离心泵性能测定实验报告

合集下载

实验2 离心泵性能特性曲线测定实验

实验2 离心泵性能特性曲线测定实验

1.2离心泵性能特性曲线测定实验 1.2.1实验目的1).了解离心泵结构与特性,学会离心泵的操作。

2).测定恒定转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

3).测定改变转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

4).测定串联、并联条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

5).掌握离心泵流量调节的方法(阀门、转速和泵组合方式)和涡轮流量传感器及智能流量积算仪的工作原理和使用方法。

6).学会轴功率的两种测量方法:马达天平法和扭矩法。

7).了解电动调节阀、压力传感器和变频器的工作原理和使用方法。

8).学会化工原理实验软件库(组态软件MCGS 和VB 实验数据处理软件系统)的使用。

1.2.2基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下扬程H 、轴功率N 及效率η与流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。

由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。

1 ) 流量V 的测定与计算采用涡轮流量计测量流量,智能流量积算仪显示流量值V m 3/h 。

2) 扬程H 的测定与计算在泵进、出口取截面列柏努利方程:gu u Z Z g p p H 221221212-+-+-=ρ (1—9) p 1,p 2:分别为泵进、出口的压强 N/m 2 ρ:液体密度 kg/m 3u 1,u 2:分别为泵进、出口的流量m/s g :重力加速度 m/s 2 当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为: gp p H ρ12-=(1—10)由式(1-10)可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。

本实验中,还采用压力传感器来测量泵进口、出口的真空度和压力,由16路巡检仪显示真空度和压力值。

离心泵实验报告

离心泵实验报告

离心泵实验报告离心泵实验报告引言:离心泵是一种常见的流体机械设备,广泛应用于工业生产和民用领域。

通过离心力将流体从低压区域输送到高压区域,起到加压和输送的作用。

本次实验旨在研究离心泵的性能特点和工作原理,以及其在不同工况下的流量、扬程和效率等参数的变化。

实验目的:1. 了解离心泵的结构和工作原理;2. 研究离心泵在不同转速和进口压力下的性能特点;3. 掌握离心泵的流量、扬程和效率等参数的测试方法。

实验装置:本次实验使用的离心泵实验装置主要包括离心泵、水箱、流量计、压力计等设备。

实验中使用的流体为水。

实验步骤:1. 检查实验装置的连接是否牢固,确保安全;2. 打开水泵和水箱,调节流量计的阀门,使水流量适中;3. 通过调节进水阀门控制进口压力,记录不同进口压力下的流量和扬程;4. 调节电机的转速,记录不同转速下的流量和扬程。

实验结果与分析:通过实验记录和数据分析,我们得到了离心泵在不同工况下的性能参数。

随着进口压力的增加,离心泵的流量和扬程均呈现增加的趋势。

这是因为进口压力的增加会增加离心泵的工作能力,使其能够更多地输送流体。

然而,当进口压力达到一定值后,流量和扬程的增加速度会逐渐减缓,直至趋于稳定。

在转速方面,随着转速的增加,离心泵的流量也会增加,但扬程则呈现先增加后减小的趋势。

这是因为转速的增加会增加离心泵的离心力,使其能够更快地输送流体。

然而,当转速达到一定值后,离心泵的扬程会受到离心力和摩擦阻力的影响,导致扬程逐渐减小。

此外,我们还计算了离心泵在不同工况下的效率。

实验结果显示,离心泵的效率随着流量和扬程的增加而增加,但在一定范围内会达到峰值后逐渐减小。

这是因为离心泵在输送流体过程中会产生一定的能量损失,导致效率的下降。

结论:通过本次实验,我们深入了解了离心泵的性能特点和工作原理。

进口压力和转速是影响离心泵性能的重要因素,它们对流量、扬程和效率等参数都有一定的影响。

在实际应用中,需要根据具体工况选择合适的进口压力和转速,以达到最佳的工作效果。

离心泵性能实验报告(附实验操作详图)

离心泵性能实验报告(附实验操作详图)

离心泵性能实验
实验目的:
了解离心泵的构造和特性,掌握离心泵的操作方法;
实验原理:
离心泵的压头H、轴功率N及功率η和流量Q之间的对应关系,若以曲线H~Q、N~Q、η~Q表示,则称为离心泵的特性曲线,可由实验测定。

注意这里


注意这里
水③

注意这里
Pv 、真空压力
Pm 、压力
Q 、流量
N 、轴功率


有用功率
压头效率

②③
①②

讨论:
1、离心泵开启前,为什么要先灌水排气?
答:是为了除去泵内的空气,使泵能够把水抽上来。

2、启动泵前,为什么要先关闭出口阀,待启动后再逐渐开大?而停泵时也要先关闭出口阀。

答:因为N随Q的增大而增大,当Q=0时,N最小,因此,启动离心泵时,应关闭出口阀,使电动机的启动电流减至最小,以保护电机。

启动后再逐渐开大,使为了防止管部收到太大的冲击。

而停泵时也要先关闭出口阀,是为了防止水倒流。

3、离心泵的特性曲线是否和连结的管路系统有关?
答:特性曲线和管路无关,因为测量点在电机两端,管路的大小、长短和流量无关,只是和流速有关。

4、离心泵的流量可由泵出口阀调节,为什么?
答:因为当阀小时,管阻大,电机的有效功率低,流量低。

同理,当阀开大时,管阻小,电机的有效功率高,流量高。

离心泵综合实验报告

离心泵综合实验报告
广 东石 油化 工学 院
化工原理 实验报告 化工基础
离心泵综合实验
班 姓 学
级 名ห้องสมุดไป่ตู้号
同组人员 实验日期 指导教师 成 绩
第一部分
一、实验目的
预习报告
二、实验原理
1
三、实验设备流程
四、实验步骤及注意事项
2
第二部分
实验数据记录及数据处理
一、仪器设备及实验材料主要参数
二、实验数据记录与实验结果处理
4
(三)管路特性测定实验
1、管路特性测定实验数据及实验结果列表 序号 1 2 3 4 5 6 7 8 9 10 2、计算举例
5
三、实验曲线
1. 流量计的流量与压差关系曲线
. 流量计的流量与压差关系曲线
6
2. 流量计的流量系数与雷诺数关系曲线
流量计的流量系数与雷诺数关系曲线
7
3. 离心泵特性曲线与管路曲线
(一)离心泵性能测定实验
1、离心泵性能测定实验数据及实验结果列表 水温 序 号 1 2 3 4 5 6 7 8 9 10 11 2、计算举例 ℃ 水密度 ρ = kg/m³ 高度差 h0 = m
3
(二)流量计校核实验
1、流量计校核实验数据及实验结果列表
序号 1 2 3 4 5 6 7 8 9 10 11 2、计算举例
8
第三部分
一、结果分析与讨论
实验结果分析与讨论
二、思考题
9

离心泵性能实验报告

离心泵性能实验报告

北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工100学号: 2010姓名:同组人:实验日期:一、报告摘要:本次实验通过测量离心泵工作时,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ∆、电机输入功率Ne 以及流量Q (t V ∆∆/)这些参数的关系,根据公式0e H H H H ++=压力表真空表、转电电轴ηη••=N N 、102e ρ⋅⋅=He Q N 以及轴N Ne =η可以得出离心泵的特性曲线;再根据孔板流量计的孔流系数ρp u C ∆=2/0与雷诺数μρdu =Re 的变化规律作出Re 0-C 图,并找出在Re 大到一定程度时0C 不随Re 变化时的0C 值;最后测量不同阀门开度下,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ∆,根据已知公式可以求出不同阀门开度下的Q H -e 关系式,并作图可以得到管路特性曲线图。

二、目的及任务①了解离心泵的构造,掌握其操作和调节方法。

②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。

③熟悉孔板流量计的构造、性能及安装方法。

④测定孔板流量计的孔流系数。

⑤测定管路特性曲线。

三、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。

其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。

由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。

另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。

(1)泵的扬程He :e 0H H H H =++真空表压力表v1.0 可编辑可修改式中:H 真空表——泵出口的压力,2mH O ,H 压力表——泵入口的压力,2mH O0H ——两测压口间的垂直距离,0H 0.85m = 。

【精品】离心泵性能实验报告

【精品】离心泵性能实验报告

【精品】离心泵性能实验报告离心泵是一种常见的泵类,它是基于旋转原理,通过离心力将液体送出的机械设备。

离心泵具有结构简单、使用方便、流量大、压力高等优点。

然而,在实际应用中,由于工况变化、泵运行时间长等原因,离心泵可能会出现性能降低等问题。

因此,为了更好地掌握并改善离心泵的性能,本文进行了一次离心泵性能实验,并对实验结果进行了分析和总结。

实验原理离心泵是一种动能换能设备,其基本工作原理是利用泵轮高速旋转时产生的离心力,将液体从入口吸入,提高流体的压力和流速,并将流体送到出口。

当泵轮高速旋转时,液体在泵轮中心的真空区域形成低压区域,使液体被强制送入泵轮,随后液体被离心力推向泵轮边缘,在泵轮与泵壳之间的流体通道中产生了压力,使液体沿通道流向出口。

离心泵的性能主要取决于其流量、扬程、功率等参数,这些参数通常被综合为性能曲线。

离心泵的性能曲线是指在一定转速下,离心泵的扬程(H)和流量(Q)之间的关系。

一般来说,离心泵的流量随着扬程的增加而逐渐减小,而功率则随着扬程的增加而逐渐增大。

实验步骤1.首先,将离心泵放置在整平的工作台上,并确定泵的入口和出口方向。

2.然后,将测量仪器连接到泵的入口和出口处,使用螺丝固定好。

3.接下来,打开水源,控制水源流量,并由调节器控制水的压力。

4.通过控制台上的开关启动离心泵,设定不同的流量和扬程值。

5.等泵运转1-2分钟后,记录每种情况下的流量、扬程和功率等参数。

6.最后,总结和分析实验结果,得出离心泵的性能曲线和运行参数。

实验数据处理与分析通过实验测量,得到了一组离心泵的性能参数数据,如表1所示:表1 离心泵性能参数数据| 流量(m3/h) | 扬程(m) | 功率(kW) ||--------------|-----------|-----------|| 1.0 | 10.0 | 0.2 || 2.0 | 9.0 | 0.3 || 3.0 | 8.0 | 0.4 || 4.0 | 6.0 | 0.6 || 5.0 | 5.0 | 0.8 || 6.0 | 4.0 | 1.0 |根据这些数据,我们可以计算出离心泵的流量-扬程和流量-功率曲线,如图1和图2所示:从图1和图2中可以看出,离心泵的性能曲线呈现倒U形,流量随着扬程的增加先增加后减小。

离心泵性能实验报告

离心泵性能实验报告

北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工100学号:2010姓名:同组人:实验日期:2012.10.7一、报告摘要:本次实验通过测量离心泵工作时,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差P 、电机输入功率Ne 以及流量Q(V/t )这些参数的关系,根据公式H e H 真空表H 压力表H0、N轴N 电电转、 Ne Q He以及Ne 可以得出102N 轴离心泵的特性曲线;再根据孔板流量计的孔流系数C 0u 0 / 2 p 与雷诺数Re du的变化规律作出C0Re 图,并找出在Re 大到一定程度时 C 0不随Re变化时的 C0值;最后测量不同阀门开度下,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差P ,根据已知公式可以求出不同阀门开度下的H e Q 关系式,并作图可以得到管路特性曲线图。

二、目的及任务①了解离心泵的构造,掌握其操作和调节方法。

②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。

③熟悉孔板流量计的构造、性能及安装方法。

④测定孔板流量计的孔流系数。

⑤测定管路特性曲线。

三、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。

其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。

由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、 N-Q 和η-Q 三条曲线称为离心泵的特性曲线。

另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。

(1)泵的扬程He:H e H 真空表H 压力表H 0式中: H 真空表——泵出口的压力,mH 2O ,H 压力表——泵入口的压力,mH 2 OH 0——两测压口间的垂直距离,H 00.85m。

(2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值高,所以泵的总效率为:Ne Q HeN 轴, Ne102式中 Ne ——泵的有效效率,kW ;Q ——流量, m 3/s ; He ——扬程, m ;3由泵输入离心泵的功率N 轴为: N 轴 N 电电 转式中: N 电 ——电机的输入功率, kW电 ——电机效率,取0.9;转 ——传动装置的效率,一般取1.0;2.孔板流量计空留系数的测定在水平管路上装有一块孔板, 其两侧接测压管, 分别与压差传感器两端连接。

离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告
马达—天平测功仪测定轴功率P计算公式为:
P= = (3)
通过调节阀门开度调节流量,由式(3)求取的数据或扭矩测功仪可直接采集轴功率数据,就可得出泵的轴功率和流量的关系曲线。
3.离心泵效率的计算
离心泵的有效功率可用下式计算:
Pe=qv gH(4)
离心泵的效率为:
(5)
通过调节阀门开度调节流量,由式(5)求取的数据就可得出泵的效率和曲线流量。
=lgA+mlgRe
在双对数坐标中作图,找出直线斜率,即为方程的指数m。在直线上任取一点的函数值代入方程中,即可得到系数A,即:
A=
用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联结果。应用微机,对多变量方程进行一次回归,就能同时得到m、n。
(2)对于方程的关联,首先要有Nu、Re、Pr的数据组。其准数定义式分别为:
(3)将出口调节阀开至最大,在流量范围内合理布置实验点,要求由大到小取10组以数据。
(4)将流量调节至某-数值,待系统稳定后读取并记录所需实验数据(包括流量为零时数据)。
(5)将泵出口调节阀关闭后,断开电源开关,停泵开启出口阀.开启进水阀。
(6)关闭各测试仪表,关闭总电源。
六、实验原始数据记录
水温:21.0℃转速:2900r/min
H=(pM-pV)/ρg=8.99(m)
P=2π*9.81Gnl/60=Gnl/0.974=58%
Pe=qvρgH=9.91m3/h×0.998(kg/m3)×8.99m=58%
η=Pe/P=23%/58%=39%
八、实验结果与分析讨论
离心泵有个重要特性:当压力(扬程)很低时,其流量会很大,这从泵的特性曲线上可以看出。而泵的功率与流量成正比,泵起动时,管道内没有压力,则造成泵的流量很大,则泵的功率很大,加上电机、泵的转动部分从静止到高速运转,需要很大的加速度,这样势必造成起动电流很大,因此采取关闭出口阀门的方法,使泵在起动时不输出水量,使泵的功率最小,当泵达到额定转速后,慢慢开启出口阀,逐渐增加水流量,使电机电流逐渐增加到额定电流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心泵性能测定
一、实验目的:
1、了解离心泵的构造与特性,掌握离心泵的操作方法;
2、测定并绘制离心泵在恒定转速下的特性曲线。

二、实验原理:
离心泵的压头H、轴功率N及功率η与流量Q之间的对应关系,若以曲线H~Q、N~Q、η~Q表示,则称为离心泵的特性曲线,可由实验测定。

实验时,在泵出口阀全关至全开的范围内,调节其开度,测得一组流量及对应的压头、轴功率和效率,即可测定并绘制离心泵的特性曲线。

泵的扬程He有下式计算:
而泵的有效功率Ne与泵效率η的计算式为:Ne=Qheηg;η=Ne/N
测定时,流量Q可用涡轮流量计或孔板流量计来计量。

轴功率N可用马达-天平式测功器或功率来表测量。

离心泵的性能与其转速有关。

其特性曲线是某一恒定的给定转速(一般nl=2900PRM)下的性能曲线。

因此,如果实验中的转速n与给定转速nl有差异,应将实验结果换算成给定转速下的数值,并以此数值绘制离心泵的特性曲线。

换算公式如下:
时,
三、装置与流程:
水由水箱1,经泵进口
阀2、离心泵4、出口阀8 9
涡轮流量计9,最后
流 10 8 6
回水
箱 7 3
5
4
2
1
四、操作步骤:
1、熟悉实验装置及仪器仪表等设备,做好启动泵前的准备工作;将泵盘车
数转,关闭泵进口阀,打开泵出口阀并给泵灌水,待泵内排尽气体并充满水后,再关闭泵出口阀。

2、启动离心泵,全开泵进口阀,并逐渐打开离心泵出口阀以调节流量。


操作过程稳定条件下,在流量为零和最大值之间,进行8次测定。

3、在每次测定流量时,应同时记录流量计、转速表、真空计、压力表、功
率测定器示值。

数据取全后,先关闭泵出口阀,再停泵。

五、实验数据记录和数据处理:
泵入口管径d1 =40mm;出口管径d2 =40mm;h0 = 0.1m;水温T =25.0℃;ρ=
997.0kg/m3;μ=0.903mPa·s; V[m3/ h]=0.04855I[μA];直管长度l = 2 m;
表1 泵性能数据记录表
由公式Q=V=[m3/h]=0.04855I[μA]; He=h0+(P2-P1)/ρg
Ne=Q×He×ρ×g N=PLn/0.974 泵功率η=
Ne/N×100%
表2 泵性能数据处理表
因为离心泵的性能与其转速有关,表2数据修正为下表3:(nt=2900PRM)。

相关文档
最新文档