补码加减法运算(计算机组成原理)页

合集下载

2补码加减法运算详解

2补码加减法运算详解
[y]补=1.1011
[x]补 +[ y ] 补 0. 1 0 1 1 1. 1 0 1 1
解:
[x]补=0.1011,
[ x +y ] 补
计算机组成原理
1 0. 0 1 1 0
所以
x+y=0.0110
4
3.补码减法
补码减法运算的公式: [ x -y ] 补=[ x ] 补-[ y ] 补=[ x ] 补+[ -y ] 补
V =C f ⊕C o
其中Cf为符号位产生的进位,Co为最高有效位产生的进位。 此逻辑表达式也可用异或门实现。 V=C1⊕Co 判断电路
c0 x0 y0 c1 x1 y1
FA
z0
V
FA
z1
11
计算机组成原理
(3)双符号位法 一个符号位只能表示正、负两种情况,当产生溢出时,符号位的含义就 会发生混乱。如果将符号位扩充为两位(Sf1、Sf2),其所能表示的信息量将 随之扩大,既能判别是否溢出,又能指出结果的符号。 双符号位法也称为“变形补码”或“模4补码” 。 定点小数变形补码定义: 0 x<1 -1 x<0 0 x<2 n -2 x<0 n (mod 2
机器定点小数表示 发生溢出的原因,是因为运算结果超出编码所能表示的数字大小。 两个正数相加: 结果大于机器所能表示的最大正数,称为上溢; 两个负数相加:结果小于机器所能表示的最小负数,称为下溢。
计算机组成原理 7
例:x=+0.1011, y=+0.1001,
解: [x]补=0.1011 [x]补 + [y]补 [x+y]补
两数差的补码等于两数补码之差
公式证明: 只要证明[–y]补= –[y]补, 上式即得证。 证明:

计算机组成原理复习资料

计算机组成原理复习资料
作业9 :画出并行补码定点加减运算器框图(设机 器数采用2位符号位),并描述其信息加工过程。 【解】机器数采用2位符号位的并行补码定点加减 运算器框图如下页图所示 。 并行补码定点加减运信息加工过程可描述为: GA· (A加X)+ GS· (A加X加1)→A 溢出判断过程可描述为:A0⊕A1→V
V
4、主存储器的性能指标有哪些?含义是什么? 答:存储器的性能指标主要是存储容量. 存取时间、 存储周期和存储器带宽。2分 在一个存储器中可以容纳的存储单元总数通常称为该 存储器的存储容量。1分 存取时间又称存储访问时间,是指从启动一次存储器 操作到完成该操作所经历的时间。1分 存储周期是指连续两次独立的存储器操作(如连续两 次读操作)所需间隔的最小时间。1分 存储器带宽是指存储器在单位时间内的数据传输速率。 1分
6、在定点二进制运算器中,减法运算一般通过什 么电路来实现?如何实现? 答:通过补码二进制加法器实现。 2分 用被减数加上减数的机器负数实现。1分 7、浮点数采用什么机器数形式时,可用全0表示 机器0? 答:阶码用移码表示,尾数用补码表示即可。 8、浮点数的阶码和尾数哪个决定其表示范围?哪 个符号决定其符号? 答:阶码决定浮点数的表示范围;1.5分 尾数的符号决定浮点数的符号。1.5分
3、主存中的ROM起什么作用?如果开机执行程序在 硬盘里,CPU能直接执行吗?为什么?如果CPU第一 次执行某条指令,它可能在Cache中取到它吗?为什 么? 答:主存中的ROM是开机后CPU执行的程序区,其 内保存开机自检与引导程序。2分 由于CPU不能直接访问硬盘,所以CPU不能执 行存放在硬盘里的开机执行程序。2分 CPU第一次执行某条指令,它也有可能在Cache 中取到它;因为该指令可能正好包含在已被执行过的 程序块中,该块属于被访问过的块已经进入Cache。 2分

数字逻辑与计算机组成原理:第二章 数据的表示与运算

数字逻辑与计算机组成原理:第二章  数据的表示与运算
数字逻辑与计算机组成原理
第二章 数据的表示与运算
第一节 数的表示
一、无符号数和有符号数
1、无符号数:
没有符号的数,寄存器中的每一位都可用 来存放数据
机器字长为n位,无符号数的表示范围 为0~2n-1
反映无符号数的表示范围
8位 16 位
0 ~ 255 0 ~ 65535
有两种常用的无符号表示法: ◆ 非负数码:表示0或一个正数
(1) 定义
整数
0,x
2n > x ≥ 0
[x]反 = ( 2n+1 – 1) + x 0 ≥ x > 2n(mod 2n+1 1)
x 为真值
n 为整数的位数
如 x = +1101
x = 1101
[x]反 = 0,1101
[x]反 = (24+1 1) 1101 = 11111 1101
用 逗号 将符号位
= 1,0010
和数值部分隔开
小数 x
[x]反 = ( 2 – 2-n) + x
1>x≥ 0 0 ≥ x > 1(mod 2 2-n)
x 为真值 n 为小数的位数
如 x = + 0.1101
x = 0.1010
[x]反 = 0.1101
[x]反 = (2 2-4) 0.1010
= 1.1111 0.1010
有符号小数: +0.1011,在机器中表示为
-0.1011,在机器中表示为
第一节 数的表示
一、无符号数和有符号数 2、有符号数
有符号整数: +1101,机器中表示为
-1101, 机器中表示为
第一节 数的表示
一、无符号数和有符号数

计算机组成原理CPU运算方法(Part4)

计算机组成原理CPU运算方法(Part4)

一、加减法运算 二、乘法运算 三、除法运算 四、浮点数运算 五、算术逻辑运算单元
简单回顾—基本逻辑电路
与、或、非、多路选择器
AND/OR/INVERT/MUX
a b Out
a b
Out
0 0 1 1
0 1 0 1
0 0 0 1
a
b
Out
a b
+
Out
0 0 1 1
0 1 0 1
0 1 1 1
简单回顾—基本逻辑电路
与、或、非、多路选择器
AND/OR/INVERT/MUX
a
Out
a 0 1
Out 1 0Biblioteka a b0Out
1
d 0 1
Out a b
d
简单回顾—2的补码表示法
假设A由 假设 由an-1an-2…a1a0表示 最高位a 最高位 n-1为符号位
an-1= 0 表示 为正数 表示A为正数 an-1= 1 表示 为负数 表示A为负数
n
2.2 补码乘法(一位比较法,又称一位Booth法) 补码乘法(一位比较法,又称一位Booth法 Booth
令 Q−1 = 0 则
[ P]补 = [ M × Q]补 = [ M] 补 × Q 1 1 1 1 n n n = Qn−2 − Qn−1 [ M]补 2 + Qn−3 − Qn−2 [ M]补 2 + L+ 0 − Q0 [ M]补 2 L 2 2 2 2 P0 = 0 1 P1 = P0 + ( Q−1 − Q0 )[ M ] 补 2 n 2 1 P2 = P1 + ( Q0 − Q1 )[ M ] 补 2 n 变成分步算式: 变成分步算式: 2 M 1 Pi = Pi −1 + ( Qi − 2 − Qi −1 )[ M ] 补 2 n 2 M 1 Pn = P n −1 +( Qn − 2 − Qn −1 )[ M ] 补 2 n 2

计算机组成原理第二章课后习题答案

计算机组成原理第二章课后习题答案

第二章运算方法和运算器练习一、填空题1. 补码加减法中,(符号位)作为数的一部分参加运算,(符号位产生的进位)要丢掉。

2. 为判断溢出,可采用双符号位补码,此时正数的符号用(00)表示,负数的符号用(11)表示。

3. 采用双符号位的方法进行溢出检测时,若运算结果中两个符号位(不相同),则表明发生了溢出。

若结果的符号位为(01),表示发生正溢出;若为(10),表示发生负溢出。

4. 采用单符号位进行溢出检测时,若加数与被加数符号相同,而运算结果的符号与操作数的符号(不一致),则表示溢出;当加数与被加数符号不同时,相加运算的结果(不会产生溢出)。

5. 利用数据的数值位最高位进位C和符号位进位Cf的状况来判断溢出,则其表达式为over=(C⊕Cf)。

6. 在减法运算中,正数减(负数)可能产生溢出,此时的溢出为(正)溢出;负数减(正数)可能产生溢出,此时的溢出为(负)溢出。

7. 补码一位乘法运算法则通过判断乘数最末位Yi和Yi-1的值决定下步操作,当YiYi-1=(10)时,执行部分积加【-x】补,再右移一位;当YiYi-1=(01)时,执行部分积加【x】补,再右移一位。

8. 浮点加减运算在(阶码运算溢出)情况下会发生溢出。

9. 原码一位乘法中,符号位与数值位(分开运算),运算结果的符号位等于(两操作数符号的异或值)。

10. 一个浮点数,当其补码尾数右移一位时,为使其值不变,阶码应该(加1)。

11. 左规的规则为:尾数(左移一位),阶码(减1)。

12. 右规的规则是:尾数(右移一位),阶码(加1)。

13. 影响进位加法器速度的关键因素是(进位信号的传递问题)。

14. 当运算结果的补码尾数部分不是(11.0×××××或00.1×××××)的形式时,则应进行规格化处理。

当尾数符号位为(01)或(10)时,需要右规。

补码加减法运算

补码加减法运算

[-y]补=0.0110
[x]补 + [-y]补
[x-y]补
计算机组成原理
1.0 0 1 1 0.0 1 1 0 1.1 0 0 1
∴x -y = - 0.0111
6
溢出及与检测方法
1.概念
在定点小数机器中,数的表示范围为|x|<1。在运算过程中如出现大于1
的现象,称为 “溢出”。
下溢
上溢
机器定点小数表示
T通常采用一个 “与非”门或一 个“或非”门的 时间延迟来作为 度量单位。
20
(1)对一位全加器(FA)来说,Si的时间延迟为6T(每级异或门延迟3T); Ci+1的时间延迟为5T。
Ci+1
Si
≥1
=1
&
&
=1
计算机组成原理
Ci
Ai Bi
21
(2)n位行波进位加法器的延迟时间ta为: 考虑溢出检测时,有: ta=n·2T+9T=(2n+9)T
发生溢出的原因,是因为运算结果超出编码所能表示的数字大小。 两个正数相加: 结果大于机器所能表示的最大正数,称为上溢; 两个负数相加:结果小于机器所能表示的最小负数,称为下溢。
计算机组成原理
7
例:x=+0.1011, y=+0.1001, 求x+y。
解:
[x]补=0.1011
[y]补=0.1001
计算机组成原理
补码加减法运算
2020年5月26日
计算机组成原理
1
补码加减法运算
1.原码加/减法运算
加法规则: 先判符号位,若相同,绝对值相加,结果符号不变; 若不同,则作减
法, |大| - |小|,结果符号与|大|相同。 减法规则:

计算机原理(岳乡成)补码加减法运算(公开课)

计算机原理(岳乡成)补码加减法运算(公开课)

范围,计算结果错误,就是所谓的溢出。
如何判断两个数在补码运算中是否会产生溢出: 判断的方法:双进位溢出判断法。 说明:使用这方法,要引入两个符号cs和cs+1,cs用来表示参加运算 的两个有符号数中数值位的最高位是否有向符号位进位的情况,有 进位,则cs=1,否则cs=0。Cs+1用来表示符号位是否有向更高位进位 的情况,有进位,则cs+1=1,否则cs+1=0。通过判断cs与cs+1的状态来 判断是否产生溢出,如果cs与cs+1相同(即cs与cs+1同时为0,或同时 为1),则不产生溢出;如果cs与cs+1相异(即cs和cs+1一个为0,一个 为1),则产生溢出。
计算机组成原理
9
计算机组成原理
3
2.补码减法
补码减法运算的规则:
[ x -y ]补=[ x ]补-[ y ]补=[ x ]补+[-y ]补(mod 2n)
两数差的补码等于两数补码之差
减法运算化为加法完成。关键是求[-Y]补
计算机组成原理
4
例: 解:
x= -0.1101,y= -0.0110,求x-y=? [x]补=1.0011 + [y]补=1.1010 [-y]补=0.0110
计算机组成原理
第三章复习1 补码加减法运算及溢 出的判断
计算机组成原理
1
1.补码加法运算 补码加法的规则: [ x ] 补+[ y ] 补=[ x +y ] 补
(mod 2n)
任意两数的补码之和等于该两数之和的补码,这是补码加法的理论基础。
补码加法的特点: (1)符号位要作为数的一部分一起参加运算; (2)在模2的意义下相加,即符号位之前多出的位为模,做丢失处理。

计算机组成原理第二章 第7讲 基本的加减法

计算机组成原理第二章 第7讲 基本的加减法

② 全加器(FA) 1位全加器真值表
输入
输出
Ai Bi Ci Si Ci+1 00000
00110
01010
01101
10010
10101
11001
11111
按照真值表可写出FA逻辑方程:
依照真值表,通过离散数学相关知识得到 描述其逻辑关系的1位全加器逻辑方程:
S A B C i
基本的加法/减法器
2.2.4基本的加法/减法器
基本的加法/减法器
• 半加器 Hi=Ai ⊕ Bi 不考虑进位
• 全加器 考虑低位进位Ci-1和向高位的进位Ci
各种逻辑门的图形符号
加法器
① 半加器——不考虑进位
YH
H n X n Yn X n Y n X n Yn
加法器
将若干个1位FA全加器串连即可实现N位行 波进位加法/减法器。
行(xing)波进位:
• 串行进位,高位的运算要等待低位的进位传到 才能执行,区别于并行进位或超前进位。
对行波进位加法/减法器的解读
1.行波进位加/减法器 n个1位的全加器(FA)可级联成一个n位
的行波进位加减器
2.M为方式控制输入线(控制进行加法,还 是减法运算):
4. n位行波进位加法器的延迟时间ta的计算 当前位全加和Si必须等低位进位Ci-1来到
后才能进行,加法时间与位数有关。
定义T:单级逻辑电路的单位门延迟 3T:异或门的延迟时间
FA逻辑电路和框图
11位位补补码码运运算算的的加加法法减减法法器器FA
加法器开启之后经过3T:
• 确定了是加运算还是减运算
当M=0时,作加法(A+B)运算; 当M=1时,作减法(A-B)运算;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档