自动控制原理频率响应法

合集下载

自动控制原理

自动控制原理

ω = +∞ (1, j 0) ω = ∞
奈氏曲线顺时针包围 (-1,j0)点2圈,即 N=-2 所以有: Z=P-N=2
仿真
即闭环系统在s右半平面有2个极点,所以系统不稳定。
5.4.3 虚轴上有开环极点时的奈氏判据
如下列图所示的奈氏曲线中,判别哪些是稳定的,哪些 是不稳定的。
Im
Im
Im
1
ω = +∞ 0
1.6 ∞
奈氏曲线顺时针包围 (-1,j0)点2圈,即 N=-2 所以有:
(1, j 0)
ω = 0+
仿真
Z=P-N=2
即闭环系统在s右半平面有2个极点,所以系统不稳定。
5.4.3 虚轴上有开环极点时的奈氏判据
对于如下形式的开环传递函数 K G(s)H(s) = s(Ts +1)(T2s +1) 1 其奈氏图与实轴交点为 此时的 ω =
5.4.3 虚轴上有开环极点时的奈氏判据
虚轴上有开环极点时的奈氏判据

由于不能通过F(s)的任何零、极点,所 以当F(s)有若干个极点处于s平面虚轴 (包括原点)上时,则以这些点为圆 心,作半径ε为无穷小的半圆,按逆时 针方向从右侧绕过这些点。 F ( s ) 的极点 因此,F(s)的位于s平面右半部的零点 和极点均被新奈氏回线包围在内。而将 位于坐标原点处的开环极点划到了复平 面的左半部。 这样处理满足了奈氏判据的要求(应用 奈氏判据时必须首先明确位于s平面右 半部和左半部的开环极点的数目)。
2ω + ω + 0.5ω 2ω ω 0.5ω = 0
ω = 1.87
此时
A(ω) = 0.44
可以判断出交点在点(-1,j0) 的右侧

自动控制原理(第三版)第五章频率响应法

自动控制原理(第三版)第五章频率响应法
频段的两条直线组成的折线近似表示, 如图5-18的渐近线所
示。 这两条线相交处的交接频率ω=1/T, 称为振荡环节的无阻尼
自然振荡频率。在交接频率附近, 对数幅频特性与渐近线存在
一定的误差, 其值取决于阻尼比ζ的值, 阻尼比越小, 则误差越大, 如表5-4所示。当ζ<0.707时, 在对数幅频特性上出现峰值。根
一个单位长度。设对数分度中的单位长度为L, ω0为参考点, 则 当ω以ω0为起点, 在10倍频程内变化时, 坐标点相对于ω0的距离
为表5-1中的第二行数值乘以L。
第五章 频 率 响 应 法
图 5-4 对数分度和线性分度
第五章 频 率 响 应 法
表 5-1 10倍频程内的对数分度
第五章 频 率 响 应 法
第五章 频 率 响 应 法
图 5-7 比例环节的伯德图
第五章 频 率 响 应 法
2. 积分环节 积分环节的频率特性为
其幅频特性和相频特性为
(5.18)
(5.19)
由式(5.19)可见,它的幅频特性与角频率ω成反比, 而相频特性恒
为-90°。对数幅频特性和相频特性为
(5.20)
第五章 频 率 响 应 法
T), 则有
因此有
这表明φ(ω)是关于ω=1/T, φ(ω)=-45°这一点中心对称的。 用
MATLAB画出的惯性环节的伯德图如图5-14所示(T=1)。
第五章 频 率 响 应 法
图 5-14 MATLAB绘制的惯性环节的伯德图
第五章 频 率 响 应 法
5. 一阶微分环节 一阶微分环节的频率特性为 幅频特性和相频特性为
即 所以, 惯性环节的奈氏图是圆心在(0.5, 0), 半径为0.5的半圆 (
见图5-12)。 对数幅频特性和相频特性为

自动控制原理第5章频率特性

自动控制原理第5章频率特性

自动控制原理第5章频率特性频率特性是指系统对输入信号频率的响应特点。

在自动控制系统设计中,了解和分析系统的频率特性是非常重要的,因为它可以帮助工程师评估系统的稳定性,性能和稳定裕度。

本章主要介绍频率特性的相关概念和分析方法,包括频率响应函数、频率幅频特性、相频特性、对数坐标图等。

1.频率响应函数频率响应函数是描述系统在不同频率下的输出和输入之间的关系的函数。

在连续时间系统中,频率响应函数可以表示为H(jω),其中j是虚数单位,ω是频率。

频率响应函数通常是复数形式,它包含了系统的振幅和相位信息。

2.频率幅频特性频率幅频特性是频率响应函数的模的图形表示,通常用于表示系统的增益特性。

频率幅频特性通常用对数坐标图绘制,以便更好地显示系统在不同频率下的增益特性。

对数坐标图上,增益通常以分贝(dB)为单位表示。

3.相频特性相频特性是频率响应函数的相角的图形表示,通常用于表示系统的相位特性。

相频特性可以让我们了解系统对输入信号的相位延迟或提前情况。

在相频特性图上,频率通常是以对数坐标表示的。

4. Bode图Bode图是频率幅频特性和相频特性的综合图形表示。

它将频率幅频特性和相频特性分别绘制在纵轴和横轴上,因此可以直观地了解系统在不同频率下的增益和相位特性。

5.系统的稳定性分析频率特性可以帮助工程师判断系统的稳定性。

在Bode图上,当系统的相位角趋近于-180度,且增益在此处为0dB时,系统即将变得不稳定。

对于闭环控制系统,我们希望系统在特定频率范围内保持稳定,以便实现良好的控制性能。

6.频率特性的设计频率特性的设计是自动控制系统设计中的一个重要任务。

工程师需要根据系统对不同频率下的增益和相位的要求,设计出合适的控制器。

常见的设计方法包括校正器设计、分频补偿、频率域设计等。

总结:本章重点介绍了自动控制系统的频率特性,包括频率响应函数、频率幅频特性、相频特性和Bode图。

频率特性的分析和设计对于掌握自动控制系统的稳定性、性能和稳定裕度非常重要。

自动控制原理第五章_频率响应法4

自动控制原理第五章_频率响应法4

( x ) G j x H j x 1800
h 20lgG( j x ) dB
dB 0
0 h 0dB
0
dB
00 h 0dB
h
c
负幅值裕度 正幅值裕度

90
h
0
c
90 180 270

x
2
1 1 a 4 0.84 c 2
10 0.1 例题 G(s) s s 2 s 100 s 0.1s2 0.01s 1 确定幅值裕量与相角裕量 0.1 G (j ) 2 j 0.1j 0.01 j 1






1 0.01
20lg G j x H j x (dB )
系统临界稳定,见右图:
G(j )曲线过(-1,j0)点时
j
G(j) =1 ∠ G(j) = -180o
同时成立!

G(j)
-1
1 =0
0
此时,截止频率等于穿越频率
=0+
K G( j ) j( jT1 1)( jT2 1)
( x ) 900 arctan x arctan 0.1 x
h 20lg 20
180
0
x 3.16 rad s
20
2
x 1 x
2
1 0.01 x
2
20lg
x 0 x
20 20lg 6.02dB 2 3.16
3 2
2(dB)
as 1 例题 G s 2 试确定相角裕量为450时参数a的值 s 2 a 1 ja 1 1 0 G ( j ) exp j ( t g a 180 ) 2 2 j Im

自动控制原理 第五章 频率法

自动控制原理 第五章 频率法

频率特性
在稳态下输出:e2 = E2Sin(wt +υ ) 仍是正弦信号, 频率不变, 幅值和相角发生变化. 变化与w有关. 1/jwC 1 写成矢量形式:e2 = ————— e1 = ———— e1 R + 1/jwC 1+jwRC e2 1
-— = ———— e1 1+jwRC
与电路参数RC有关、与输入电压的频率有关
自动控制原理
蒋大明
幅相特性与传递函数之间的关系
输出输入的振幅比(幅频特性): A(w) = Ac/Ar = | G(jw)| = G(S) | 输出输入的相位差(相频特性): υ (w) = υ - 0 =∠G(jw) =∠G(S) | 所以:G(jw) = G(S)|S=jw 频率特性 传递函数 证毕
自动控制原理
蒋大明
一阶不稳定环节
一阶不稳定环节的对数幅频特性与惯性环节的完全一样;相频则有所 不同,是在-180至-90范围内变化.
L ( )
0 -20
1
10

(a )
( )
0o
90o

(b)
180o
图5-20 一阶不稳定环节 的对数频率特性
自动控制原理
蒋大明
时滞环节
传递函数: G(S) = e-τ
S
幅相频率特性:
G(jw) = e-jτ
A(w) = 1 υ (w) = -τ w
w
自动控制原理
蒋大明
时滞环节
对数频率特性: L(w) = 20 lg A(w) = 20lg 1 = 0 υ (w) = -τ w
(横坐标对数分度,曲线)
自动控制原理
蒋大明
第三节
1.

自动控制原理第五章频率响应法

自动控制原理第五章频率响应法
智能化和自适应频率响应分析方法
随着人工智能和机器学习技术的发展,将人工智能和机器学习技术应用于频率响应分析中 ,可以大大提高分析的准确性和效率,是未来研究的一个重要方向。
06
参考文献
参考文献
01
《现代控制系统分析与设计(第八版)》作者: Richard C. Dorf and Robert H. Bishop
01
频率响应法的起源可以追溯到20世纪30年代,当时研究者开始 使用频率响应法来分析电气系统的稳定性。
02
随着计算机技术和信号处理技术的发展,频率响应法的应用范
围不断扩大,分析精度和计算效率也不断提高。
目前,频率响应法已经成为自动控制原理中最重要的分析方法
03
之一,广泛应用于控制系统的分析和设计。
02
非线性系统的频率响应分析
非线性系统的频率响应分析是研究非线性系统对不同频率输入信号的响应特性。由于非线性系统的输出与输入之间不存在明 确的函数关系,因此需要采用特殊的方法进行分析。
在实际应用中,非线性系统的频率响应分析广泛应用于音频处理、图像处理、通信等领域。通过分析非线性系统的频率响应 特性,可以揭示系统的内在规律,为系统设计和优化提供依据。
02
《自动控制原理(第五版)》作者:孙亮
03
《控制系统设计指南(第二版)》作者:王树青
感谢您的观看
THANKS
对数坐标图分析法
对数坐标图分析法也称为伯德图,通过将系统 的频率响应以对数坐标的形式表示出来,可以 方便地观察系统在不同频率下的性能变化。
在对数坐标图中,幅值响应和相位响应分别以 对数形式表示,这样可以更好地展示系统在不 同频率下的变化趋势。
对数坐标图分析法适用于分析各种类型的系统 和多输入多输出系统,对于非线性系统也可以 进行一定的分析。

自动控制原理1第一节频率特性的基本概念

自动控制原理1第一节频率特性的基本概念

j ) j)
s j
RmG( j )
2j
Wednesday, January 31, 2024
5
而 G( j ) G(s) |s j | G( j ) | e jG( j ) A( )e j ()
G( j ) G(s) |s j | G( j ) | e jG( j ) A( )e j ( )
A() P2 () Q2 ()
() tg 1 Q() P( )
频率特性与传递函数的关系为:
G( j ) G(s) |s j
由于这种简单关系的存在,频率响应法和利用传递函数的时域 法在数学上是等价的。
Wednesday, January 31, 2024
8
[结论]:当传递函数中的复变量s用 j代替时,传递函数就转n为极点。
若: r(t)
Rm sint,则R(s)
Rm s2 2
(s
Rm j)(s
j )
则:C(s)
N (s)R(s)
N (s)
Rm
(s p1)(s p2 )...(s pn ) (s p1)(s p2 )...(s pn ) (s j )(s j )
G( j) P() jQ() 这里 P() Re[G( j)] 和 Q() Im[G( j)] 分别称为系统的实
频特性和虚频特性。
Wednesday, January 31, 2024
7
幅频特性、相频特性和实频特性、虚频特性之间具有下列
关系:
P() A() cos()
Q() A() sin()
11
频率响应法的优点之一在于它可以通过实验量测来获得, 而不必推导系统的传递函数。
事实上,当传递函数的解析式难以用推导方法求得时,常 用的方法是利用对该系统频率特性测试曲线的拟合来得出传递 函数模型。

自动控制原理实验指导书

自动控制原理实验指导书

实验三线性系统的频率响应分析在经典控制理论中,采用时域分析法研究系统的性能,是一种比较准确和直观的分析法。

但是,在应用中也常会遇到一些困难。

其一,对于高阶系统,其性能指标不易确定;其二,难于研究参数和结构变化对系统性能的影响。

而频率响应法是应用频率特性研究自动控制系统的一种经典方法,它弥补了时域分析分析法的某些不足。

一、实验目的1、掌握波特图的绘制方法及由波特图来确定系统开环传递函数。

2、掌握实验方法测量系统的波特图。

二、实验设备PC机一台、TD-ACC教学实验系统一套三、实验原理及内容(一)实验原理1、频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(w由0变至∞)而变化的特性。

根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。

2、频率特性的表达方式(1)对数频率特性:又称波特图,它包含对数幅频和对数相频两条曲线。

(2)极坐标图(又称为乃奎斯特图)(3)对数幅相图(又称为尼克尔斯图)本次实验采用对数频率特性图来进行频率响应分析的研究。

实验中提供了两种实验测试方法:直接测量和间接测量。

(二)实验内容1、间接频率特性测量方法用来测量闭环系统的开环特性,因为有些线性系统的开环时域响应曲线发散,幅值不易测量,可将其构成闭环反馈稳定系统后,通过测量信号源、反馈信号、误差信号的关系,从而推导出对象的开环频率特性。

①对象为积分环节:1/0.1S由于积分环节的开环时域响应曲线不收敛,稳态幅值无法测出,我们采用间接测量方法,将其构成闭环,根据闭环时的反馈及误差的相互关系,得出积分环节的频率特性。

②将积分环节构成单位负反馈,模拟电路构成如图3.1-1图3.1-1③理论依据图3.1-1所示的开环频率特性为:采用对数幅频特性和相频特性表示,则上式表示为:其中G(jw)为积分环节,所以只要将反馈信号、误差信号的幅值及相位按上式计算出来即可得积分环节的波特图。

④测量方式:实验采用间接测量方式,只须用两路表笔CHI和CH2来测量图3.1-1中的反馈测量点和误差测量点,通过移动游标,确定两路信号和输入信号之间的相位和幅值关系,即可间接得出积分环节的波特图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
如果取s=j代入,则
1 11
1
e jarctanT
jT 1 jT 1 jT 1 2T 2 1
该式能完全描述RC网络在正弦函数作用下稳 态输出的幅值和相位随输入频率变化的情况。因此, 将1 / (jwT+1)称做该RC网络的频率特性。
表列出了RC网络幅频特性和相频特性的计 算数据。
6
根据表中数据绘制的幅频特性曲线和相频特性曲 线如下:
U
c
(s)
1 Ts
U 1
r
(s)
1 Ts
1
s
2
A
2
取拉普拉斯反变换,得输出信号
uc
AT
2T 2 1
t
eT
A sin(t arctanT ) 2T 2 1
式中第一项为输出的瞬态分量,第二项为稳态分量。随着t趋于 无穷大,瞬态分量趋于零,于是
lim
t
u
c
A sin(t arctanT ) 2T 2 1
css (t) ae jt ae jt
式中的系数 a 和 a 求得如下。即
a
G(s) (s
A j )(s
j )
(s
j )
s j
G( j) A 2j
a
G(s) (s
A j )(s
(s j )
j )
s j
G( j) A 2j
10
css (t)
A 2j
[G(
j )e
j t
G(
j )e j t
(U K ) 2 V 2 ( K ) 2
2
2
所以,在复平面上G(jw)为一圆心在(K/2,0)点, 半径为K/2的半圆,如图下半部分所示。当-∞w 0时,因为G(-jw)与G(jw)互为共轭关系,关于实 轴对称,即如上半圆所示。
1/T
10/T
K
K/1.12
K/10.0 0
0° -26.6° -45° -84° -90°
ቤተ መጻሕፍቲ ባይዱ
13
可以证明,图5.6中的频率特性曲线是一半圆,圆心在实轴 上的0.5K处,半径R=0.5K。
设 G( j) U() jV ()
U ( ) K (T )2 1
V ( ) KT (T )2 1
配方后可得
G( j) G(s) s j
这里的结论同RC网络讨论的结果是一致的。
11
5.3 频率特性的图示方法
频域分析法是一种图解方法,采用频域法分析闭环系统的特 性时,通常需画出系统开环频率特性曲线。频率特性的图示 方法主要有三种,即极坐标图、对数坐标图和对数幅相图, 现分述如下。 5.3.1 极坐标图 频率特性G(jw)是频率w 的复变函数,其模|G(jw)|与相角 ∠G(jw)可以在复平面上用一个矢量来表示。当频率w从
3
5.2 频率特性
5.2.1 频率特性的基本概念
首先以图RC网络为例,说明频率特性的概念。
RC网络的输入和输出的关系可由下面微分方程
描述
T
duc dt
uc
ur
式中,T=RC为时间常数。网络的传递函数为
Uc (s) 1 U r (s) Ts 1
4
设输入是一个正弦信号,即
可得
ur Asint
nm
式中-z1, -z2 ,…,-zm是传递函数G(s)的零点, -s1 , -s2 ,…, -sn 是传递函数G(s)的极点。这些极点可能是 实数,也可能是共轭复数,但对于稳定系统来说,它们都 具有负实部。
系统输出c(t)的拉普拉斯变换为
C(s)=G(s)R(s)= K (s z1)(s z2 ) (s zm )
0 变化时,矢量端点的轨迹就表示频率特性的极坐标 图。极坐标图又称幅相图或奈魁斯特(Nyquist)图。在极坐标 图上,规定矢量与实轴正方向的夹角为频率特性的相位角, 且按逆时针方向为正进行计算。
12
1. 典型环节频率特性的极坐标图
(1)比例环节。比例环节的幅频特性和相频特性都是常量, 分别等于K及0°,不随频率w 而变化。
A
(s s1)(s s2 ) (s sn ) (s j)(s j)
9
展成部分分式为
C(s) a a b1 b2 bn
s j s j s s1 s s2
s sn
对式进行拉普拉斯反变换,可得系统对正弦输入信号r(t)的响
应为 即
n
c(t) ae jt ae jt bi esit i 1
(2)积分环节。当w 由零趋向无穷大时,幅频特性则由∞逐 渐减少到0,而相位总是-90°。因此积分环节的极坐标曲 线是沿复平面中虚轴下半部变化的直线,如图5.5所示。 积分环节是相位滞后环节,它的低通性能好。
(3)惯性环节
表5.2 惯性环节在几个特定频率下的幅值与相角
|G(jw)| ∠G(jw)
0
1/2T
]
A G( j ) e j( t ) e j( t )
2j
AG( j) sin(t )
B sin(t )
通过上述分析,得到频率特性的定义,即:系统对正弦输入信号的稳态响应特 性,就称为频率特性。一般记为
G( j ) G( j ) e jG( j)
G( j) e j
它包含了两部分内容:幅值比是依赖于角频率w 的函数,|G(jw)|称为系统的幅 频特性;稳态输出信号对正弦输入信号的相移φ称为系统的相频特性。系统的频率 特性G(jw)可以通过系统的传递函数G(s)来求取,即
本章将讨论频率特性的基本概念、典型环节和 系统的频率特性、奈魁斯特稳定判据、频域性能指标 与时域性能指标间的联系等。
2
5.1 概述
频域分析法是应用频率特性研究 线性系统的一种图解方法。频率特性 和传递函数一样,可以用来表示线性 系统或环节的动态特性。
建立在频率特性基础上的分析控 制系统的频域法弥补了时域分析法中 存在的不足,因而获得了广泛的应用。 所谓频率特性,是指在正弦输入信号 的作用下,线性系统输出的稳态响应。
普通高等教育“十一五”国家级规划教 材
自动控制原理
第5章 频域分析法
机械工业出版社
第5章 频域分析法
5.1 概述 5.2 频率特性的基本概念 5.3 频率特性的图示方法 5.4 频域稳定性判据 5.5 控制系统的稳定裕度 5.6 控制系统的闭环频率特性 5.7 频域性能指标与瞬态性能指标之间的关系
7
5.2.2 频率特性的求取
一般线性定常系统输入、输出关系如图所 示。
系统的传递函数为 C(s) G(s)
R(s)
假定输入信号r(t)为
r(t) Asint
R(s) L[ Asint] A
A
s 2 2 (s j)(s j)
8
G(s) K (s z1 )(s z2 ) (s zm ) (s s1 )(s s2 ) (s sn )
相关文档
最新文档