,白色只可能在下底面(如果在左侧面就与红色是对立面了,不符题意);∵根据左数第二个正方体可知:红色紧邻着紫色;∴对于最右边的正方体,后侧面是紫色,左侧面是绿色.即最右边的正方体为例,它是:上蓝,下白,左绿,右红,前黄,后紫.也就是说:黄的对立面是紫;紫的对立面是黄;红的对立面是绿,蓝的对立面是白.依次对应从左至右的四个正方体,下底面分别是:紫,黄,绿,白.∴长方体的上面有花:2+5+1+3=11朵,前面有花:4+1+4+2=11朵,下面有花:5+2+6+4=17朵,后面有花:3+6+3+5=17朵,左面有花:1朵,右面有花:6朵,长方体的表面包括下底面共有:11+11+17+17+6+1=63朵.故选:D.【点评】考查了认识立体图形,注意正方体的空间图形,从相对面入手,分析及解答问题.20.下列各图是立体图形的是()A.B.C.D.【分析】根据立体图形的定义,可得答案.【解答】解:由题意,得三棱锥是立体图形,故选:D.【点评】本题考查了立体图形,每个面不在同一个平面内是解题关键.21.下列几何体中,属于棱柱的有()A.3个B.4个C.5个D.6个【分析】根据棱柱的概念、结合图形解得即可.【解答】解:第一、第三、第六个几何体是棱柱,共有3个.故选:A.【点评】本题考查的是立体图形的认识,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥是解题的关键.22.下列说法中,不正确的是()A.棱柱的侧面可以是三角形B.棱柱的侧面展开图是一个长方形C.若一个棱柱的底面为5边形、则可知该棱柱侧面是由5个长方形组成的D.棱柱的上底面与下底面的形状与大小是完全一样的【分析】根据棱柱的结构特征进行判断.【解答】解:A、棱柱的每一个侧面都是平行四边形,故本选项错误;B、棱柱的侧面展开图是长方形,故本选项正确;C、一个棱柱的底面是一个5边形,则它的侧面必须有5个长方形组成,故本选项正确;D、棱柱的上下底面是全等的多边形,则棱柱的上下底面是形状、大小相同的多边形.故本选项正确;故选:A.【点评】本题考查了立体图形的认识,熟记常见立体图形的结构特征是解题的关键.二.填空题(共8小题)23.一个棱柱共有21条棱,则这个棱柱共有9个面.【分析】根据棱柱的概念和定义,可知有21条棱的棱柱是七棱柱.【解答】解:21÷3=7,∴一个棱柱共有21条棱,那么它是七棱柱,∴这个棱柱共有9个面.故答案为:9.【点评】本题主要考查了认识立体图形,解决问题的关键是掌握棱柱的结构特征.24.四棱柱有4条侧棱.【分析】根据立体图形,即可解答.【解答】解:四棱柱有4条侧棱,故答案为:4.【点评】本题考查了棱柱的特征,解题时可以运用一般规律:n棱柱有(n+2)个面,2n 个顶点和3n条棱.25.六棱柱有18条棱,12顶点,8个面.【分析】根据六棱柱的概念和定义即可得出答案.【解答】解:因为六棱柱上下两个底面是6边形,侧面是6个长方形,所以共有12个顶点;8个面;18条棱.故答案为18,12,8.【点评】此题主要考查了立体图形,解决本题的关键是掌握六棱柱的构造特点.26.六棱柱是一个立体图形,它是由8个面,18条棱,12个顶点组成的.【分析】根据长方体的特征,六棱柱有8个面,相对的面面积相等;有18条棱互相平行的一组4条棱的长度相等;有12个顶点.【解答】解:六棱柱有8个面,18条棱,12个顶点.故答案为:8,18,12.【点评】此题主要考查认识立体图形的知识,解题的关键是了解长方体的特征.27.下面的几何体中,属于柱体的有4个.【分析】解这类题首先要明确柱体,椎体、球体的概念,然后根据图示进行解答.【解答】解:柱体分为圆柱和棱柱,所以柱体有圆柱、正方体、六棱柱,三棱柱共4个.故答案为:4.【点评】本题考查了立体图形的定义,注意几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.28.正六棱柱有12个顶点.【分析】根据正六棱柱上、下地面各有6个顶点,据此可得.【解答】解:正六棱柱有12个顶点.故答案为:12.【点评】本题主要考查认识立体图形,解题的关键是掌握常见几何体的形状和构成.29.若一个棱柱有7个面,则它是5棱柱.【分析】根据棱柱有两个底面求出侧面的面数,然后解答解答.【解答】解:∵棱柱有七个面,∴它有5个侧面,∴它是5棱柱,故答案为:5【点评】本题考查了认识立体图形,关键在于根据棱柱有两个底面确定出侧面的面数.30.如图,一个正方体的表面上分别写着连续的6个整数,且每两个相对面上的两个数的和都相等,则这6个整数的和为51.【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,判断出6是最小的数,然后确定出这六个数,再相加即可得解.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴6若不是最小的数,则6与9是相对面,∵6与9相邻,∴6是最小的数,∴这6个整数的和为:6+7+8+9+10+11=51.故答案为:51.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.三.解答题(共2小题)31.如图所示为8个立体图形.其中,柱体的序号为①②⑤⑦⑧,锥体的序号为④⑥,有曲面的序号为③④⑧.【分析】根据柱体的意义,椎体的意义,可得答案.【解答】解:柱体的序号为①②⑤⑦⑧,锥体的序号为④⑥,有曲面的序号为③④⑧,故答案为:①②⑤⑦⑧;④⑥;③④⑧.【点评】本题考查了认识立体图形,正确区分柱体和锥体是解题关键.32.(1)下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.()()()()()(2)将这些几何体分类,并写出分类的理由.【分析】(1)针对立体图形的特征,直接填写它们的名称即可.(2)可以按柱体、锥体和球进行分类,也可以按平面和曲面进行分类,方法不同,答案不同,只要合理即可.【解答】解:(1)从左向右依次是:球、圆柱、圆锥、长方体、三棱柱.(2)观察图形,按柱、锥、球划分,则有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体.【点评】本题考查了立体图形的认识和几何体的分类.熟记常见立体图形的特征是解决此类问题的关键.几何体的分类,从图形形状可以分为柱体、锥体和球三种,注意结合实际几何体的特征进行分类.。
【初中数学】部编本新人教版七年级上册数学4.1.1 第1课时 认识立体图形与平面图形

第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识立体图形和几何图形1、如图,左面是一些具体的物体,右面是一些立体图形,试找出与下面立体图形相类似的实物(用线连接).2、将一个直角三角形绕它的最长边(斜边)旋转一周,得到的几何体是( ).3、下列结论中正确的是( ).①圆柱由3个面围成,这3个面都是平面;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面;③球仅由1个面围成,这个面是平面;④正方体由6个面围成,这6个面都是平面.A.①②B.②③C.②④D.①④4、下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是( ).A.③⑤⑥ B.①②③C.③⑥ D.④⑤5、将如图所示的几何体进行分类,并说明理由.6、如图所示的八棱柱,它的底面边长都是5厘米,侧棱长都是6厘米,回答下列问题:(1)这个八棱柱一共有多少面?它们的形状分别是什么图形?哪些面的形状、面积完全相同?(2)这个八棱柱一共有多少条棱?多少个顶点?(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是什么形状?面积是多少?参考答案1、答案:如图所示:2、解析:A×圆柱是由一长方形绕其一边长旋转而成的B×圆锥是由一直角三角形绕其直角边旋转而成的C×该几何体是由直角梯形绕其下底旋转而成的D√该几何体是由直角三角形绕其斜边旋转而成的答案:D3①×圆柱由3个面围成,其中两底面是平面,侧面是曲面,所以①错误.4、解析:三角形、长方形、正方形、圆是平面图形;正方体、圆锥、圆柱是立体图形.答案:A5、分析:几何体的分类不是唯一的.我们应先观察各个几何体,努力发现其共同点,然后可根据其共同点来进行适当的分类.解:若按柱体、锥体、球体来分类:(2)(3)(5)(6)是柱体,(4)是锥体,(1)是球体;若按几何体的面是否含有曲面来分类,则(1)(4)(6)是旋转体,(2)(3)(5)是多面体.6、解:(1)这个八棱柱一共有10个面,上下两个底面是八边形,八个侧面都是长方形;上下两个底面的形状、面积完全相同,八个侧面形状、面积完全相同.(2)这个八棱柱一共有24条棱,16个顶点.(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是长方形,长为5×8=40(厘米),宽为6厘米,所以面积是40×6=240(平方厘米).。
人教版七年级数学上册:4.1.1《立体图形与平面图形——立体图形的表面展开图》说课稿2

人教版七年级数学上册:4.1.1 《立体图形与平面图形——立体图形的表面展开图》说课稿2一. 教材分析《立体图形与平面图形——立体图形的表面展开图》这一节是人教版七年级数学上册第四章第一节的内容。
本节主要让学生了解立体图形的表面展开图的概念,学会如何将立体图形展开成平面图形,并能够识别常见的立体图形的表面展开图。
内容主要包括长方体、正方体、圆柱体和圆锥体的表面展开图。
二. 学情分析七年级的学生已经学习了平面图形的知识,对图形的性质和特征有一定的了解。
但是,对于立体图形的表面展开图,学生可能比较陌生。
因此,在教学过程中,我需要引导学生从平面图形的角度去理解和认识立体图形的表面展开图。
三. 说教学目标1.知识与技能目标:学生能够理解立体图形的表面展开图的概念,学会如何将立体图形展开成平面图形,并能够识别常见的立体图形的表面展开图。
2.过程与方法目标:通过观察、操作、思考等活动,学生能够培养空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,克服困难,自主学习,培养合作意识和团队精神。
四. 说教学重难点1.教学重点:立体图形的表面展开图的概念,常见立体图形的表面展开图。
2.教学难点:如何将立体图形展开成平面图形,理解立体图形和平面图形之间的关系。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、引导发现法等。
2.教学手段:多媒体课件、实物模型、展开图卡片等。
六. 说教学过程1.导入新课:通过展示一些日常生活中的立体物体,如纸箱、易拉罐等,引导学生思考这些物体的表面展开图是什么样子。
2.探究新知:(1)教师展示长方体和正方体的实物模型,引导学生观察其表面展开图的特点。
(2)学生分组讨论圆柱体和圆锥体的表面展开图,教师进行指导。
(3)各小组汇报讨论结果,教师点评并总结。
3.巩固练习:学生独立完成一些立体图形的表面展开图的练习题,教师进行讲解和指导。
4.课堂小结:教师引导学生总结本节课所学内容,巩固立体图形的表面展开图的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章几何图形初步
4.1 几何图形
4.1.1 立体图形与平面图形
5分钟训练(预习类训练,可用于课前)
1.图4-1-1中,上面一行是一些具体的实物图形,下面一行是一些立体图形,试用线连接立体图形和类似的实物图形.
图4-1-1
思路解析:解决本题的关键是能从实物图形中抽象出数学几何体.
答案:
2.球体的三视图是()
A.三个圆 B .两个圆,一个长方形 C.两个圆和一个半圆D.两个圆
思路解析:通过观察实物,可以轻松知道答案.
答案:A
3.下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是…( )
思路解析:这虽然是一个数学题,但也是生活的常识,我们知道在同一时刻,同一地点影子的方向是不可能不同的,也不可能出现,高的物体比矮的物体的影子还短的情形,所以排除B、C、D
答案:A
10分钟训练(强化类训练,可用于课中)
1.如图4-1-2,请你在横线上写出哪种立体图形的表面能展开成下面的图形.
图4-1-2
思路解析:熟悉常见的几何体的展开图是解决本题的关键.
答案:五棱锥圆锥三棱柱六棱柱长方体三棱柱
2.如图4-1-3,小明一家四口人坐在桌子周围,桌上正中央有一把水壶,请选择他们分别看到的是水壶的哪个面,小明_______,爸爸_______,妈妈_______,妹妹______.
图4-1-3
思路解析:本题考查从不同方向看,可利用实物观察得到答案.
答案:D B C A
3.江苏常州模拟图4-1-4是一天中四个不同时刻两个建筑物的影子:
图4-1-4
将它们按时间先后顺序进行排列,正确的是()
A.③④②①
B.②④③①
C.③④①②
D.③①②④
思路解析:根据常识,上午太阳从东方,所以影子投向西边,然后太阳向西移动,影子向东移动.由此可以排出顺序.
答案:C
4.如图4-1-5所示,假定用A、B表示正方体相邻的两个面,用字母C表示与A相对的面,请在下面的正方体展开图中填写相应的字母.
图4-1-5
思路解析:可以通过模型,动手试一试,可以得到答案.
快乐时光
“共计”这门课
爸爸:“儿子,期模拟试考得怎么样?”
儿子:“数学40分,语文60分,共计100分.”
爸爸:“‘共计’这门课考得好,不错,以后,在数学、语文上还要多下功夫啊!”
30分钟训练(巩固类训练,可用于课后)
1.浙江模拟下列空间图形中是圆柱的为()
思路解析:把握住圆柱的特征是解决本题的关键.
答案:A
2.小明从正面观察图4-1-6所示的两个物体,看到的是()
图4-1-6
思路解析:本题中有两个立体图形,一个为圆柱,正视图为长方形,一个为正方体,正视图为正方形.所以选C.
答案:C
3.下列说法中错误的是()
A.柱体有两个互相平行、形状相同且大小相等的面
B.棱锥除一个面外,其余各边都是三角形
C.圆柱的侧面是长方形
D.正方体是四棱柱,也是六面体
思路解析:明确柱体和锥体的基本区别是解决本题的关键.圆柱的侧面是曲面,其展开图才是长方形.
答案:C
4.江苏扬州模拟小丽制作了一个对面图案均相同的正方体礼品盒(如图4-1-7所示),则这个正方体礼品盒的平面展开图可能是()
图4-1-7
思路解析:根据立体图形可以知道图中的三个图案的位置,利用这三个图案的位置可以确定应选A.
5.图4-1-8给出的是哪个正方体的展开图()
图4-1-8
思路解析:显然黑色的面是相对的面,所以A,B错误,又因为两个小面应该是相对的,所以选D.
答案:D
6.一个圆形薄铁,刚好做成两个无底圆锥形容器,则这个圆形薄铁的周长恰好是无底圆锥底面周长的_______.
思路解析:由题可知,无底圆锥的侧面展开图一定是半圆,所以圆形薄铁的周长恰好是无底圆锥底面周长的2倍.
答案:2倍
7.图4-1-9中的几何图形可看作哪些简单的图形组成的?
图4-1-9
思路解析:仔细观察,不难写出答案.
答案:机器猫由三角形、圆、线段组成,邮箱是由长方形、三角形、圆组成,会笑的人由圆、三角形、线段组成.
8.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成和图4-1-10所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).
图4-1-10
思路解析:这里可以有4种补充方案,具体如下:。