天津市2020中考模拟数学分类汇编24题

合集下载

天津中考数学第24题(几何压轴题)思路分析及真题练习

天津中考数学第24题(几何压轴题)思路分析及真题练习

天津中考数学第24题(几何压轴题)思路分析及真题练习思路分析:观察近几年的中考真题可以发现,每年倒数第二题的出题形式,都是将几何图形放在平面直角坐标系中。

但是,由于解析几何要到高中才学,所以坐标系在这里其实只能起到一个确定点的坐标的作用。

当然,如果把直线看成一次函数图像,一次函数解析式就是直线方程,也就可以将直线交点问题,转化为方程组求解问题,但在这道题中通常都不需要这样做。

题目每年都会对几何图形进行变换,近六年的变换规律是:旋转、对称、旋转、对称、旋转、平移,明年应该大概率是旋转。

因为无论是对称变换、旋转变换还是平移变换,图形的大小和形状都不会发生改变,所以每年的题目都会涉及到全等。

由于在图形变换的过程中,全等的判定通常都是比较容易的,所以本题对全等的考察又主要在全等性质的应用上。

题目设问无论是点的坐标、线段的长还是图形的面积,其核心都是求距离。

所有的距离又都可以转化为求两点间的距离或求点到直线间的距离。

任意两点之间的距离公式虽然要高中才学,但我们可以将两点之间的距离转化为求一个直角三角形的斜边长,用勾股定理求解。

因此,我们会发现每年的题目中几乎都会涉及到勾股定理。

任意点到任意直线的距离公式也要到高中才会学习,但对于一些特殊情况,我们现在就可以做了。

每年的第一问,都是送分问,用一次勾股定理基本都可以解决。

第二问和第三问,解题的关键是要抓住全等的性质和特殊三角形。

第三问通常也会和其它知识点结合,但涉及的都是一些基础知识点,基本功扎实的同学,问题都不大。

最后提醒一下,当对图形进行旋转变换时,尤其需要注意其与圆的结合。

在研究点、直线、圆和圆的位置关系时,只需要研究它们和圆心的位置关系即可。

而在旋转变换时,旋转中心自然就是圆心。

真题练习参考答案。

天津市和平区2020年中考数学模拟(3月)试卷(含解析)

天津市和平区2020年中考数学模拟(3月)试卷(含解析)

2020年天津市和平区中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣1)2019的结果等于()A.﹣2019 B.2019 C.﹣1 D.12.2cos30°的值等于()A.B.C.D.3.为贯彻落实党中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000平方米,其中数据186000000用科学记数法表示是()A.1.86×107B.186×106C.1.86×108D.0.186×1094.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A.B.C.D.5.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.6.估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.化简﹣的结果是()A.x+1 B.x﹣1 C.x D.﹣x8.方程组的解是()A.B.C.D.9.反比例函数y=图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y2 10.如图,将△ABC绕C顺时针旋转,使点B落在AB边上的点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,则下列结论中错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.B′C平分∠BB′A′D.∠B′CA=∠B′AC11.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB 上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.712.已知抛物线y=ax2+3x+c(a,c为常数,且a≠0)经过点(﹣1,﹣1),(0,3),有下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小;③3是方程ax2+2x+c=0的一个根;④当﹣1<x<3时,ax2+2x+c>0其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分)13.已知反比例函数的图象经过点A,B,点A的坐标为(1,3),点B的纵坐标为1,则点B的横坐标为.14.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠BAD′=70°,则α=(度).15.如图,“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次任意出“石头”、“剪刀”、“布”这三种手势中的一种,那么双方出现相同手势的概率P=.16.与直线y=2x平行的直线可以是(写出一个即可).17.如图,点D、E、F分别在正三角形ABC的三边上,且△DEF也是正三角形,若△ABC的边长为a,△DEF的边长为b.则△AEF的内切圆半径为.18.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,(Ⅰ)AC的长=;(Ⅱ)BD+DC的最小值是.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)(Ⅰ)解方程:x(2x﹣5)=4x﹣10;(Ⅱ)已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根,求k的取值范围.20.(8分)已知抛物线y=x2+bx+c过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.21.(10分)已知,AB为⊙O的直径,弦CD⊥AB于点E,在CD的延长线上取一点P,PG 与⊙O相切于点G,连接AG交CD于点F.(Ⅰ)如图①,若∠A=20°,求∠GFP和∠AGP的大小;(Ⅱ)如图②,若E为半径OA的中点,DG∥AB,且OA=2,求PF的长.22.(10分)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.23.(10分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.(Ⅰ)求y与x的函数解析式,请直接写出x的取值范围;(Ⅱ)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?24.(10分)如图,四边形AOBC是正方形,点C的坐标是(4,0).(Ⅰ)正方形AOBC的边长为,点A的坐标是.(Ⅱ)将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;(Ⅲ)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).25.(10分)已知二次函数y=ax2﹣2ax+3的最大值为4,且该抛物线与y轴的交点为C,顶点为D.(Ⅰ)求该二次函数的解析式及点C,D的坐标;(Ⅱ)点P(t,0)是x轴上的动点,①求|PC﹣PD|的最大值及对应的点P的坐标;②设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2﹣2a|x|+3的图象只有一个公共点,求t的取值范围.2020年天津市和平区中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据有理数的乘方的运算法则计算可得.【解答】解:(﹣1)2019=﹣1,故选:C.【点评】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的运算法则.2.【分析】根据特殊角的三角函数值直接解答即可.【解答】解:2cos30°=2×.故选:B.【点评】此题考查了特殊角的三角函数值,是需要识记的内容.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将186000000用科学记数法表示为:1.86×108.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据中心对称图形的概念求解.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、是中心对称图形,本选项正确.故选:D.【点评】此题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.6.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:∵3<<4,∴4<+1<5,故选:B.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题关键,又利用了不等式的性质.7.【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式==x,故选:C.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.【分析】可用两种方式解决本题:①将选项中的x与y的值分别代入题干中两个方程验证;②直接解方程组选出答案.此处选用第二种方法.【解答】解:①﹣②得:4y=8解得y=2将y=2代入①可解得:x=4∴原方程组的解为:故选:B.【点评】本题考察二元一次方程组的解法,因此要对二元一次方程组的解法非常熟悉.9.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据x1<x2<0<x3即可得出结论.【解答】解:∵反比例函数y=中,k=3>0,∴此函数图象的两个分支分别位于第一三象限,且在每一象限内y随x的增大而减小.∵x1<x2<0<x3,∴(x1,y1)、(x2,y2)在第三象限,(x3,y3)在第一象限,∴y2<y1<0<y3.故选:B.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C平分∠BB′A′,故D正确.【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,∵CB=CB',∴∠B=∠BB'C,又∵∠A'CB'=∠B+∠BB'C,∴∠A'CB'=2∠B,又∵∠ACB=∠A'CB',∴∠ACB=2∠B,故B正确;∵∠A′B′C=∠B,∴∠A′B′C=∠BB′C,∴B′C平分∠BB′A′,故C正确;故选:D.【点评】本题考查了旋转的性质,角平分线的定义,等腰三角形的性质,正确的识别图形是解题的关键.11.【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′===5.故选:B.【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD的值最小是解题的关键.12.【分析】先由抛物线y=ax2+3x+c(a,c为常数,且a≠0)经过点(﹣1,﹣1),(0,3),列方程组求出a,c,从而解得其解析式,进而求得其对称轴,再根据二次函数与方程和二次函数与不等式的关系可解.【解答】解:把点(﹣1,﹣1),(0,3)代入y=ax2+3x+c得:∴∴y=﹣x2+3x+3∴①ac<0正确;该抛物线的对称轴为:,∴②当x>1时,y的值随x值的增大而减小是错误的;方程ax2+2x+c=0可化为:方程ax2+3x+c=x,把x=3代入y=﹣x2+3x+3得y=3,∴﹣x2+2x+3=0,故③正确;∴(3,3)在该抛物线上,又∵抛物线y=ax2+3x+c(a,c为常数,且a≠0)经过点(﹣1,﹣1),∴抛物线y=ax2+3x+c与y=x的交点为(﹣1,﹣1)和(3,3),当﹣1<x<3时,ax2+3x+c>x,即ax2+2x+c>0④当﹣1<x<3时,ax2+2x+c>0,故④正确.综上,①③④正确.故选:C.【点评】本题考查了二次函数解析式、二次函数的对称轴、二次函数与方程、二次函数与不等式的关系,综合性较强,难度较大.二、填空题(本大题共6小题,每小题3分,共18分)13.【分析】设点B的横坐标为t,利用反比例函数图象上点的坐标特征得到t×1=1×3,然后解方程求出t即可.【解答】解:设点B的横坐标为t,∵反比例函数的图象经过点A,B,∴t×1=1×3,∴t=3,即点B的横坐标为3.故答案为3.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.【分析】根据旋转的定义,找到旋转角,利用角的和差关系即可求解.【解答】解:根据旋转的定义可知,∠BAB′=α,∵∠BAB′+∠BAD′=90°,∴α=90°﹣70°=20°.故答案为20.【点评】本题主要考查旋转的定义及性质、矩形的性质,解题的关键是找准旋转角.15.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与双方出现相同手势的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,双方出现相同手势的有3种情况,∴双方出现相同手势的概率P=.故答案为:.【点评】此题考查了列表法与树状图法求概率的知识.此题比较简单,注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,注意概率=所求情况数与总情况数之比.16.【分析】两直线平行的条件是k相同,因此满足y=2x+b的形式,且b≠0即可.【解答】解:∵满足y=2x+b的形式,且b≠0的所有直线互相平行,∴可以是直线y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象的性质,理解k值的含义是解答本题的关键.17.【分析】欲求△AEF的内切圆半径,可以画出图形,然后利用题中已知条件,挖掘隐含条件求解.【解答】解:如图,由于△ABC,△DEF都为正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,∴∠1+∠2=∠2+∠3=120°,∠1=∠3;在△AEF和△CFD中,,∴△AEF≌△CFD(AAS);同理可证:△AEF≌△CFD≌△BDE;∴BE=AF,即AE+AF=AE+BE=a.设M是△AEF的内心,MH⊥AE于H,则AH=(AE+AF﹣EF)=(a﹣b);∵MA平分∠BAC,∴∠HAM=30°;∴HM=AH•tan30°=(a﹣b)•=(a﹣b).故答案为:(a﹣b).【点评】本题考查了等边三角形的性质以及全等三角形的判定与性质以及内心的性质,根据已知得出AH的长是解题关键.18.【分析】(Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+DC的值最小,解直角三角形即可得到结论.【解答】解:(Ⅰ)如图,过B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=AB=2,∴AC=2AE=4;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+DC的值最小,∵BF=CF=2,∴BD=CD=,∴∴BD+DC的最小值=2,故答案为:4,2.【点评】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.【分析】(Ⅰ)方程变形为x(2x﹣5)﹣2(2x﹣5)=0,然后利用因式分解法解方程;(Ⅱ)根据判别式的意义得到△=22﹣4•(2k﹣4)>0,然后解关于k的不等式即可.【解答】解:(Ⅰ)x(2x﹣5)﹣2(2x﹣5)=0,(2x﹣5)(x﹣2)=0,2x﹣5=0或x﹣2=0,所以x1=,x2=2;(Ⅱ)△=22﹣4•(2k﹣4)>0,所以k<.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.20.【分析】将(0,0),(1,3)代入y=x2+bx+c求得b,c的值,得到此函数的解析式;再把一般式转化为顶点式,由顶点式可得顶点的坐标.【解答】解:分别将(0,0),(1,3)代入函数解析式,得出二元一次方程组解得所以,该二次函数的解析式为y=x2+2x;该二次函数的解析式y=x2+2x可化为:y=(x+1)2﹣1,所以该抛物线的顶点坐标为(﹣1,﹣1).【点评】本题考查了二次函数解析式的求法,以及二次函数顶点式的应用.21.【分析】(Ⅰ)连接OG,在Rt△AEF中,∠A=20°,可得∠GFP=∠EFA=70°,因为OA=OG,所以∠OGA=∠A=20°,因为PG与⊙O相切于点G,得∠OGP=90°,可得∠AGP =90°﹣20°=70°.;(Ⅱ)如图,连结BG,OG,OD,AD,证明△OAD为等边三角形,得∠AOD=60°,所以∠AGD=30°,因为DG∥AB,所以∠BAG=∠AGD=30°,在Rt△AGB中可求得AG=6,在Rt △AEF中可求得AF=2,再证明△GFP为等边三角形,所以PF=FG=AG﹣AF=6﹣2=4.【解答】解:(Ⅰ)连接OG,∵CD⊥AB于E,∴∠AEF=90°,∵∠A=20°,∴∠EFA=90°﹣∠A=90°﹣20°=70°,∴∠GFP=∠EFA=70°,∵OA=OG,∴∠OGA=∠A=20°,∵PG与⊙O相切于点G,∴∠OGP=90°,∴∠AGP=∠OGP﹣∠OGA=90°﹣20°=70°.(Ⅱ)如图,连结BG,OG,OD,AD,∵E为半径OA的中点,CD⊥AB,∴OD=AD=OA,∴△OAD为等边三角形,∴∠AOD=60°,∴∠AGD=∠AOD=30°,∵DG∥AB,∴∠BAG=∠AGD=30°,∵AB为⊙O的直径,OA=2,∴∠AGB=90°,AB=4,∴AG=AB•cos30°=6,.∵OG=OA,∴∠OGA=∠BAG=30°,∵PG与⊙O相切于点G,∴∠OGP=90°,∴∠FGP=90°﹣30°=60°,∵∠AEF=90°,AE=,∠BAG=30°,∴AF=2,∠GFP=∠EFA=60,∴△GFP为等边三角形,∴PF=FG=AG﹣AF=6﹣2=4.【点评】本题考查圆的切线的性质,等边三角形的判定和性质,直角三角形的性质.解题的关键是掌握圆的切线的性质.22.【分析】①在Rt△AHP中,由tan∠APH=tanα=,即可解决问题;②设BC⊥HQ于C.在Rt△BCQ中,求出CQ==1500米,由PQ=1255米,可得CP=245米,再根据AB=HC=PH﹣PC计算即可;【解答】解:①在Rt△AHP中,∵AH=500,由tan∠APH=tanα===2,可得PH=250米.∴点H到桥左端点P的距离为250米.②设BC⊥HQ于C.在Rt△BCQ中,∵BC=AH=500,∠BQC=30°,∴CQ==1500米,∵PQ=1255米,∴CP=245米,∵HP=250米,∴AB=HC=250﹣245=5米.答:这架无人机的长度AB为5米.【点评】本题考查解直角三角形﹣仰角俯角问题,锐角三角函数,矩形判定和性质等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.23.【分析】(Ⅰ)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(Ⅱ)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题.【解答】解:(Ⅰ)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥20.1,又∵x为整数,∴x的取值范围为21≤x≤62的整数;(Ⅱ)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=19460元.即租21辆A型号客车时总费用最省,最省的总费用是19460元.【点评】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.24.【分析】(Ⅰ)由正方形性质可得AO=AC=OB=BC,AB⊥OC,OE=EC,AE=BE,由勾股定理可求AO,AE的长,即可求解;(Ⅱ)由旋转的性质可得OA=OA'=4,∠OA'B'=∠A=90°,可求A'C的长,由S重叠部分=S△OBC﹣S△A'PC可求重叠部分的面积;(Ⅲ)利用分类讨论思想和等腰三角形的性质可求t的值.【解答】解:(Ⅰ)如图,连接AB,交OC于点E,∵四边形AOBC是正方形∴AO=AC=OB=BC,AB⊥OC,OE=EC,AE=BE,∵点C的坐标是(4,0).∴OC=4∴OE=EC=2∵OA2+AC2=OC2=32,∴OA=4∴AE==2∴正方形边长为4,点A坐标为(2,2)故答案为:4,(2,2)(Ⅱ)如图,∵旋转45°,∠AOC=45°∴点A'落在OC上,∴OA=OA'=4,∠OA'B'=∠A=90°∴点A'(4,0),A'C=OC﹣OA'=4﹣4∵∠ACB=45°,∴∠A'PC=∠A'CP=45°∴A'C=A'P=4﹣4∴S重叠部分=S△OBC﹣S△A'PC=8﹣×(4)2=16﹣16(Ⅲ)∵t=4时,点P与A重合,点Q与C重合,且△OAC是等腰三角形∴当t=4时,△OPQ为等腰三角形当点P在OA上,点Q在OB上时,OP=t,OQ=2t,则直角三角形OPQ不是等腰三角形;当点P在OA上,点Q在BC上时,∵△OPQ是等腰三角形∴点Q在OP的垂直平分线上,∴2t﹣4=∴t=当点P在AC上时,点Q在AC上时,OP≠OQ≠PQ∴△OPQ不是等腰三角形.∴当t=4或时,△OPQ为等腰三角形.【点评】本题是四边形综合题,正方形的性质,等腰直角三角形的性质,旋转的性质,勾股定理以及分类讨论思想的运用,熟练运用这些性质进行推理是本题的关键.25.【分析】(Ⅰ)可用对称轴公式直接求出y=ax2﹣2ax+3的对称轴,然后写出顶点D的坐标,将顶点坐标代入y=ax2﹣2ax+3即可求出点C的坐标;(Ⅱ)①求出直线CD的解析式,再求出CD与x轴交点即可求出P点坐标,CD的长度即为|PC﹣PD|的最大值;②根据题意画出图形,分别表示出关键点即抛物线与x轴交点与点P重合时的图象,由图象即可看出t的取值范围.【解答】解:(Ⅰ)在二次函数y=ax2﹣2ax+3中,∵x=﹣=1,∴y=ax2﹣2ax+3的对称轴为x=1,∵y=ax2﹣2ax+3的最大值为4,∴抛物线的顶点D(1,4),将D(1,4)代入y=ax2﹣2ax+3中,得a=﹣1,∴该二次函数的解析式为y=﹣x2+2x+3,∴C点坐标为(0,3),D点坐标为(1,4);(Ⅱ)①∵|PC﹣PD|≤CD,∴当P,C,D三点在一条直线上时,|PC﹣PD|取得最大值,如图1,连接DC并延长交x轴于点P,将点D(1,4),C(0,3)代入y=kx+b,得,解得k=1,b=3,∴y CD=x+3,当y=0时,x=﹣3,∴P(0,﹣3),CD==,∴|PC﹣PD|的最大值为,P(﹣3,0);②y=a|x|2﹣2a|x|+3可化为y=,将P(t,0),Q(0,2t)代入y=kx+b,得,解得:k=﹣2,b=2t,∴y PQ=﹣2x+2t,情况一:如图2﹣1,当线段PQ过点(﹣3,0),即点P与点(﹣3,0)重合时,线段PQ与函数y=的图象只有一个公共点,此时t=﹣3,综合图2﹣1,图2﹣2,所以当t≤﹣3时,线段PQ与函数y=的图象只有一个公共点;情况二:如图2﹣3,当线段PQ过(0,3),即点Q与点C重合时,线段PQ与函数y=的图象只有一个公共点,此时t=,如图2﹣4,当线段PQ过点(3,0),即点P与点A(3,0)重合时,t=3,此时线段PQ 与函数y=的图象有两个公共点,综合图2﹣3,图2﹣4,所以当≤t<3时,线段PQ与函数y=的图象只有一个公共点;情况三:如图2﹣5,将y=﹣2x+2t带入y=﹣x2+2x+3(x≥0),整理,得x2﹣4x+2t﹣3=0,△=16﹣4(2t﹣3)=28﹣8t,令28﹣8t=0,解得t=,∴当t=时,线段PQ与与函数y=的图象只有一个公共点;综上所述,t的取值范围为t≤﹣3或≤t<3或t=.【点评】本题考查了待定系数法求解析式,三角形两边之差小于第三边,抛物线与直线公共点的个数等,解题关键是要根据题意画出图形.。

2020年天津市中考数学模拟试题(含答案) (6)

2020年天津市中考数学模拟试题(含答案)  (6)

2020年天津市中考数学模拟试卷(典型考点整理)一.选择题(共8小题)1.已知,那么下列等式中,不成立的是()A.B.C.D.4x=3y2.下列交通标志是中心对称图形的为()A.B.C.D.3.二次函数y=x2的对称轴是()A.直线y=1 B.直线x=1 C.y轴D.x轴4.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tan A的值为()A.B.C.D.35.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±26.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使△ABC∽△PBD,则点P的位置应落在()A.点P1上B.点P2上C.点P3上D.点P4上7.A,B是⊙O上的两点,OA=1,劣弧的长是,则∠AOB的度数是()A.30 B.60°C.90°D.120°8.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC 向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数图象大致是()A.B.C.D.二.填空题(共8小题)9.写出一个经过点(1,﹣2)的函数的表达式,所写的函数的表达式为.10.如图,在平面直角坐标系中,△DEF是由△ABC旋转得到的,则旋转的角度是°.11.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为.12.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.13.如图,将一副三角板中含有30°角的三角板的直角顶点落在等腰直角三角形的斜边的中点D处,并绕点D旋转,两直角三角板的两直角边分别交于点E,F,下列结论:①DE=DF;②S四边形AEDF =S△BED+S△CFD;③S△ABC=EF2;④EF2=BE2+CF2,其中正确的序号是.14.一名身高为1.6m的同学的影长为1.2m,同一时刻旗杆影长为9m,那么旗杆的高度是m.15.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.16.如图.六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明).三.解答题(共12小题)17.计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣118.如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.19.在直角坐标系中△ABC三个顶点坐标分别为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧);(2)请直接写出点B′及点C′的坐标;(3)求线段BC的对应线段B′C′所在直线的解析式.20.如图所示,有一圆弧形拱桥,拱的跨度AB=30m,拱形的半径R=30m,则拱形的弧长为多少?21.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,求学校旗杆的高度.22.如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA 于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.23.如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.24.如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O 相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.(1)如果BE=15,CE=9,求EF的长;(2)证明:①△CDF∽△BAF;②CD=CE;(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.25.如果一个函数的图象关于y轴对称,我们就称这个函数为偶函数.(1)按照上述定义判断下列函数中,是偶函数.A.y=3x B.y=x+1 C.D.y=x2(2)若二次函数y=x2+bx﹣4是偶函数,该函数图象与x轴交于点A和点B,顶点为P.求△ABP的面积.26.抛物线y=﹣x2与直线y=kx﹣2k+3交于A,B两点,若∠AOB =90°,求k的值.27.已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.28.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE 为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.参考答案与试题解析一.选择题(共8小题)1.已知,那么下列等式中,不成立的是()A.B.C.D.4x=3y【分析】直接利用比例的性质将原式变形进而得出答案.【解答】解:A、∵,∴=,此选项正确,不合题意;B、∵,∴=﹣,此选项错误,符合题意;C、∵,∴=,此选项正确,不合题意;D、∵,∴4x=3y,此选项正确,不合题意;故选:B.2.下列交通标志是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义即可解答.【解答】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选:C.3.二次函数y=x2的对称轴是()A.直线y=1 B.直线x=1 C.y轴D.x轴【分析】根据抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,据此解答可得.【解答】解:二次函数y=x2的对称轴是直线x=0,即y轴,故选:C.4.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tan A的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sin A===,∴tan A==,故选:B.5.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±2【分析】将点M坐标代入反比例函数解析式得出关于a的方程,解之可得.【解答】解:∵点M(a,2a)在反比例函数y=的图象上.∴2a=.∴解得:a=±2,故选:D.6.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使△ABC∽△PBD,则点P的位置应落在()A.点P1上B.点P2上C.点P3上D.点P4上【分析】由图可知∠BPD一定是钝角,若要△ABC∽△PBD,则PB、PD与AB、AC的比值必须相等,可据此进行判断.【解答】解:由图知:∠BAC是钝角,又△ABC∽△PBD,则∠BPD一定是钝角,∠BPD=∠BAC,又BA=2,AC=2,∴BA:AC=1:,∴BP:PD=1:或BP:PD=:1,只有P2符合这样的要求,故P点应该在P2.故选:B.7.A,B是⊙O上的两点,OA=1,劣弧的长是,则∠AOB的度数是()A.30 B.60°C.90°D.120°【分析】直接利用已知条件通过弧长公式求出圆心角的度数即可.【解答】解:∵OA=1,的长是,∴,解得:n=60,∴∠AOB=60°,故选:B.8.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC 向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数图象大致是()A.B.C.D.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数图象大致是二次函数图象,开口向下.故选:C.二.填空题(共8小题)9.写出一个经过点(1,﹣2)的函数的表达式,所写的函数的表达式为.【分析】此题只需根据一次函数的形式或反比例函数的形式或二次函数的形式等写出适合(1,﹣2)的解析式即可.【解答】解:将点(1,﹣2)代入一次函数或反比例函数的形式或二次函数得:y=﹣2x,,y=﹣2x2等.故答案为:(答案不唯一).10.如图,在平面直角坐标系中,△DEF是由△ABC旋转得到的,则旋转的角度是90 °.【分析】根据网格结构,先找出对应点连线的垂直平分线的交点为旋转中心,那么一对对应点与旋转中心连线的夹角即为旋转角.【解答】解:由图可知,A与D、B与E分别是对应点,作出线段AD、BE的垂直平分线,得到旋转中心P的坐标为(﹣1,0),则∠BPE=90°.故答案为90.11.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为 1 .【分析】根据直角三角形30度角的性质即可解决问题.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=1,故答案为1.12.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为(﹣1,﹣2).【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点O的坐标即可.【解答】解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD═DB=DA=,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),13.如图,将一副三角板中含有30°角的三角板的直角顶点落在等腰直角三角形的斜边的中点D处,并绕点D旋转,两直角三角板的两直角边分别交于点E,F,下列结论:①DE=DF;②S四边形AEDF =S△BED+S△CFD;③S△ABC=EF2;④EF2=BE2+CF2,其中正确的序号是①②④.【分析】连接AD,如图,利用等腰直角三角形的性质得AB=AC,∠B=∠C=45°,AD⊥BC,BD=CD=AD,∠1=45°,再证明△DBE ≌△DAF得到DE=DF,则可对①进行判断;同理可得△DCF≌△DAE,则可对②进行判断;利用三角形面积公式得到S△ABC=AD2,由于当DE⊥AB时,四边形AEDF为矩形,此时AD=EF,于是可对③进行判断;利用勾股定理得到EF2=AE2+AF2,由于△DBE≌△DAF,△DCF ≌△DAE,则BE=AF,CF=AE,从而可对④进行判断.【解答】解:连接AD,如图,∵△ABC为等腰直角三角形,∴AB=AC,∠B=∠C=45°,∵点D为等腰直角△ABC的斜边的中点,∴AD⊥BC,BD=CD=AD,AD平分∠BAC,∴∠2+∠3=90°,∠1=45°,∵∠EDF=90°,即∠4+∠3=90°,∴∠2=∠4,在△DBE和△DAF中,∴△DBE≌△DAF(ASA),∴DE=DF,所以①正确;同理可得△DCF≌△DAE,∴S四边形AEDF=S△BED+S△CFD,所以②正确;∵S△ABC=•AD•BC=•AD•2AD=AD2,而只有当DE⊥AB时,四边形AEDF为矩形,此时AD=EF,∴S△ABC不一定等于EF2,所以③错误;在Rt△AEF中,EF2=AE2+AF2,∵△DBE≌△DAF,△DCF≌△DAE,∴BE=AF,CF=AE,∴EF2=BE2+CF2,所以④正确.故答案为①②④.14.一名身高为1.6m的同学的影长为1.2m,同一时刻旗杆影长为9m,那么旗杆的高度是12 m.【分析】利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.【解答】解:∵同一时刻物高与影长成正比例.设旗杆的高是xm.∴1.6:1.2=x:9∴x=12.即旗杆的高是12米.故答案为:12.15.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有15 个.【分析】由摸到红球的频率稳定在0.25附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴=,解得:x=15,即白球的个数为15个,故答案为:15.16.如图.六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明)点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.【分析】(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,故答案为:点M是长方形AFBE是对角线交点,点N是正方形ABCD 的对角线的交点,直线MN就是所求的线段AB的垂直平分线.三.解答题(共12小题)17.计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣1【分析】先代入三角函数值、计算绝对值、零指数幂和负整数指数幂,再进一步计算可得.【解答】解:原式=×﹣3+1+2=1﹣3+1+2=1.18.如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.【分析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出=,化为乘积式即可CD2=DF•DE.【解答】证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠A+∠F=90°,∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB∴∠B=∠F,∵CD是Rt△ABC斜边AB上的中线∴CD=AD=DB,∴∠DCE=∠B,∴∠DCE=∠F,∴△CDE∽△FDC,∴=,∴CD2=DF•DE.19.在直角坐标系中△ABC三个顶点坐标分别为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧);(2)请直接写出点B′及点C′的坐标;(3)求线段BC的对应线段B′C′所在直线的解析式.【分析】(1)根据画位似图形的一般步骤和相似比找出图形;(2)根据相似比和相似三角形的性质求出点B′及点C′的坐标;(3)运用待定系数法求出一次函数解析式.【解答】解:(1)如图△A′B′C′即为所求;(2)∵△ABC与△A′B′C′的相似比为1:3,∴B′(0,6),C′(3,0);(3)设B′C′所在直线的解析式为y=kx+b,,解得,∴B′C′所在直线的解析式y=﹣2x+6.20.如图所示,有一圆弧形拱桥,拱的跨度AB=30m,拱形的半径R=30m,则拱形的弧长为多少?【分析】过O作OD⊥AB,交AB于点C,交于点D,如图所示,利用垂径定理得到C为AB的中点,由AB长求出AC长,在直角三角形AOC中,利用锐角三角函数定义求出sin∠AOC的值,利用特殊角的三角函数值求出∠AOC度数,进而求出∠AOB度数,利用弧长公式即可求出拱形的弧长.【解答】解:过O作OD⊥AB,交AB于点C,交于点D,如图所示,∴C为AB的中点,即AC=BC=AB=15m,在Rt△AOC中,sin∠AOC===,∴∠AOC=60°,∴∠AOB=2∠AOC=120°,则拱形的弧长l==20π.21.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,求学校旗杆的高度.【分析】根据同一时刻物高与影长成正比,因而作DE⊥AB于点E,则AE与DE的比值,即同一时刻物高与影长的比值,即可求解.【解答】解:作DE⊥AB于点E,根据题意得:=,=,解得:AE=8米.则AB=AE+BE=8+2=10米.即旗杆的高度为10米.22.如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA 于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【分析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论.(3)分三种情形分别讨论求解即可解决问题;【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).23.如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.【分析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为4,所以两次抽取的牌上的数字都是偶数的概率=.24.如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O 相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.(1)如果BE=15,CE=9,求EF的长;(2)证明:①△CDF∽△BAF;②CD=CE;(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.【分析】(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且=.【解答】(1)解:∵直线l与以BC为直径的圆O相切于点C.∴∠BCE=90°,又∵BC为直径,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故为60°,∴F在直径BC下方的圆弧上,且=.25.如果一个函数的图象关于y轴对称,我们就称这个函数为偶函数.(1)按照上述定义判断下列函数中,D是偶函数.A.y=3x B.y=x+1 C.D.y=x2(2)若二次函数y=x2+bx﹣4是偶函数,该函数图象与x轴交于点A和点B,顶点为P.求△ABP的面积.【分析】(1)根据对称性进行判断;(2)根据偶函数的定义,知二次函数的对称轴是y轴,则其中的b=0,从而进一步求得点A、B、P的坐标,根据三角形的面积公式即可求出该三角形的面积.【解答】解:(1)A、y=3x是经过一、三象限的直线,其对称轴不是y轴,则不是偶函数;B、y=x+1是经过一、二、三象限的直线,其对称轴不是y轴,则不是偶函数;C、是在一、三象限的双曲线,其对称轴不是y轴,则不是偶函数;D、y=x2是关于y轴对称的抛物线,则是偶函数.故答案为D.(2)∵二次函数y=x2+bx﹣4是偶函数,∴其对称轴是y轴,则b=0.即二次函数y=x2﹣4.则A(﹣2,0),B(2,0),P(0,﹣4),则△ABP的面积=×4×4=8.26.抛物线y=﹣x2与直线y=kx﹣2k+3交于A,B两点,若∠AOB =90°,求k的值.【分析】将y=kx﹣2k+3代入y=x2,得x2﹣kx+2k﹣3=0,根据二次函数图象上点的坐标特征以及根与系数的关系得出y1=x12,y2=x22,x1•x2=4k﹣6,那么y1•y2=k2﹣3k+当∠AOB=90°时,如图1,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.证明△AOM∽△OBN,根据相似三角形对应边成比例得出y1•y2=﹣x1•x2,依此列出关于k的方程,求出k的值即可.【解答】解:将y=kx﹣2k+3代入y=x2,得x2﹣kx+2k﹣3=0,设抛物线y=﹣x2与直线y=kx﹣2k+3交于A(x1,y1),B(x2,y2)两点,∴y1=x12,y2=x22,x1•x2=4k﹣6,∴y1•y2=(x12)•(x22)=(x1•x2)2=(4k﹣6)2=4k2﹣6k+9 当∠AOB=90°时,如图:,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.在△AOM与△OBN中,,∴△AOM∽△OBN,∴=,即=,∴y1•y2=﹣x1•x2,∴4k2﹣6k+9=﹣4k+6,∵k>0,∴k=,27.已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.【分析】(1)直接利用旋转的性质结合全等三角形的判定与性质得出答案;(2)直接利用等边三角形的性质结合勾股定理即可得出答案.【解答】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,∴△BAP≌△CAQ(SAS),∴PB=QC;(2)解:∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=150°,∴∠PQC=150°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQC是直角三角形,∴PC===5.28.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE 为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD 是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO与△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切线;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四边形ABCD是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.。

2020年天津市中考数学模拟试题(含答案) (4)

2020年天津市中考数学模拟试题(含答案)  (4)

2020年天津市中考数学模拟试卷(典型考点整理)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为美元.9.(3分)已知k为整数,且满足<k<,则k的值是.10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是°.12.(3分)已知二元一次方程组,则2a+3b=.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是.14.(3分)已知不等式组无解,则a的取值范围是.15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:﹣3的相反数是3.故选:A.【点评】本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB【分析】如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即ABAC=ACBC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.【解答】解:∵P为线段AB的黄金分割点,且AP<PB,∴PB2=AP•AB.故选:C.【点评】本题考查了黄金分割的概念,熟记定义是解题的关键.4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变【分析】根据方差和平均数的定义即可得到结论.【解答】解:原数据的平方数为=165;原数据的方差为[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2+(165﹣165)2=;去掉最后一个数165后的数据的平均数为=165,去掉最后一个数165后的数据的方差为×[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2]=,故平均数不变,方差变大,故选:A.【点评】本题考查了方差和平均数,数据定义是解题的关键.6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5【分析】根据题意A、B的横坐标化为相反数,所以设A(﹣m,﹣)则B(m,),根据题意中位线等于上下底和的一半,求得表示出OC,然后根据S△ABO=S△AOC+S△BOC 即可求得.【解答】解:∵C是AB的中点,∴设A(﹣m,﹣)则B(m,),∴OC=(+)=,∴S△ABO=S△AOC+S△BOC=××2m=.故选:B.【点评】本题考查了反比例函数和一次函数的交点,根据题意表示出交点的坐标是解题的关键.二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=2.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.【点评】解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为 1.3×1012美元.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:13000 0000 0000=1.3×1012.故答案为:1.3×1012.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(3分)已知k为整数,且满足<k<,则k的值是3.【分析】先估算出和的范围,再得出答案即可.【解答】解:∵2<<3,3<<4,∴整数k=3,故答案为:3.【点评】本题考查了估算无理数的大小和实数的大小比较,能估算出和的范围是解此题的关键10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.【分析】列举出所有情况,看所求的情况占总情况的多少即可得出答案.【解答】解:共(正,正)、(反,反)、(正,反)、(反、正)4种情况,则出现一正一反的概率是=;故答案为:.【点评】此题考查了列举法求概率,解题的关键是找到所有的情况,用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是105°.【分析】利用三角形内角和定理计算即可.【解答】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故答案为:105.【点评】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.12.(3分)已知二元一次方程组,则2a+3b=9.【分析】将两方程相减即可得.【解答】解:,①﹣②,得:2a+3b=9,故答案为:9.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是8.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.14.(3分)已知不等式组无解,则a的取值范围是a≤1.【分析】根据不等式组无解,则两个不等式的解集没有公共部分解答.【解答】解:∵不等式组无解,∴a的取值范围是a≤1.故答案为:a≤1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于﹣1.【分析】由已知得出a﹣c=2,求出a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc ﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,即可得出所求的值.【解答】解:∵a﹣b=b﹣c=1,∴a﹣c=2,∴a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,∴ab+bc+ac=a2+b2+c2﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了完全平方式以及配方法;能够运用完全平方式熟练推导与记忆a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2]是解题的关键.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.【分析】设⊙O与CD相切于F,连接OF,得到∠OFE=90°,根据勾股定理得到AB =5,根据直角三角形的性质得到AD=CD,由相似三角形的性质即可得到结论.【解答】解:设⊙O与CD相切于F,连接OF,∴∠OFE=90°,∵∠ACB=90°,BC=3,AC=4,∴AB=5,∵点D为斜边AB的中点,∴AD=CD,∴∠A=∠ACD,∵∠OFC=∠ACB=90°,∴△COF∽△ABC,∴=,设⊙O的半径为r,∴OC=4﹣r,∴=,∴r=,故答案为:.【点评】本题考查了切线的性质,直角三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2+1﹣6×+9=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.【解答】解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.【点评】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有80人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.【分析】(1)32÷40%=80(人),课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人),据此补图;(2),所以a=20;(3)根据题意得:1800×=360(人),所以该校全体学生中喜爱“实验实践”的人数约为360人.【解答】解:(1)32÷40%=80(人),故答案为80,课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人)补图如下(2),所以a=20;(3)根据题意得:1800×=360(人),答:该校全体学生中喜爱“实验实践”的人数约为360人.【点评】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.【分析】(1)由平行四边形的性质和角平分线的性质可证BA=BE=AF,即可证四边形ABEF是菱形;(2)由菱形的性质和勾股定理可求BE=5,由菱形的面积公式可求AH=,由平行四边形的面积公式可求AD的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同理:AB=AF∴AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形(2)如图,过A作AH⊥BE,∵四边形ABEF是菱形,∴AO=EO=AE=3,BO=FO=BF=4,AE⊥BF,∴BE==5,∵S菱形ABEF=AE•BF=×6×8=24,∴BE•AH=24,∴AH=,∴S平行四边形ABCD=AD×AH=36,∴AD=.【点评】本题考查了菱形的性质和判定,平行四边形的性质,熟练运用菱形的性质是本题的关键.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【解答】(1)证明:∵△=[﹣(m+2)]2﹣4×2m=(m﹣2)2≥0,∴不论m为何值,该方程总有两个实数根;(2)解:∵AB、AC的长是该方程的两个实数根,∴AB+AC=m+2,AB•AC=2m,∵△ABC是直角三角形,∴AB2+AC2=BC2,∴(AB+AC)2﹣2AB•AC=BC2,即(m+2)2﹣2×2m=32,解得:m=±,∴m的值是±.又∵AB•AC=2m,m为正数,∴m的值是.【点评】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解答】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=,∴AD=,∵AE=AD﹣DE,∴AE=﹣2=.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?【分析】本题是通过构建函数模型解答销售利润的问题.(1)根据销售利润=销售量×(售价﹣进价),依据题意易得出W与x之间的函数关系式,(2)令W=750,求解即可,因为要确保顾客得到优惠,故最后x应取最小值【解答】解:(1)根据题意,得:W=(﹣2x+100)(x﹣10)整理得W=﹣2x2+120x﹣1000∴W与x之间的函数关系式为:W=﹣2x2+120x﹣1000(2)∵每天销售利润W为750元,∴W=﹣2x2+120x﹣1000=750解得x1=35,x2=25又∵要确保顾客得到优惠,∴x=25答:应将销售单价定位25元【点评】本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.再根据销售利润=销售量×(售价﹣进价),建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)【分析】(1)延长CE交AO于点G,过点E作EF⊥AC垂足为F.解直角三角形即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)如图,延长CE交AO于点G,过点E作EF⊥AC垂足为F.由题意可知:∠ACG=30°,∠AEG=75°,CE=20,∴∠EAC=∠AEG﹣∠ACG=45°,∵EF=CE×Sin∠FCE=10,∴AE==10,∴AE的长度为10m;(2)∵CF=CE×cos∠FCE=10,AF=EF=10,∴AC=CF+AF=10+10,∴AG=AC×Sin∠ACG=5+5,∴AO=AG+GO=5+5+1.6=5+6.6≈15,∴高度AO约为15m.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.【分析】(1)过点E作AE的垂线即可;(2)如图,过点E作EM⊥AB、EN⊥BC,先证明矩形MBNE是正方形,则∠AEM=∠FEN,再证明△AEM≌△FEN,从而得到AE=EF;(3)利用△AEM≌△FEN得到S△AEM=S△FEN,则S四边形ABFE=S正方形MBNE,利用正方形面积公式得到BM=2,则AM=AB﹣BM=1,然后利用勾股定理计算AE的长.【解答】解:(1)如图,(2)如图,过点E作EM⊥AB、EN⊥BC,∴∠EMB=∠MBN=∠ENB=90°,∴四边形MBNE是矩形,又∵四边形ABCD为正方形,∴BD平分∠ABC,∴EM=EN,∴矩形MBNE是正方形,∵∠AEM+∠MEF=∠MEF+∠FEN=90°,∴∠AEM=∠FEN,又∵∠AME=∠FNE=90°,EM=EN,∴△AEM≌△FEN(ASA),∴AE=EF;(3)∵△AEM≌△FEN,∴S△AEM=S△FEN,∴S四边形ABFE=S正方形MBNE,∵四边形ABFE的面积为4,∴BM2=4,∴BM=2(取正舍负),∴AM=AB﹣BM=1,∴AE==.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了正方形的性质.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.【分析】(1)先求出二次函数y=ax2﹣2ax=a(x﹣1)2﹣a顶点C(1,﹣a),当x=1时,一次函数值y=﹣a所以点C在一次函数y=﹣ax的图象上;(2)存在.将点(k,y1)、(k+2,y2)(k≠0,±2)代入二次函数解析式,y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),因为满足=,,整理,得,,解得k=±4,经检验:k=±4是原方程的根,所以整数k的值为±4;(3)分两种情况讨论:①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a.【解答】解:(1)∵二次函数y=ax2﹣2ax=a(x﹣1)2﹣a,∴顶点C(1,﹣a),∵当x=1时,一次函数值y=﹣a∴点C在一次函数y=﹣ax的图象上;(2)存在.∵点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,∴y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),∵满足=,∴,整理,得,∴,∴,解得k=±4,经检验:k=±4是原方程的根,∴整数k的值为±4.(3)∵点E是二次函数图象上一动点,∴E(n,an2﹣2an),∵EF∥y轴,F在一次函数图象上,∴F(n,﹣an).①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,∵a>0,∴当n=﹣1时,EF有最大值,且最大值是2a,又∵0<a≤2,∴0<2a≤4,即EF的最大值是4;②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a,此时EF的最大值是,又∵0<a≤2,∴0<≤,即EF的最大值是;综上所述,EF的最大值是4.【点评】本题考查了二次函数,熟练掌握二次函数的性质是解题的关键.。

2020年天津市中考数学模拟试卷及答案

2020年天津市中考数学模拟试卷及答案

2020年天津市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共36分)1.计算2×(-3)的结果等于()A. 6B. -6C. -1D. 52.sin60°的值等于()A. B. C. D.3.钓鱼岛周围的海域面积约为170000平方千米,数据170000用科学记数法表示为()A. 1.7×103B. 1.7×104C. 17×104D. 1.7×1054.下列交通标志属于轴对称图形的是()A. B. C. D.5.如图是由四个棱长为1小正方体组成的几何体,它的主视图是()A. B. C. D.6.估计的值在哪两个整数之间()A. 9和10B. 7和8C. 5和6D. 3和47.计算得()A. 1B. -1C.D.8.如图,在菱形ABCD中,∠ABC=60°,AC=6,则AB=()A. 10B. 6C. 3D. 不能确定9.方程组的解是()A. B. C. D.10.点(-1,y1),(2,y2),(3,y3)均在函数的图象上,则y1,y2,y3的大小关系是()A. y3<y2<y1B. y2<y3<y1C. y1<y2<y3D. y1<y3<y211.如图,在Rt△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°,得到△OA1B1,求∠A1OB的度数()A. 100°B. 70°C. 40°D. 30°12.二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)中的x与y的部分对应值如下表:下列结论:①abc<0;②当x>1时,y的值随x值的增大而减小;③3是方程ax2+(b-1)x+c=0的一个根;④当-1<x<2)①③④①③⑤②④⑤①②④⑤二、填空题(本大题共6小题,共18分)13.已知x3•x a•x2a+1=x31,则a= ______ .14.计算(+2)(-2)结果是______ .15.一个不透明的袋子中装有6个大小相同的球,其中3个白色,2个黄色和1个红色,从袋子中任意摸出一个球,摸到黄球的概率是______ .16.直线y=-2x+1与y轴的交点坐标是______ .17.已知如图1所示正方形ABCD边长为2,E是BC边上一点,将此正方形的一只角DCE沿直线DE折叠,使C点恰好落在对角线BD上,则BE的长等于______.18.如图2所示,中,,,,D是AC上一个动点,以AD为直径的⊙O交BD于E,则线段CE的最小值是______.图1 图2三、解答题(本大题共7小题,共66分)19.解不等式组,并把解集在数轴上表示出来.20.为了推动阳光体育运动的广泛开展,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为__________,图①中m的值为__________;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠DAC=∠BAC;(2)若把直线EF向上平行移动,如图②,EF交⊙O于G、C两点,若题中的其它条件不变,这时与∠DAC相等的角是哪一个?为什么?22.如图,有两座建筑物AB与CD,从A测得建筑物顶部D的仰角为16°,在BC上有一点E,点E到B的距离为24米,从E测得建筑物的顶部A、D的仰角分别为37°、45°.求建筑物CD的高度.(参考数据:tan16°≈0.30,tan37°≈0.75)23.我市进行运河带绿化,计划种植银杏树苗,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:甲:购买树苗数量不超过500棵时,销售单价为800元/棵;超过500棵的部分,销售单价为700元/棵.乙:购买树苗数量不超过1000棵时,销售单价为800元/棵;超过1000棵的部分,销售单价为600元/棵.设购买银杏树苗x棵,到两家购买所需费用分别为y甲元、y乙元.(1)该景区需要购买800棵银杏树苗,若都在甲家购买所要费用为______元,若都在乙家购买所需费用为______元;(2)当x>1000时,分别求出y甲、y乙与x之间的函数关系式;(3)如果你是该景区的负责人,购买树苗时有什么方案,为什么?24.如图,平行四边形OABC中,OA=2,∠A=60°,AB交y轴于点D,点C(3,0),F是BC的中点,E在OC上从O向C移动,EF的延长线与AB的延长线交于点G.(l)求D、B的坐标;(2)求证:四边形ECGB是平行四边形;(3)求当OE是多少时,四边形ECGB是矩形;OE是多少时,四边形ECGB是菱形.(4)设OE=x,四边形OAGC的面积为y,请写出y与x的关系式.25.如图,抛物线y=-x2+bx+c经过M(-,0)、N(0,)两点.正方形ABCD、DEFC的边长均为m,边AB落在x轴上,点E、F在抛物线y=-x2+bx+c上.(1)求此抛物线的解析式.(2)求此抛物线的对称轴.(3)求m的值.2020年天津市中考数学模拟试卷参考答案1. B2. C3. D4. B5. C6. D7. A8. B9. D10. D11. B12. A13. 914. 115.16. (0,1)17. 4-218. 819. 解:解不等式①得x≤3,解不等式②得x≥-1,故不等式组的解为:-1≤x≤3,把解集在数轴上表示出来为:20. 解:(1)40 15;(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.21. (1)证明:连接OC;∵EF切⊙O于点C,∴OC⊥EF,∴∠1+∠4=90°;∵AD⊥EF,∴∠3+∠4=90°;∴∠1=∠3;又∵OA=OC,∴∠1=∠2,∴∠2=∠3,即∠DAC=∠BAC.(2)解:∠BAG=∠DAC,理由如下:连接BC;∵AB为⊙O的直径,∴∠BCA=90°,∠B+∠BAC=90°,∵∠AGD+∠GAD=90°,又∵∠B=∠AGD,∴∠BAC=∠GAD;即∠BAG+∠GAC=∠GAC+∠DAC,∴∠BAG=∠DAC.22. 解:作AF⊥CD于F,设CD=x米,∵∠DEC=45°,∴EC=CD=x米,在Rt△ABE中,AB=BE•tan∠AEB≈18,则CF=18,∴DF=x-18,在Rt△AFD中,tan∠DAF=,即,解得x=36,答:建筑物CD的高度约为36米.23. 610000;64000024. (1)解:∵平行四边形OABC中,∠A=60°,∴∠ADO=90°,∠AOD=30°,∵OA=2,∴AD=,OD=3,∴D坐标(0,3),∵AB=OC=3,∴BD=AB-AD=3-=2,∴B坐标(2,3);(2)证明:∵四边形OABC是平行四边形,∴AG∥OC,∴∠BGE=∠GEC,∵F是CB的中点,∴BF=CF,又∵∠BFG=∠CFE,在△BFG与△CFE中,,∴△BFG≌△CFE(ASA),∴BG=CE,∴四边形ECGB是平行四边形;(3)解:∵四边形ECGB是矩形,∴∠BEC=90°∵∠A=∠BCE=60°.∴∠EBC=30°,∵OA=BC=2,∴EC=,∴OE=3-=2,∵四边形ECGB是菱形,∠BCE=60°,∴△BEC是等边三角形,∴BC=EC=2,∴OE=3-2=;(4)解:∵OE=x,∴BG=CE=3-x,∴S△BGC=BG•OD=×(3-x)×3=-,∴S四边形OAGC=S平行四边形OABC+S△BGC=3×3+x=.25. 解:(1)把M(-,0),N(0,)代入解析式可得:,∴,∴此抛物线的解析式为:y=-x2+x+.(2)∵y=-x2+x+=-(x-)2+1,∴此抛物线的对称轴是直线x=.(3)由题意知(+,2m)在此抛物线上,∴-(+)2+++=2m,即m2+8m-4=0,∴m=-4±2.负值舍去,∴m=2-4.。

天津市中考数学24题常考题型

天津市中考数学24题常考题型

天津市中考数学24题常考题型
天津市中考数学24题是中考数学试卷中的重要题型,一直以来都是考生备战数学考试的焦点。

近几年,天津市中考数学24题的考察范围和难度也有所增加。

然而,掌握这类题型并不难,只需坚持练习,逐渐掌握其规律和解题技巧。

一、填空题
填空题是数学24题中的一种常见题型,大多考察对基本概念和公式的理解、记忆能力和计算能力。

对于这类题目,考生需要充分利用课下时间,通过做相关练习,牢记每个公式和概念,并注意计算准确。

二、选择题
选择题是数学24题中的另一种常见题型,需要考生根据给出的情景和条件,选择正确的答案。

这类题型要求考生具备扎实的基本功和较高的思维能力,平时可以多进行模拟测试,熟悉考试规则和答题技巧,在考试中迅速定位和作答。

三、计算题
计算题是数学24题中比较考验考生计算能力和分析问题能力的题型。

这类题目需要考生结合所学的知识,认真分析题意,合理运用公式,进行准确计算。

在备战中考,考生可以通过做题和学习参考书籍来提高对解题思维的理解和掌握。

总之,天津市中考数学24题是考察考生数学综合能力的重要题型,切
实掌握相关的考试规则和解题技巧对于备考取得好成绩是至关重要的。

同时,坚持日常练习和努力提高自己的数学功底,对于获得高分也有
着重要的帮助。

*结尾点名主旨:掌握天津市中考数学24题常考题型的解题技巧及备
考方法对于备考取得好成绩非常重要。

2020-2021学年天津市中考数学模拟试题及答案解析

2020-2021学年天津市中考数学模拟试题及答案解析

2020-2021学年天津市中考数学模拟试题及答案解析天津市最新九年级数学中考模拟题满分:120分时间:100分钟姓名:得分:⼀选择题(每⼩题3分,共12题,共计36分)1.下列运算:sin30°=32,0-28=22==ππ-,,24.其中运算结果正确的个数为( ) A.4 B.3 C.2 D.12.在△ABC 中,∠A:∠B:∠C=3:4:5,则∠C 等于( ) A.45° B.60° C.75° D.90°3.⼀元⼆次⽅程2414x x +=的根的情况是( )A.没有实数根B.只有⼀个实数根C.有两个相等的实数根D.有两个不相等的实数根4.顺次连接矩形ABCD 各边的中点,所得四边形必定是( )A.邻边不等的平⾏四边形B.矩形C.正⽅形D.菱形 5.⽤配⽅法解⼀元⼆次⽅程01062=--x x 时,下列变形正确的为( ) A.1)32=+x ( B.1)32=-x ( C.19)32=+x ( D.19)32=-x ( 6.某校九年级数学兴趣⼩组的同学调查了若⼲名家长对“初中学⽣带⼿机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图. 依据图中信息,得出下列结论:(1)接受这次调查的家长⼈数为200⼈;(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆⼼⾓⼤⼩为1620;(3)表⽰“⽆所谓”的家长⼈数为40⼈;(4)随机抽查⼀名接受调查的家长,恰好抽到“很赞同”的家长的概率是110.其中正确的结论个数为( ) A.4 B.3 C.2 D.17.若等腰直⾓三⾓形的外接圆半径的长为2,则其内切圆半径的长为( ) A.2B.22—2 C .22—D.2—18.函数1y x =-+与函数2y x=-在同⼀坐标系中的⼤致图象是()则l应沿OC所在直线向下平移()cm.A.2B.3C.4D.510.如图,在直⾓O∠的内部有⼀滑动杆AB.当端点A沿直线AO向下滑动时,端点B会随之⾃动地沿直线OB向左滑动.如果滑动杆从图中AB处滑动到A B''处,那么滑动杆的中点C所经过的路径是()A.直线的⼀部分B.圆的⼀部分C.双曲线的⼀部分D.抛物线的⼀部分11.如图,在x轴的上⽅,直⾓∠BOA绕原点O按顺时针⽅向旋转.若∠BOA的两边分别与函数1yx=-,2yx=的图象交于B,A两点,则∠OAB⼤⼩的变化趋势为()A.逐渐变⼩B.逐渐变⼤C.时⼤时⼩D.保持不变x k b 1 . c12.⼆次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增⼤⽽增⼤.其中正确的结论有()A.①③B.①③④C.②④D.①②③④⼆填空题(每⼩题3分,共6题,共计18分)13.计算(23)(23)+-的结果为.14.因式分解:4a2 -16=.15.⽤2,3,4三个数字排成⼀个三位数,则排出的数是偶数的概率为.16.如图,在平⾯直⾓坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.17.如图,点A,B,C,D在Oe上,点O在∠D的内部,四边形OABC为平⾏四边形,则∠OAD+∠OCD=°.18.如图,已知平⾏四边形ABCD四个顶点在格点上,每个⽅格单位为1.(1)平⾏四边形ABCD的⾯积为;并把主要画图步骤写出来.三综合题(共7题,共计66分)19(本⼩题8分)解不等式组5134 2133x xx->--≥-,并把不等式组的解集在数轴上表⽰出来.20(本⼩题8分)商场为了促销某件商品,设置了如图的⼀个转盘,它被分成了3个相同的扇形.各扇形分别标有数字2,3,4,指针的位置固定,该商品的价格由顾客⾃由转动此转盘两次来获取,每次转动后让其⾃由停⽌,记下指针所指的数字(指针指向两个扇形的交线时,当作右边的扇形),先记的数字作为价格的⼗位数字,后记的数字作为价格的个位数字,则顾客购买商品的价格不超过30元的概率是多少?该T恤进⾏涨价销售.经过调查发现:每涨价1元,每周要少卖出5件.(1)请确定该T恤涨价后每周的销售利润y(元)与销售单价x(元)之间的函数关系式,并求销售单价定为多少元时,每周的销售利润最⼤?(2)若要使每周的销售利润不低于7680元,请确定销售单价x的取值范围.22(本⼩题10分)如图,已知以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线; (2)若⊙O的半径为3,∠EAC=60°,求AD的长.23(本⼩题10分)如图,某校综合实践活动⼩组的同学欲测量公园内⼀棵树DE的⾼度,他们在这棵树正前⽅⼀座楼亭前的台阶上A 点处测得树顶端D的仰⾓为300,朝着这棵树的⽅向⾛到台阶下的点C处,测得树顶端D的仰⾓为600.已知A点的⾼度AB为2m,台阶AC的坡度为1:3,且B,C,E三点在同⼀条直线上.请根据以上条件求出树DE的⾼度(测倾器的⾼度忽略不计).24(本⼩题10分)(1)操作发现:如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.⼩明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.AD的值;(2)问题解决:保持(1)中的条件不变,若DC=2DF,求ABAD的值.(3)类⽐探求:保持(1)中条件不变,若DC=nDF,求AB25(本⼩题10分)如图,四边形OABC 的边OA,OC 分别在x 轴,y 轴的正半轴上,顶点在B 点的抛物线交x 轴于点A,D,交y 轴于点E,连接AB,AE,BE.已知31tan =∠CBE ,A (3,0),D (-1,0),E (0,3).(1)求抛物线的解析式及顶点B 的坐标;(2)求证:CB 是△ABE 外接圆的切线;(3)试探究坐标轴上是否存在⼀点P,使以D,E,P 为顶点的三⾓形与△ABE 相似,若存在,直接写出点P 的坐标;若不存在,请说明理由;(4)设△AOE 沿x 轴正⽅向平移t 个单位长度(0<t ≤3)时,△AOE 与△ABE 重叠部分的⾯积为S,求s 与t 之间的函数关系式,并指出t 的取值范围.24.25.。

天津市东丽区2020届九年级初中毕业班模拟考试 数学(含答案)

天津市东丽区2020届九年级初中毕业班模拟考试 数学(含答案)
(1)求证:AE 为⊙O 的切线. (2)当 BC=8,AC=12 时,求⊙O 的半径.

东丽区 2020 届初中毕业班模拟考试数学试卷
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第 1 页至第 2 页,第Ⅱ卷 第 3 页至第 8 页.试卷满分 120 分.考试时间 100 分钟.考试结束后,将试卷、答题纸和答题卡一 并交回.
祝各位考生考试顺利!
第Ⅰ卷(选择题共 36 分)
分图象如图所示,下列结论:
①abc<0; ②4ac<b2; ③方程 ax2+bx+c=0 的两个根是 x1=-1,x2=3; ④3a+c>0;
⑤当 y≥0 时,x 的取值范围是-1≤x≤3.
其中结论正确的个数是( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
第Ⅱ卷(非选择题共 84 分)
注意事项: 第Ⅱ卷共 5 页,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔答在试卷后面的答题纸上,答案答
D. 3 2
A.
B.
C.
D.
4.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有 1800000 千米,1800000 这个数
用科学记数法可以表示为( )
A. 0.18×107
B. 1.8×105
C. 1.8×106
D. 18×105
5.如图是一个由 5 个相同的正方体组成的立体图形,它的主视图是( )
A.
B.
C.
6. 估计 15 +1 的值在( )
A. 2 和 3 之间 C. 4 和 5 之间
D.
B. 3 和 4 之间 D. 5 和 6 之间
x − y = 2 7.方程组 2x − 3y = 7 的解为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(24)如图,在平面直角坐标系中,四边形OABC是矩形,点O(0,0),点A(3,0),点C(0,4);D为AB边上的动点.(1)如图1,将△ABC对折,使得点B的对应点B1落在对角线AC上,折痕为CD,求此刻点D的坐标:(2)如图2,将△ABC对折,使得点A与点C重合,折痕交AB于点D,交AC于点E,求直线CD的解析式:(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标:若不存在,请说明理由.(24)将一个矩形纸片OABC放在平面直角坐标系中,点0(0,0),点A(0,2),点E,F分别在边AB,BC上,沿着OE折叠该纸片,使得点A落在OC边上,对应点为A′,如图①.再沿OF折叠,这时点E 恰好与点C重合,如图②。

(1)求点C的坐标;.(2)将该矩形纸片晨开,再折叠该矩形纸片,使点0与点F合,折痕与AB相交于点P,展开矩形纸片,如图③.①求∠OPF的大小:②点M,N分别为OF,OE上的动点,当PM+MN取得小值时,求点N的坐标(直接写出结果).(24)在平面直角坐标系中,点A(2,0),点B(2,2).将△O AB绕点B顺时针旋转,得△O′A′B,点A,O旋转后的对应点为A′,O′.记旋转角为a.(1)如图①,当a=45°时,求点A′的坐标;(2)如图②,当a=60°时,求点A′的坐标;(3)连换OA′,设线段OA′的中点为M.连揍0′M,求线段O′M的长的最小值(直接写出结果).(24)已知一个矩形纸片OACB,将该纸片放在平面直角坐标系中,点A(11,0),点B(0,6)。

点P为BC边上的动点.(1)如图①,经过点O、P折叠该纸片,得点B′和折痕OP。

当点P的坐标为(2√3,6)时,求∠BOP的度数.(2)如图②,当点P与点C重合时,经过点O、P折叠纸片,便点B落在点B′的位置,B’C与0A交于点M,求点M的坐标;(3)过点P作直线PQ,交0A于点Q,再取BO中点T,AC中点N,分别以TP,PN,NQ,QT为折痕,依次折叠该纸片,折叠后点O的对应点与点B的对应点恰好重合,且落在线段PQ上,A、C的对应点也恰好重合,也落在线段PQ上,求此时点P的坐标(直换写出结果即可).(24)在平面直角坐标系中,两个形状、大小完全相同的三角板OBC,DEF,按如图所示的位置摆放,O为原点,点B(12,0),点B与点D重合,边OB与边DE都在x轴上。

其中,∠C=∠DEF=90°,∠OBC=∠F=30°.(1)如图①,求点C坐标:(2)现固定三角板DEF,将三角板OBC沿射线x轴正方向平移,得到△O′B′C′。

当点O′落点D上时停止运动。

设三角板平移的距离为x,两个三角板重叠部分的面积为y.求y关于x的函数解析式,并写出自变量x的取值范围:(3)在(2)条件下,设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,当点M与点N之间距离的最小时,点M的坐标(直接写出结果即可).24.在平面直角坐标系中,△ABC是直角三角形,∠ABC=90°,∠CAB=60°,点0(0,0),点A(1,0),点B(-1,0),点C在第二象限,点P(-2,√3).(1)如图①,求C点坐标及∠PCB的大小:(2)将△ABC绕C点逆时针旋转得到△MNC,点A,B的对应点分别为点M,N,S为△PMN的面积。

①如图②,当点N落在边CA上时,求S的值:②求S的取值范围(直接写出结果即可).x+6与y轴交于点A,与x轴交于点D,直线AB交x轴于点B,将△AOB沿直24.如图1,直线y=−34线AB折叠,点O恰好落在直线AD上的点C处.(1)求OB的长:(2)如图2,F,G是直线AB上的两点,若△DFG是以FG为斜边的等腰直角三角形,求点F的坐标:(3)如图3,点P是直线AB上一点,点Q是直线AD上-一点,且P,Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标。

(24)平面直角坐标系中,四边形OABC是正方形,点A,C在坐标轴上,点B(6,6),P是射线OB上--点,将△AOP绕点A顺时针旋转90°,得△ABQ,Q是点P旋转后的对应点(1)如图(1)当OP=2√2时,求点Q的坐标;(2)如图(2),设点P(x,y)(0<x<6),△APQ的面积为S.求S与x的函数关系式,并写出当S取最小值时,点P的坐标;(3)当BP+BQ=8√2时,求点Q的坐标(直接写出结果即可)(24)将一张直角三角形纸片ABC放置在平面直角坐标系中,点A、B在x轴上,点C在y轴上,∠ACB=90°,且AC=8,BC=6.(1)如图①,求点C的坐标;(2)如图②,沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形,将△AC1D1沿直线D2B(AB)方向平移(点A、D1、D2、B始终在同一直线上),当点D1与点B重合时停止平移,①如图③,在平移的过程中,C1D1与B C2交于点E,A C1与C2D2、C2B分别交于点F、P,当点D1平移到原点时,求D1、E的长;②在平移的过程中,当△AC1D1和△BC2D2重叠部分的面积最大时,求此时点D1的坐标.(直接写出结论即可)(24)在平面直角坐标系中,△ABC的项点A(-3,0),B(0,3),A D⊥BC于D,交y轴于点E(0,1)(1)如图①,求点C的坐标;(2)如图②,将线段BC绕点C顺时针旋转90°后得线段CF,连接BF,求点F的坐标:.(3)如图③,点P为y轴正半轴上一动点,点Q在第三象限内,QP⊥PC于P,且QP=PC,过点Q作QR垂直x轴于点R,求OC−QR的值.OP(24)如图,在平面直角坐标系中,O为原点,点A(0,4),B(-4.0),C(4,0)(1)如图①,若∠BAD=15°,AD=3,求点D的坐标:(2)如图②,AD=2,将△ABD绕点A逆时针方向旋转得到△ACE,点B,D的对应点分别为C,E.连接DE,BD的延长线与CE相交于点F.①求DE的长:②证明:BF⊥CE(3)如图③,将(2)中的△ADE绕点A在平面内旋转--周,在旋转过程中点D,E的对应点分别为D1,E1,点N,P分别为D1E1,D1C的中点,请直接写出△OPN面积S的变化范围(24)将矩形纸片0ABC放在平面直角坐标系中,O为坐标原点,点A在y轴上,点C在x轴上,点B的坐标是(8,6),点P是边AB上的一个动点,将△O AP沿OP折叠,使点A落在点Q处.(1)如图①,当点Q恰好落在OB上时,求点P的坐标:(2)如图②,当点P是AB中点时,直线0Q交BC于M点.(3)求证:MB=MQ:(2)求点Q的坐标.(24)如图,四边形AOBC是正方形,点C的坐标是(8√2,0).(1)正方形AOBC的边长为_____________点A的坐标是__________________.(2)将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积:(3)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).(24)将一个矩形纸片0ABC放在平面直角坐标系中,点O(0,0),点A(8,0),点C(0,6).P是边0C上的一点(点P不与点O,C重合),沿AP折叠该纸片,得点0的对应点O′.(1)如图①,当点O′落在边BC上时,求点O′的坐标:(2)若点O′落在边BC的上方,O′P,O′A与分别与边BC交于点D,E.①如图②,当∠OAP=30°时,求点D的坐标;②当CD=O′D时,求点D的坐标(直接写出结果即可),(24)在平面直角坐标系中,O为原点,点A(√3,0),点B(0,1),点E是边AB中点,把△ABO绕点A顺时针旋转,得△ADC,点O,B旋转后的对应点分别为D,C.记旋转角为a.(1)如图①,当点D恰好在AB上时,求点D的坐标:(2)如图②,若a=60°时,求证:四边形OECD是平行四边形:(3)连接OC,在旋转的过程中,求△OEC面积的最大值(直接写出结果即可).(24)在平面直角坐标系中,O为坐标原点,点A(0,4)、B(3,0).(1)把图中的△O AB绕点O逆时针旋转得到△OA′B′,旋转角为a,且0°<a<180°.①如图①,在旋转过程中,当a=60°时,求点B′的坐标.②如图②,当点O到AA′的距离等于AO的一半时,求a的度数.(2)点D是0A的中点,将OD绕着点O逆时针旋转,在旋转过程中,点D的对应点为M,连接AM、BM.S为△ABM的面积,求S的取值范围(直接写出结果即可).24.把三角形纸片OAB 放置在平面直角坐标系中,点A(165,125),点B 在x 轴的正半轴上,且OB =5.(1)如图①,求OA,AB 的长及点B 的坐标:(2)如图②,点C 是OB 的中点,将△ABC 沿AC 翻折得到△ADC, ①求四边形ADCB 的面积:②求证:△ABC 是等腰三角形:③求OD 的长(直接写出结果即可).(24)平面直角坐标系中,△OAB是等边三角形,点0(0.0),点A(8,0),点P是0B边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△OAB沿直线l折叠,点0的对应点是点O′.(1)如图①,当OP=5时,若直线l∥AB,求点O′的坐标:.(2)如图②,当点P在OB边上运动时,若直线l⊥AB,求△ABO′的面积:(3)当OP=6时,在直线l变化过程中,求△ABO′面积的最大值(直接写出结果即可)(24)在直角坐标系中,O为坐标原点,点A(4,0),点B(0,4),C是AB中点,连接OC,将△AOC绕点A顺时针旋转,得到△AMN,记旋转角为a,点O,C的对应点分别是M,N,连接BM,P是BM中点,连接OP,PN.(1)如图①,当a=45°时,求点M的坐标;(2)如图②,当a=180°时,求证OP=PN,且OP⊥PN;(3)当△AOC旋转至点B,M,N共线时,求点M的坐标(直接写出结果即可).。

相关文档
最新文档