数学归纳法(1)

合集下载

数学归纳法(第一课时)说课

数学归纳法(第一课时)说课
同时使学生感受到数学生活化、生活数学
化的美好境界。
错误(1):用数学归纳法证题缺少第一步。 例:等式2+4+6+……+2n=n2+n+1成立吗?
证明:假设当n=k 时等式成立, 即
2+4+6+……+2k=k2+k+1 那么 2+4+6+……+2k+2(k+1)
=k2+k+1+2(k+1)
=(k+1)2+(k+1)+1 所以当n=k+1时等式也成立。 所以原等式成立。
显然当 n=1 时 等式不 成立。
错误(2):把n=k+1直接代入左右两边
那么 1 3 5 ( 2k 1) [2( k 1) 1] ( k 1) 2 错误(3):没有利用归纳假设,

而是利用等差数列前n项和公式
那么 1 3 5 ( 2k 1) [2( k 1) 1] ( k 1)[1 2( k 1) 1] ( k 1) 2 2
(2)师生共同证明该恒等式
(四)引导学生概括,提升理念形成新知
两个步骤,一个结论
证明一个与正整数n个值n0时命题成立;
注意
(2)(归纳递推) 假设当n=k(kN*,k≥n0)时命题成立, 证明当n=k+1时命题也成立。 (结论) 根据(1)、(2),可知命题对从n0开始的所有正整数 n都成立。 这种证明方法就叫做数学归纳法。
(五)学以致用——证明恒等式
练习1
用数学归纳法证明:
1+3+5+……+(2n-1)= n2(n∈N*)

数学归纳法教案优秀数学归纳法教案设计意图(1)

数学归纳法教案优秀数学归纳法教案设计意图(1)

数学归纳法教案优秀数学归纳法教案设计意图一、教学内容本节课选自高中数学教材《数学选修22》第二章第六节“数学归纳法”。

详细内容包括数学归纳法的定义、数学归纳法证明的步骤、数学归纳法在实际问题中的应用。

二、教学目标1. 理解数学归纳法的概念,掌握数学归纳法的证明步骤。

2. 能够运用数学归纳法证明一些简单的数学问题,提高逻辑推理能力。

3. 了解数学归纳法在实际问题中的应用,培养运用数学知识解决实际问题的能力。

三、教学难点与重点重点:数学归纳法的定义和证明步骤。

难点:运用数学归纳法证明数学问题。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、笔。

五、教学过程1. 实践情景引入通过一个简单的数学问题(如:1+2+3++n的计算公式)引入数学归纳法。

2. 例题讲解(1)讲解数学归纳法的定义和证明步骤;(2)以等差数列求和公式为例,详细讲解数学归纳法证明过程。

3. 随堂练习让学生尝试运用数学归纳法证明一些简单的数学问题,如:1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6。

4. 课堂讲解(1)讲解数学归纳法在实际问题中的应用;(2)分析学生在随堂练习中遇到的问题,给出解答。

六、板书设计1. 板书数学归纳法的定义、证明步骤和应用。

2. 板书随堂练习的题目和解答过程。

七、作业设计(1)1+3+5++(2n1)=n^2;(2)C(n,0)+C(n,1)+C(n,2)++C(n,n)=2^n。

2. 答案:见教材课后习题解答。

八、课后反思及拓展延伸1. 反思:本节课学生对数学归纳法的定义和证明步骤掌握程度,以及对实际问题的应用能力。

2. 拓展延伸:引导学生探索数学归纳法在解决更复杂数学问题中的应用,如:数列的通项公式、组合恒等式等。

重点和难点解析:1. 教学难点与重点的明确;2. 例题讲解的详细程度;3. 随堂练习的设计与指导;4. 作业设计中的题目难度与答案解析;5. 课后反思及拓展延伸的深度。

数学归纳法教案1

数学归纳法教案1

§2.1数学归纳法及其应用举例一、教材分析本节课是选自人民教育出版社《全日制普通高级中学教科书错误!未找到引用源。

数学》第三册(选修II)第二章第一节的内容.根据教学大纲,本节共3课时,这是第1课时,讲的是P62~P64的内容。

1.教材的地位和作用在高一数列的学习中,学生已经学习了用归纳法推导等差数列、等比数列的通项公式,但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。

因此,必须进一步学习严谨的科学的论证方法─数学归纳法。

数学归纳法安排在数列之后极限之前,是促进学生从有限思维发展到无限思维的一个重要环节。

2.教学目标(1)在知识上:理解“归纳法”和“数学归纳法”的含意和本质;掌握数学归纳法证题的三个步骤;会用“数学归纳法”证明简单的恒等式.(2)在能力上:初步掌握归纳与推理的方法;培养大胆猜想,小心求证的辩证思维素质.(3)在情感上:培养学生对于数学内在美的感悟能力.3.教学重难点⑪教学重点:使学生理解数学归纳法的实质,掌握数学归纳法的证题步骤(特别要注意递推步骤中归纳假设的运用和恒等变换的运用).⑫教学难点:如何理解数学归纳法证题的有效性;递推步骤中如何利用归纳假设.二、学情教法分析学生对等差(比)数列、数列求和、二项式定理等知识有较全面的把握和较深入的理解,同时也具备一定的从特殊到一般的归纳能力,但对归纳的概念是模糊的.利用多媒体、投影仪辅助教学;借助多媒体呈现多米诺骨牌等生活素材,真正辅助课堂教学. 用问题引入法,引导学生学习。

三.过程分析1.引入(用问题引入概念)问题1:今天,据观察第一个到学校的是男同学,第二个到学校的也是男同学,第三个到学校的还是男同学,于是得出:这所学校里的学生都是男同学。

问题 2:数列{an}的通项公式为an=(n2-5n+5)2,计算得a1=1,a2=1, a3 =1, 于是猜出数列{an}的通项公式为:an=1。

问题3:三角形的内角和为180°,四边形的内角和为2•180°,五边形的内角和为3•180°,于是有:凸n边形的内角和为(n-2) • 180°。

1、数学归纳法

1、数学归纳法

a a2 a3 1 + + ⋅⋅⋅ + n ) + 。 n n 2 3
2
ak a2 a3 1 • 假设当 n = k 时,命题成立,即 ak > 2( + + ⋅⋅⋅ + ) + , k k 2 3 则 2ak 1 2 1 2 2 ak +1 = (ak + ) = ak + + k +1 k + 1 (k + 1) 2 a a a 1 2 1 1 > 2( 2 + 3 + ⋅⋅⋅ + k ) + + (ak +1 − )+ 2 3 k k k +1 k + 1 (k + 1) 2 a a a 1 1 = 2( 2 + 3 + ⋅⋅⋅ + k +1 ) + − 2 3 k + 1 k (k + 1) 2 ak +1 a2 a3 1 )+ > 2( + + ⋅⋅⋅ + k +1 k +1 2 3
,知 n = k + 1时(1)(2)成立。 ,
• 故(1)(2)对一切自然数都成立,因此命题成立。 ,
1 3 • 例 7 证明: ( )( ) 2 4
2n − 1 1 ( )≤ 。 2n 3n
• 分析:用数学归纳法直接证明原不等式,当 n = k + 1时,即证 1 3 2n − 1 2n + 1 1 ( )( ) ( )( )≤ 。 2 4 2n 2n + 2 3n + 3
xk = 1时, x1 + x2 +

数学归纳法及其应用举例(一)

数学归纳法及其应用举例(一)

3. 如果让你设计多米诺骨
牌你怎么设计?
数学归纳法:(1)先证明当n取第一个 值n0(例如n=1)时命题成立,(2)然后假 设当n=k ( kN, k n0)时命题成立,并 证明当n=k+1时命题也成立,那么就证明 这个命题成立.
二.探究原理
1.已知数列{an},an=(n2-5n+5)2 ,
教 学 程 序 设 计
抽象原理
探究原理
变式训练
应用举例
一. 抽象原理
1.一个盒子里有很多个乒乓球, 第一次摸出一个是橙色,第二次、 第三次摸出的都是橙色,能否就 说第四个也是橙色?
盒子里有十个乒乓球, 怎么证明都是橙色?
2. 已知数列{an}满足a1=1, sn 是数列{an}的前n项和, sn=2 a n (n >1,nN)求an
数学归纳法及其应用举例(一)
教学目标 :
初步理解“数学归纳法原理” 的涵义,并正确运用数学归纳 法解决简单的数学问题.
掌握数学归纳法证题的两个 步骤和一个结论. 透过现象看本质的辨证唯物 主义教育.
重点难点 :
理解数学归纳法涵义.
设计思想:
以自主探究,合作交流的学习 方式,开展探究数学归纳法的 思想方法的形成过程.
(1)求a1,a2,a3,a4 (2)能否得出an=1 2. 判断下列证明方法对不对? 假设n=k时,等式 2+4+6+…+2n=n2+n+1成立,
就是 2+4+6+…+2k=k2+k+1.
那么2+4+6+…+2k+2(k+1)=k2+k+1+2(k+1)=(k+1)2+(k+1)+1. 这就是说,如果n=k时等式成立,那么n=k+1时等式也成立.对于 任何n N*,

1 数系与数学归纳法

1 数系与数学归纳法

1.3 错例辨析
1.证明:所有人的年龄都是一样的。
辨析:递推步对n=1不成立。从而,由n=1成立,得不到n=2成立,递推中
断。
2. 证明:任何两个正整数均相等。
下证An对于任意自然数n都成立。
因为
所以 利用归纳假设知,a-1=b-1, 从而a=b. 即Ak+1成立。
辨析:a-1与b-1不一定是正整数,它们有可能是0,从而不能够利用归纳假
1 数系与数学归纳法
1.1 内容概述
数系,是数的系统的简称。数系内容是中小学数 学的基础.从小学一年级学习自然数开始,到高 中学习复数,数系的学习始终贯穿在整个数学课 程之中. 数系由于概念比较抽象,学起来比较枯燥。中小 学由于学生理解力有限,不可避免出现不严格的 现象,只能做到“适度形式化”,“模糊”处理, “混而不错”.数系学习在中小学的主要任务是 打好基础,学会运算,提高实际运算能力。
复数的定义也可以从形式上避开对i的解释。
定义1(复数的序偶定义)将有序的实数对(a,b) 称为复数,并定义它们的运算法则如下:
定义2(复数的矩阵定义) 将二阶实数矩阵 称为复数.
7、复数不能比较大小的含义 “有序域”的概念
为什么这样就叫“有序域”? 因为根据有序域F上的正性关系可等价定义 “序关系”:对a,b∈F,定义a>b(或b<a) 当且仅当a-b>0.并且,该序对运算协调(保 序)。
第1题解法(第二数学归纳法)
第2题解法(跳跃式数学归纳法)
第3题解法(逆向数学归纳法[Cauchy])
逆向数学归纳法可形象称为“留空回填”,其中“有 无穷多个自然数使P(n)真”常取P(2k),P(2k),P(2k1).
第4题解法
第5题解法

第 11 讲 数学归纳法(第1课时-证题原理及步骤)

第 11 讲 数学归纳法(第1课时-证题原理及步骤)

第 11 讲 数学归纳法-证题原理及步骤(第1课时)数学归纳法⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧+==明探索性问题的猜想与证有关整除问题的证明等式或不等式证明数学归纳法的应用时命题成立推证时命题成立假设验证初始值数学归纳法证明的步骤推思想)数学归纳法的原理(递1k n k n n 重点:1.数学归纳法的原理与证题步骤;2.数学归纳法的应用。

难点:1.归纳、猜想、证明猜想;2.由k n =时的命题成立推证1+=k n 时的命题成立。

2.能进行一些探索性问题的归纳、猜想与证明,初步形成“观察→归纳→猜想→证明”的思维方法。

主要为证明不等式、恒等式以及整除这三个方面的应用,考题又常以数列问题为背景,将数学归纳法证与一些探索性问题综合起来考察。

⑴ 定义按下述步骤证明一个与自然数有关的数学命题的方法叫做数学归纳法: ① 验证当n 取第一个值时这个命题成立;② 假设当k n =,命题成立,然后证明当1+=k n ,命题也成立。

⑵ 数学归纳法与不完全归纳法的区别与联系 归纳是一种由特殊事例导出一般原理的思维方法。

归纳推理分完全归纳推理与不完全归纳推理两种。

不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。

完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。

数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在数学解题中有着广泛的应用。

它是一种递推的数学论证方法,论证的第一步是证明命题在n =1(或n 0)时成立,这是递推的基础;第二步是假设在n =k 时命题成立,再证明n =k +1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。

这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n ≥n 0且n ∈N )结论都正确”。

2019年江苏高考总复习-附加题40分专题系列-专题03 数学归纳法1

2019年江苏高考总复习-附加题40分专题系列-专题03 数学归纳法1
五、巩固训练
1.已知f(n)= + + +…+ ,则f(n)中共有_________项.
2.用数学归纳法证明:“1+ + +…+ <n(n>1)”,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项的项数是_________.
3.设f(n)=1+ + +…+ (n∈N*),那么f(n+1)-f(n)=_________.
综上所述,当 ,4时, ;当 时, ;当 或 时,
例题5解析:取 ,
令 ,且 ,∴取
下面证明:
①当 时,已证结论正确
②假设当 时,
则当n=k+1时,




即当n=k+1时,结论也成立
故由①②知,对于一切 ,都有 .
故n的最大值为25
例题6解析:①当 时, ,命题显然成立
②假设当 时, 能被 整除,则当n=k+1时,
点评: 这一变换,在问题解决中起了关键作用
例题4解析:当 时, ,即
当 时, ,即
当 时, ,即
当 时, ,即
当 时, ,即
当 时, ,即
......
猜测,当 时,
下面用数学归纳法证明猜测成立
①当 时,由以上可知猜测成立
②假设当 时,命题成立,即有
则当n=k+1时,

即当n=k+1时,命题也成立
故由①②知, 时, .
(1)求过点P1,P2的直线l的方程;
(2)试用数学归纳法证明:对于n∈N*,点Pn都在(1)中的直线l上.
15.已知f(n)=1+ + + +…+ ,g(n)= - ,n∈N*.
(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;
(2)猜想f(n)与g(n)的大小关系,并给出证明.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学归纳法(1)
常州市第一中学高二数学备课组
【教学目标】
知识与技能: 理解数学归纳法的概念,掌握数学归纳法的步骤;
过程与方法: 经历观察、思考、分析、抽象、概括出数学归纳法的两个步骤,
初步形成归纳、猜想和发现的能力;
情感态度价值观:通过数学归纳法的学习初步形成严谨务实的科学态度和严谨的
数学思维品质与数学理性精神。

【教学重点】 理解数学归纳法的实质意义,掌握数学归纳法的证题步骤。

【教学难点】 运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推
关系。

【教后反思】 【教学过程】 一.创设情景 1. 摸球实验
已知盒子里面有5个兵乓球,如何证明盒子里面的球全是橙色?
2. 今天,据观察第一个到学校的是男同学,第二个到学校的也是男同学,第三个到学校的还是男同学,于是得出:这所学校里的学生都是男同学。

象这种由一系列特殊事例得出一般结论的方法,我们把它叫做归纳法。

(1) 是完全归纳法,结论正确(2)是不完全归纳法,结论不一定正确。

问题:这些问题都与自然数有关,自然数有无限多个,我们无法对其一一验证,那么如何证明一个与自然数有关的命题呢?例如对于数列{}n a ,已知
111,1n n n
a a a a +==
+, 通过对n=1,2,3,4前4项的归纳,猜想其通项公式为1n
a n
=。

这个猜想是否正确,如何证明?数学中常用数学归纳法证明。

二.探索新知
1、了解多米诺骨牌游戏,可得,只要满足以下两条件,所有多米诺骨牌就都能倒下:
(1)第一块骨牌倒下;
(2)任意相邻的两块骨牌,前一块倒下一定导致后一块倒下。

思考:条件(1)(2)的作用是什么? 2、用多米诺骨牌原理解决数学问题。

思考:你能类比多米诺骨牌游戏解决这个问题吗?
一般地,证明一个与正整数n 有关的命题,可按下列步骤进行:
(1)(归纳奠基)证明当n 取第一个值0n 时命题成立(0n 为n 取的第一个值 );
(2)(归纳递推)假设)
,(*
0N k n k k n ∈≥=时命题成立,证明当1+=k n 时命题
也成立。

只要完成这两个步骤,就可以断定命题对从0n 开始的所有正整数n 都成立。

上述证明方法叫做数学归纳法。

注:(1)这两步步骤缺一不可;
(2)用数学归纳法证明命题时第二步必须用到归纳假设; (3)数学归纳法只适用于和正整数有关的命题。

三.例题讲解 例一、已知数列{}n a ,1
11,1n n n
a a a a +==
+,用数学归纳法证明其通项公式为1n
a n
=。

【教学预设】 【教学过程】 【学生活动】
例二、用数学归纳法证明:等差数列{a n }中,a 1为首项,d 为公差,则通项公式为d
n a a n
)1(1-+= 。

【教学预设】 【教学过程】 【学生活动】
例三、用数学归纳法证明:2
)1()13(1037241+=+++⨯+⨯+
⨯n n n n 。

【教学预设】 【教学过程】 【学生活动】 四.课堂小结
【课后练习】
一.选择
1.用数学归纳法证明3k ≥n 3(n ≥3,n ∈N )第一步应验证( )
A n =1
B n =2
C n=3
D n =4
2.用数学归纳法证明某命题时,左边为
1
2
14
13
12
1n
-+
++
+
从k 变到k +1时,左边应
增添的代数式是 ( )
A .
1
211
k -+ B .
k
21+1
2
11
k -+
C .
k
2
1

1
21
k
++
1
2
11
k -+ D .
k 2
1+
1
2
1k
++……+
1
2
11
k -+
3.用数学归纳法证明3
)
12(12)1()1(21
2
2
2
2
2
2
2
2
+=
+++-++-+++n
n n n n 时,由k n =的假设到证明1+=k n 时,等式左边应添加的式子是 ( )
A .2
2
2)1(k k ++
B .22)1(k k ++
C .2
)1(+k D .]1)1(2)[1(3
1
2
+++k k
4.某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时命题也成立.现已知当5=n 时该命题不成立,那么可推得 ( ) A .当n=6时该命题不成立 B .当n=6时该命题成立 C .当n=4时该命题不成立 D .当n=4时该命题成立 5.从一楼到二楼的楼梯共有n 级台阶,每步只能跨上1级或2级,走完这n 级台阶共有)(n f 种走法,则下面的猜想正确的是 ( )
A .()(1)(2)(3)f n f n f n n =-+-≥
B .)2()1(2)(≥-=n n f n f
C .)2(1
)1(2)(≥--=n n f n f D .)3()
2()1()(≥--=n n f n f n f
二.用数学归纳法证明等比数列通项公式与前n 项和公式。

三.用数学归纳法证明下列等式(*
N n ∈)。

(1) 2
)12(531n n =-++++ (2)1122334(1)(1)(2)3
n n n n n ⨯+⨯+⨯+⋅⋅⋅++=++
(3)2
1
(1)(1)1n n
x x x x x --+++⋅⋅⋅+=-
(4) 2222
(1)(21)
1236
n n n n +++++⋅⋅⋅+=
(5)3
3
3
3
2
123(123)n n +++⋅⋅⋅+=+++⋅⋅⋅+。

相关文档
最新文档