七年级数学试卷答案
七年级数学全册试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √3B. πC. 0.101001D. √-12. 若a > 0,b < 0,则下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 下列各组数中,成比例的是()A. 2, 4, 6, 8B. 1, 2, 3, 4C. 2, 3, 6, 9D. 4, 5, 6, 74. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 3/xD. y = 2x - 45. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)6. 若等腰三角形底边长为8,腰长为6,则该三角形的面积是()A. 24B. 28C. 32D. 367. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 圆8. 下列各数中,属于有理数的是()A. √2B. πC. 0.101001D. √-19. 若x + y = 5,x - y = 1,则x的值是()A. 3B. 2C. 1D. 010. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 3/xD. y = 2x - 4二、填空题(每题3分,共30分)11. 若a > b,则a - b > _______。
12. 0.25 + 0.25 + 0.25 + 0.25 = _______。
13. 在直角坐标系中,点B(-3,4)关于原点的对称点是 _______。
14. 等腰三角形底边长为10,腰长为8,则该三角形的周长是 _______。
15. 若等边三角形的边长为a,则该三角形的面积是 _______。
16. 下列各数中,绝对值最小的是 _______。
2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
七年级数学超难试卷答案

一、选择题(每题5分,共50分)1. 已知方程 2x - 3 = 5,求x的值。
答案:x = 42. 一个长方形的长是6cm,宽是3cm,求长方形的面积。
答案:面积 = 长× 宽= 6cm × 3cm = 18cm²3. 若a² = 9,那么a的值是多少?答案:a = ±34. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是?答案:点P关于x轴的对称点坐标为(2,-3)5. 下列哪个图形是轴对称图形?A. 长方形B. 正方形C. 三角形D. 梯形答案:B. 正方形6. 一个等边三角形的边长为8cm,求该三角形的周长。
答案:周长= 3 × 边长= 3 × 8cm = 24cm7. 若一个数的平方根是±2,那么这个数是?答案:这个数是48. 下列哪个数是负数?A. -5B. 0C. 5D. -3答案:A. -59. 一个圆的半径是r,那么这个圆的直径是?答案:直径 = 2r10. 一个三角形的两边长分别为3cm和4cm,第三边长最长为多少?答案:最长边长为7cm二、填空题(每题5分,共50分)11. 若a = 5,那么a² + 2a + 1的值是?答案:a² + 2a + 1 = 5² + 2×5 + 1 = 25 + 10 + 1 = 3612. 下列哪个数是奇数?答案:313. 一个梯形的上底是4cm,下底是6cm,高是3cm,求梯形的面积。
答案:面积 = (上底 + 下底) × 高÷ 2 = (4cm + 6cm) × 3cm ÷ 2 = 18cm²14. 一个平行四边形的对角线互相平分,那么这个平行四边形是?答案:矩形15. 若一个数的倒数是2,那么这个数是?答案:这个数是1/216. 一个圆的周长是31.4cm,求该圆的半径。
新版七年级数学试卷及答案

#### 一、选择题(每题4分,共20分)1. 下列各数中,是负数的是()A. -3B. 3C. 0D. -5/22. 下列各数中,绝对值最小的是()A. -2B. 2C. -3D. 33. 若a > b,那么下列不等式中一定成立的是()A. a + 2 > b + 2B. a - 2 > b - 2C. 2a > 2bD. a - 2 < b - 24. 在直角坐标系中,点P(-2, 3)关于x轴的对称点坐标是()A. (-2, -3)B. (2, 3)C. (2, -3)D. (-2, 3)5. 一个长方形的长是8厘米,宽是5厘米,那么它的周长是()A. 18厘米B. 23厘米C. 30厘米D. 40厘米#### 二、填空题(每题5分,共20分)6. 如果a = 5,b = -3,那么a + b的值是______。
7. 下列各数中,-5的倒数是______。
8. 一个等腰三角形的底边长为6厘米,腰长为8厘米,那么这个三角形的周长是______厘米。
9. 若x = 2,那么方程2x - 3 = 5的解是______。
10. 在数轴上,点A表示的数是-4,点B表示的数是2,那么点A和点B之间的距离是______。
#### 三、解答题(每题10分,共30分)11. (解答题)计算下列各式的值:(1) 3a - 2b + 4a - b(2) (2x + 3y) - (x - 2y)12. (解答题)解下列方程:(1) 5x - 2 = 3x + 7(2) 2(x - 3) = 4x + 113. (解答题)已知一个等边三角形的边长为10厘米,求这个三角形的周长。
#### 四、应用题(每题10分,共20分)14. (应用题)小明家离学校500米,他每天上学和放学的路程相同。
如果他以每分钟80米的速度走,求小明从家到学校需要多少时间?15. (应用题)一个长方体的长、宽、高分别为4厘米、3厘米、2厘米,求这个长方体的体积。
七年级数学试卷及答案

七年级数学试卷及答案一、选择题(每小题2分,共20分)1、下列运算正确的是()a.b. c. d.2、如图,下列推理错误的是()a.∵∠1=∠2,∴c∥db.∵∠3=∠4,∴c∥dc.∵∠1=∠3,∴a∥bd.∵∠1=∠4,∴a∥b3、以下关系式中,恰当的就是()a.b.c.d.4、下列各式中不能用平方差公式计算的是()a、b、c、d、5、汽车已经开始高速行驶时,油箱内有油40再升,如果每小时耗油5再升,则油箱内余油量q(升)与行驶时间t(时)的关系用图象表示应为图中的是()6、若,则等同于()a、1b、c、d、7、如果一个角的补角就是°,那么这个角的余角的度数就是()a、30°b、60°c、90°d、°8、例如图,存有一块所含45°角的直角三角板的两个顶点放到直尺的对边上.如果∠1=20°,那么∠2的度数是()a.30°b.25°c.20°d.15°9、下列说法中,正确的是()a.内错角成正比.b.同旁内角优势互补.c.同角的补角相等.d.相等的角是对顶角.10、例如图,以下条件中,能够认定de∥ac的就是()a.∠edc=∠efcb.∠afe=∠acdc.∠1=∠2d.∠3=∠4二、填空题(每小题2分,共20分)11、用科学计数法则表示0.=12、一个角的补角是它的余角的4倍,则这个角是_________度。
13、若x2+mx+25就是全然平方式,则m=___________。
14、已知,那么a=。
15、未知:a+b=1.5,ab=﹣1,则(a﹣2)(b﹣2)= _________ .16、如图,∥,,平分,则的度数为。
17、若,18、排序(x2+nx+3)(x2-3x)的结果C99mg的项,那么n=.19、校园里栽下一棵小树高1.8米,以后每年长0.3米,则n年后的树高l米与年数n 年之间的关系式为__________________.20、观测以下各式:(1)42-12=3×5;(2)52-22=3×7;(3)62-32=3×9;………则第n(n是正整数)个等式为_____________________________.三、答疑题21、计算题(每小题3分,共12分)(1)(2)(2a+b)4÷(2a+b)2(3)(4)(15x4y2-12x2y3-3x2)÷(-3x2)22、利用乘法公式简算(每小题4分后,共16分后)(1)-×(2)98(3)(x+3y+2)(x—3y+2)(4)化简求值:,其中,23、作图题:(3分后)如图,一块大的三角板abc,d是ab上一点,现要求过点d割出一块小的角板ade,使∠ade=∠abc,请用尺规作出∠ade.(不写作法,保留作图痕迹,要写结论)24、(10分后)例如图就是甲、乙两人同一地点启程后,路程随其时间变化的图象.(1)此变化过程中,__________是自变量,_________是因变量.(2)甲的速度就是________千米/时,乙的速度就是________千米/时(3)6时表示_________________________(4)路程为千米,甲高速行驶了____小时,乙高速行驶了_____小时.(5)9时甲在乙的________(前面、后面、相同位置)(6)分别写下甲乙两人高速行驶的路程s(千米)与高速行驶的时间t(小时)的函数关系式(不建议写下自变量的值域范围)s甲=___________________________s乙=_____________________________25、(5分)已知∠1=∠2,∠d=∠c求证:∠a=∠f26、(4分后)如图所示的长方形或正方形三类卡片各存有若干张,恳请你用这些卡片,拆成一个面积就是2a2+3ab+b2长方形(建议:所比拼图形中每类卡片都必须存有,卡片之间无法重合。
七年级数学期末试卷及答案

【导语】虽然在学习的过程中会遇到许多不顺⼼的事,但古⼈说得好——吃⼀堑,长⼀智。
多了⼀次失败,就多了⼀次教训;多了⼀次挫折,就多了⼀次经验。
没有失败和挫折的⼈,是永远不会成功的。
本篇⽂章是©⽆忧考⽹为您整理的《七年级数学期末试卷及答案》,供⼤家借鉴。
【篇⼀】 ⼀、选择题(每⼩题4分,共40分) 1.﹣4的绝对值是() A.B.C.4D.﹣4 考点:绝对值. 分析:根据⼀个负数的绝对值是它的相反数即可求解. 解答:解:﹣4的绝对值是4. 故选C. 点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运⽤到实际运算当中. 绝对值规律总结:⼀个正数的绝对值是它本⾝;⼀个负数的绝对值是它的相反数;0的绝对值是0. 2.下列各数中,数值相等的是()A.32与23B.﹣23与(﹣2)3C.3×22与(3×2)2D.﹣32与(﹣3)2 考点:有理数的乘⽅. 分析:根据乘⽅的意义,可得答案. 解答:解:A32=9,23=8,故A的数值不相等; B﹣23=﹣8,(﹣2)3=﹣8,故B的数值相等; C3×22=12,(3×2)2=36,故C的数值不相等; D﹣32=﹣9,(﹣3)2=9,故D的数值不相等; 故选:B. 点评:本题考查了有理数的乘⽅,注意负数的偶次幂是正数,负数的奇次幂是负数. 3.0.3998四舍五⼊到百分位,约等于()A.0.39B.0.40C.0.4D.0.400 考点:近似数和有效数字. 分析:把0.3998四舍五⼊到百分位就是对这个数百分位以后的数进⾏四舍五⼊. 解答:解:0.3998四舍五⼊到百分位,约等于0.40. 故选B. 点评:本题考查了四舍五⼊的⽅法,是需要识记的内容. 4.如果是三次⼆项式,则a的值为()A.2B.﹣3C.±2D.±3 考点:多项式. 专题:计算题. 分析:明⽩三次⼆项式是多项式⾥⾯次数的项3次,有两个单项式的和.所以可得结果. 解答:解:因为次数要有3次得单项式, 所以|a|=2 a=±2. 因为是两项式,所以a﹣2=0 a=2 所以a=﹣2(舍去). 故选A. 点评:本题考查对三次⼆项式概念的理解,关键知道多项式的次数是3,含有两项. 5.化简p﹣[q﹣2p﹣(p﹣q)]的结果为()A.2pB.4p﹣2qC.﹣2pD.2p﹣2q 考点:整式的加减. 专题:计算题. 分析:根据整式的加减混合运算法则,利⽤去括号法则有括号先去⼩括号,再去中括号,最后合并同类项即可求出答案. 解答:解:原式=p﹣[q﹣2p﹣p+q], =p﹣q+2p+p﹣q, =﹣2q+4p, =4p﹣2q. 故选B. 点评:本题主要考查了整式的加减运算,解此题的关键是根据去括号法则正确去括号(括号前是﹣号,去括号时,各项都变号). 6.若x=2是关于x的⽅程2x+3m﹣1=0的解,则m的值为()A.﹣1B.0C.1D. 考点:⼀元⼀次⽅程的解. 专题:计算题. 分析:根据⽅程的解的定义,把x=2代⼊⽅程2x+3m﹣1=0即可求出m的值. 解答:解:∵x=2是关于x的⽅程2x+3m﹣1=0的解, ∴2×2+3m﹣1=0, 解得:m=﹣1. 故选:A. 点评:本题的关键是理解⽅程的解的定义,⽅程的解就是能够使⽅程左右两边相等的未知数的值. 7.某校春季运动会⽐赛中,⼋年级(1)班、(5)班的竞技实⼒相当,关于⽐赛结果,甲同学说:(1)班与(5)班得分⽐为6:5;⼄同学说:(1)班得分⽐(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的⽅程组应为() A.B. C.D. 考点:由实际问题抽象出⼆元⼀次⽅程组. 分析:此题的等量关系有:(1)班得分:(5)班得分=6:5;(1)班得分=(5)班得分×2﹣40. 解答:根据(1)班与(5)班得分⽐为6:5,有: x:y=6:5,得5x=6y; 根据(1)班得分⽐(5)班得分的2倍少40分,得x=2y﹣40. 可列⽅程组为. 故选:D. 点评:列⽅程组的关键是找准等量关系.同时能够根据⽐例的基本性质对等量关系①把⽐例式转化为等积式. 8.下⾯的平⾯图形中,是正⽅体的平⾯展开图的是() A.B.C.D. 考点:⼏何体的展开图. 分析:由平⾯图形的折叠及正⽅体的展开图解题. 解答:解:选项A、B、D中折叠后有⼀⾏两个⾯⽆法折起来,⽽且缺少⼀个底⾯,不能折成正⽅体. 故选C. 点评:熟练掌握正⽅体的表⾯展开图是解题的关键. 9.如图,已知∠AOB=∠COD=90°,⼜∠AOD=170°,则∠BOC的度数为()A.40°B.30°C.20°D.10° 考点:⾓的计算. 专题:计算题. 分析:先设∠BOC=x,由于∠AOB=∠COD=90°,即∠AOC+x=∠BOD+x=90°,从⽽易求∠AOB+∠COD﹣∠AOD,即可得x=10°. 解答:解:设∠BOC=x, ∵∠AOB=∠COD=90°, ∴∠AOC+x=∠BOD+x=90°, ∴∠AOB+∠COD﹣∠AOD=∠AOC+x+∠BOD+x﹣(∠AOC+∠BOD+x)=10°, 即x=10°. 故选D. 点评:本题考查了⾓的计算、垂直定义.关键是把∠AOD和∠AOB+∠COD表⽰成⼏个⾓和的形式. 10.⼩明把⾃⼰⼀周的⽀出情况⽤如图所⽰的统计图来表⽰,则从图中可以看出() A.⼀周⽀出的总⾦额 B.⼀周内各项⽀出⾦额占总⽀出的百分⽐ C.⼀周各项⽀出的⾦额 D.各项⽀出⾦额在⼀周中的变化情况 考点:扇形统计图. 分析:根据扇形统计图的特点进⾏解答即可. 解答:解:∵扇形统计图是⽤整个圆表⽰总数⽤圆内各个扇形的⼤⼩表⽰各部分数量占总数的百分数.通过扇形统计图可以很清楚地表⽰出各部分数量同总数之间的关系, ∴从图中可以看出⼀周内各项⽀出⾦额占总⽀出的百分⽐. 故选B. 点评:本题考查的是扇形统计图,熟知从扇形图上可以清楚地看出各部分数量和总数量之间的关系是解答此题的关键. ⼆、填空题(每⼩题5分,共20分) 11.在(﹣1)2010,(﹣1)2011,﹣23,(﹣3)2这四个数中,的数与最⼩的数的差等于17. 考点:有理数⼤⼩⽐较;有理数的减法;有理数的乘⽅. 分析:根据有理数的乘⽅法则算出各数,找出的数与最⼩的数,再进⾏计算即可. 解答:解:∵(﹣1)2010=1,(﹣1)2011=﹣1,﹣23=﹣8,(﹣3)2=9, ∴的数是(﹣3)2,最⼩的数是﹣23, ∴的数与最⼩的数的差等于=9﹣(﹣8)=17. 故答案为:17. 点评:此题考查了有理数的⼤⼩⽐较,根据有理数的乘⽅法则算出各数,找出这组数据的值与最⼩值是本题的关键. 12.已知m+n=1,则代数式﹣m+2﹣n=1. 考点:代数式求值. 专题:计算题. 分析:分析已知问题,此题可⽤整体代⼊法求代数式的值,把代数式﹣m+2﹣n化为含m+n的代数式,然后把m+n=1代⼊求值. 解答:解:﹣m+2﹣n=﹣(m+n)+2, 已知m+n=1代⼊上式得: ﹣1+2=1. 故答案为:1. 点评:此题考查了学⽣对数学整体思想的掌握运⽤及代数式求值问题.关键是把代数式﹣m+2﹣n化为含m+n的代数式. 13.已知单项式与﹣3x2n﹣3y8是同类项,则3m﹣5n的值为﹣7. 考点:同类项. 专题:计算题. 分析:由单项式与﹣3x2n﹣3y8是同类项,可得m=2n﹣3,2m+3n=8,分别求得m、n的值,即可求出3m﹣5n的值. 解答:解:由题意可知,m=2n﹣3,2m+3n=8, 将m=2n﹣3代⼊2m+3n=8得, 2(2n﹣3)+3n=8, 解得n=2, 将n=2代⼊m=2n﹣3得, m=1, 所以3m﹣5n=3×1﹣5×2=﹣7. 故答案为:﹣7. 点评:此题主要考查学⽣对同类项得理解和掌握,解答此题的关键是由单项式与﹣3x2n﹣3y8是同类项,得出m=2n﹣3,2m+3n=8. 14.已知线段AB=8cm,在直线AB上有⼀点C,且BC=4cm,M是线段AC的中点,则线段AM的长为2cm或6cm. 考点:两点间的距离. 专题:计算题. 分析:应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上. 解答:解:①当点C在线段AB的延长线上时,此时AC=AB+BC=12cm,∵M是线段AC的中点,则AM=AC=6cm; ②当点C在线段AB上时,AC=AB﹣BC=4cm,∵M是线段AC的中点,则AM=AC=2cm. 故答案为6cm或2cm. 点评:本题主要考查两点间的距离的知识点,利⽤中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选⽤它的不同表⽰⽅法,有利于解题的简洁性.同时,灵活运⽤线段的和、差、倍、分转化线段之间的数量关系也是⼗分关键的⼀点. 三、计算题(本题共2⼩题,每⼩题8分,共16分) 15. 考点:有理数的混合运算. 专题:计算题. 分析:在进⾏有理数的混合运算时,⼀是要注意运算顺序,先算⾼⼀级的运算,再算低⼀级的运算,即先乘⽅,后乘除,再加减.同级运算按从左到右的顺序进⾏.有括号先算括号内的运算.⼆是要注意观察,灵活运⽤运算律进⾏简便计算,以提⾼运算速度及运算能⼒. 解答:解:, =﹣9﹣125×﹣18÷9, =﹣9﹣20﹣2, =﹣31. 点评:本题考查了有理数的综合运算能⼒,解题时还应注意如何去绝对值. 16.解⽅程组:. 考点:解⼆元⼀次⽅程组. 专题:计算题. 分析:根据等式的性质把⽅程组中的⽅程化简为,再解即可. 解答:解:原⽅程组化简得 ①+②得:20a=60, ∴a=3, 代⼊①得:8×3+15b=54, ∴b=2, 即. 点评:此题是考查等式的性质和解⼆元⼀次⽅程组时的加减消元法. 四、(本题共2⼩题,每⼩题8分,共16分) 17.已知∠α与∠β互为补⾓,且∠β的⽐∠α⼤15°,求∠α的余⾓. 考点:余⾓和补⾓. 专题:应⽤题. 分析:根据补⾓的定义,互补两⾓的和为180°,根据题意列出⽅程组即可求出∠α,再根据余⾓的定义即可得出结果. 解答:解:根据题意及补⾓的定义, ∴, 解得, ∴∠α的余⾓为90°﹣∠α=90°﹣63°=27°. 故答案为:27°. 点评:本题主要考查了补⾓、余⾓的定义及解⼆元⼀次⽅程组,难度适中. 18.如图,C为线段AB的中点,D是线段CB的中点,CD=1cm,求图中AC+AD+AB的长度和. 考点:两点间的距离. 分析:先根据D是线段CB的中点,CD=1cm求出BC的长,再由C是AB的中点得出AC及AB的长,故可得出AD的长,进⽽可得出结论. 解答:解:∵CD=1cm,D是CB中点, ∴BC=2cm, ⼜∵C是AB的中点, ∴AC=2cm,AB=4cm, ∴AD=AC+CD=3cm, ∴AC+AD+AB=9cm. 点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键. 五、(本题共2⼩题,每⼩题10分,共20分) 19.已知,A=a3﹣a2﹣a,B=a﹣a2﹣a3,C=2a2﹣a,求A﹣2B+3C的值. 考点:整式的加减. 专题:计算题. 分析:将A、B、C的值代⼊A﹣2B+3C去括号,再合并同类项,从⽽得出答案. 解答:解:A﹣2B+3C=(a3﹣a2﹣a)﹣2(a﹣a2﹣a3)+3(2a2﹣a), =a3﹣a2﹣a﹣2a+2a2+2a3+6a2﹣3a, =3a3+7a2﹣6a. 点评:本题考查了整式的加减,解决此类题⽬的关键是熟记去括号法则,熟练运⽤合并同类项的法则,这是各地中考的常考点. 20.⼀个两位数的⼗位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与⼗位数字对调之后组成的两位数.求这个两位数. 考点:⼀元⼀次⽅程的应⽤. 专题:数字问题;⽅程思想. 分析:先设这个两位数的⼗位数字和个位数字分别为x,7﹣x,根据题意列出⽅程,求出这个两位数. 解答:解:设这个两位数的⼗位数字为x,则个位数字为7﹣x, 由题意列⽅程得,10x+7﹣x+45=10(7﹣x)+x, 解得x=1, ∴7﹣x=7﹣1=6, ∴这个两位数为16. 点评:本题考查了数字问题,⽅程思想是很重要的数学思想. 六.(本题满分12分) 21.取⼀张长⽅形的纸⽚,如图①所⽰,折叠⼀个⾓,记顶点A落下的位置为A′,折痕为CD,如图②所⽰再折叠另⼀个⾓,使DB沿DA′⽅向落下,折痕为DE,试判断∠CDE的⼤⼩,并说明你的理由. 考点:⾓的计算;翻折变换(折叠问题). 专题:⼏何图形问题. 分析:根据折叠的原理,可知∠BDE=∠A′DE,∠A′DC=∠ADC.再利⽤平⾓为180°,易求得∠CDE=90°. 解答:解:∠CDE=90°. 理由:∵∠BDE=∠A′DE,∠A′DC=∠ADC, ∴∠CDA′=∠ADA′,∠A′DE=∠BDA, ∴∠CDE=∠CDA′+∠A′DE, =∠ADA′+∠BDA, =(∠ADA′+∠BDA′), =×180°, =90°. 点评:本题考查⾓的计算、翻折变换.解决本题⼀定明⽩对折的两个⾓相等,再就是运⽤平⾓的度数为180°这⼀隐含条件. 七.(本题满分12分) 22.为了“让所有的孩⼦都能上得起学,都能上好学”,国家⾃2007年起出台了⼀系列“资助贫困学⽣”的政策,其中包括向经济困难的学⽣免费提供教科书的政策.为确保这项⼯作顺利实施,学校需要调查学⽣的家庭情况.以下是某市城郊⼀所中学甲、⼄两个班的调查结果,整理成表(⼀)和图(⼀): 类型班级城镇⾮低保 户⼝⼈数农村户⼝⼈数城镇户⼝ 低保⼈数总⼈数 甲班20550 ⼄班28224 (1)将表(⼀)和图(⼀)中的空缺部分补全. (2)现要预定2009年下学期的教科书,全额100元.若农村户⼝学⽣可全免,城镇低保的学⽣可减免,城镇户⼝(⾮低保)学⽣全额交费.求⼄班应交书费多少元?甲班受到国家资助教科书的学⽣占全班⼈数的百分⽐是多少? (3)五四青年节时,校团委免费赠送给甲、⼄两班若⼲册科普类、⽂学类及艺术类三种图书,其中⽂学类图书有15册,三种图书所占⽐例如图(⼆)所⽰,求艺术类图书共有多少册? 考点:条形统计图. 分析:(1)由统计表可知:甲班农村户⼝的⼈数为50﹣20﹣5=25⼈;⼄班的总⼈数为28+22+4=54⼈; (2)由题意可知:⼄班有22个农村户⼝,28个城镇户⼝,4个城镇低保户⼝,根据收费标准即可求解; 甲班的农村户⼝的学⽣和城镇低保户⼝的学⽣都可以受到国家资助教科书,可以受到国家资助教科书的总⼈数为25+5=30⼈,全班总⼈数是50⼈,即可求得; (3)由扇形统计图可知:⽂学类图书有15册,占30%,即可求得总册数,则求出艺术类图书所占的百分⽐即可求解. 解答:解: (1)补充后的图如下: (2)⼄班应交费:28×100+4×100×(1﹣)=2900元; 甲班受到国家资助教科书的学⽣占全班⼈数的百分⽐:×100%=60%; (3)总册数:15÷30%=50(册), 艺术类图书共有:50×(1﹣30%﹣44%)=13(册). 点评:本题考查的是条形统计图和扇形统计图的综合运⽤.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表⽰出每个项⽬的数据;扇形统计图直接反映部分占总体的百分⽐⼤⼩. ⼋、(本题满分14分) 23.如图所⽰,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数. (2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数. (3)如果(1)中∠BOC=β(β为锐⾓),其他条件不变,求∠MON的度数. (4)从(1)(2)(3)的结果你能看出什么规律? (5)线段的计算与⾓的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计⼀道以线段为背景的计算题,并写出其中的规律来? 考点:⾓的计算. 专题:规律型. 分析:(1)⾸先根据题中已知的两个⾓度数,求出⾓AOC的度数,然后根据⾓平分线的定义可知⾓平分线分成的两个⾓都等于其⼤⾓的⼀半,分别求出⾓MOC和⾓NOC,两者之差即为⾓MON的度数; (2)(3)的计算⽅法与(1)⼀样. (4)通过前三问求出的⾓MON的度数可发现其都等于⾓AOB度数的⼀半. (5)模仿线段的计算与⾓的计算存在着紧密的联系,也在已知条件中设计两条线段的长,设计两个中点,求中点间的线段长. 解答:解:(1)∵∠AOB=90°,∠BOC=30°, ∴∠AOC=90°+30°=120°, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=60°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC=15° ∴∠MON=∠MOC﹣∠NOC=45°; (2)∵∠AOB=α,∠BOC=30°, ∴∠AOC=α+30°, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=+15°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC=15° ∴∠MON=∠MOC﹣∠NOC=; (3)∵∠AOB=90°,∠BOC=β, ∴∠AOC=90°+β, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=+45°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC= ∴∠MON=∠MOC﹣∠NOC=45°; (4)从(1)(2)(3)的结果可知∠MON=∠AOB; (5) ①已知线段AB的长为20,线段BC的长为10,点M是线段AC的中点,点N是线段BC的中点,求线段MN的长; ②若把线段AB的长改为a,其余条件不变,求线段MN的长; ③若把线段BC的长改为b,其余条件不变,求线段MN的长; ④从①②③你能发现什么规律. 规律为:MN=AB. 点评:本题考查了学会对⾓平分线概念的理解,会求⾓的度数,同时考查了学会归纳总结规律的能⼒,以及会根据⾓和线段的紧密联系设计实验的能⼒. 【篇⼆】 ⼀、选择题(每题3分,共30分) 1.﹣2的相反数是()A.﹣B.﹣2C.D.2 2.据平凉市旅游局统计,2015年⼗⼀黄⾦周期间,平凉市接待游客38万⼈,实现旅游收⼊16000000元.将16000000⽤科学记数法表⽰应为()A.0.16×108B.1.6×107C.16×106D.1.6×106 3.数轴上与原点距离为5的点表⽰的是()A.5B.﹣5C.±5D.6 4.下列关于单项式的说法中,正确的是()A.系数、次数都是3B.系数是,次数是3C.系数是,次数是2D.系数是,次数是3 5.如果x=6是⽅程2x+3a=6x的解,那么a的值是()A.4B.8C.9D.﹣8 6.绝对值不⼤于4的所有整数的和是()A.16B.0C.576D.﹣1 7.下列各图中,可以是⼀个正⽅体的平⾯展开图的是() A.B.C.D. 8.“⼀个数⽐它的相反数⼤﹣4”,若设这数是x,则可列出关于x的⽅程为()A.x=﹣x+(﹣4)B.x=﹣x+4C.x=﹣x﹣(﹣4)D.x﹣(﹣x)=4 9.⽤⼀个平⾯去截:①圆锥;②圆柱;③球;④五棱柱,能得到截⾯是圆的图形是()A.①②③B.①②④C.②③④D.①③④ 10.某商店有两个进价不同的计算器都卖了64元,其中⼀个盈利60%,另⼀个亏损20%,在这次买卖中,这家商店()A.不赔不赚B.赚了32元C.赔了8元D.赚了8元 ⼆、填空题(每题3分,共30分) 11.﹣3的倒数的绝对值是. 12.若a、b互为倒数,则2ab﹣5=. 13.若a2mb3和﹣7a2b3是同类项,则m值为. 14.若|y﹣5|+(x+2)2=0,则xy的值为. 15.两点之间,最短;在墙上固定⼀根⽊条⾄少要两个钉⼦,这是因为. 16.时钟的分针每分钟转度,时针每分钟转度. 17.如果∠A=30°,则∠A的余⾓是度;如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的⼤⼩关系是. 18.如果代数式2y2+3y+5的值是6,求代数式4y2+6y﹣3的值是. 19.若规定“*”的运算法则为:a*b=ab﹣1,则2*3=. 20.有⼀列数,前五个数依次为,﹣,,﹣,,则这列数的第20个数是. 三、计算和解⽅程(16分) 21.计算题(8分) (1) (2)(2a2﹣5a)﹣2(﹣3a+5+a2) 22.解⽅程(8分) (1)4x﹣1.5x=﹣0.5x﹣9(2)1﹣=2﹣. 四、解答题(44分) 23.(6分)先化简,再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中. 24.(7分)⼀个⾓的余⾓⽐它的补⾓的⼤15°,求这个⾓的度数. 25.(7分)如图,∠AOB为直⾓,∠AOC为锐⾓,且OM平分∠BOC,ON平分∠AOC,求∠MON的度数. 26.(7分)⼀项⼯程由甲单独做需12天完成,由⼄单独做需8天完成,若两⼈合作3天后,剩下部分由⼄单独完成,⼄还需做多少天? 27.(7分)今年春节,⼩明到奶奶家拜年,奶奶说过年了,⼤家都长了⼀岁,⼩明问奶奶多⼤岁了.奶奶说:“我现在的年龄是你年龄的5倍,再过5年,我的年龄是你年龄的4倍,你算算我现在的年龄是多少?”聪明的同学,请你帮帮⼩明,算出奶奶的岁数. 28.(10分)某市电话拨号上⽹有两种收费⽅式,⽤户可以任选其⼀:A、计时制:0.05元/分钟;B、⽉租制:50元/⽉(限⼀部个⼈住宅电话上⽹).此外,每种上⽹⽅式都得加收通信费0.02元/分钟. (1)⼩玲说:两种计费⽅式的收费对她来说是⼀样的.⼩玲每⽉上⽹多少⼩时? (2)某⽤户估计⼀个⽉内上⽹的时间为65⼩时,你认为采⽤哪种⽅式较为合算?为什么? 参考答案 ⼀、选择题(每题3分,共30分) 题号12345678910 答案DBCDBBCAAD ⼆、填空题(每题3分,共30分) 11.1/3;12.﹣3;13.1;14.﹣32;15.线段;两点确定⼀条直线; 16.6度;0.5度;17.60度;∠2=∠3;18.﹣1;19.5;20.﹣20/21. 三、计算和解⽅程(16分) 21.(1)1/12;(2)a-10;22.(1)x=-3;(2)x=1 四、解答题(44分) 23.解:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3) =-6x+9x2﹣3﹣9x2+x﹣3 =-5x﹣6----------------------------------------------------------------------------4分 当时,-5x﹣6=-5×(-1/3)-6=-13/3---------------------------------------2分 24.解:设这个⾓的度数为x,则它的余⾓为(90°﹣x),补⾓为(180°﹣x),--------2分 依题意,得:(90°﹣x)﹣(180°﹣x)=15°,-------------------------------------------4分 解得x=40°.--------------------------------------------------------------------------------------6分 答:这个⾓是40°.----------------------------------------------------------------------------7分 25.解:∵OM平分∠BOC,ON平分∠AOC, ∴∠MOC=∠BOC,∠NOC=∠AOC,------------------------------------------------------2分 ∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)-----------------------------------------4分 =(∠BOA+∠AOC﹣∠AOC) =∠BOA =45°.----------------------------------------------------------------------------------------------6分 故∠MON的度数为45°.-------------------------------------------------------------------------7分 26.解:设⼄还需做x天.-----------------------------------------------------------------------1分 由题意得:++=1,-------------------------------------------------------------------------4分 解之得:x=3.------------------------------------------------------------------------------------6分 答:⼄还需做3天.------------------------------------------------------------------------------7分 27.解:设⼩明现在的年龄为x岁,则奶奶现在的年龄为5x岁,根据题得,--------------1分 4(x+5)=5x+5,---------------------------------------------------------------------------------3分 解得:x=15,-------------------------------------------------------------------------------------5分 经检验,符合题意,5x=15×5=75(岁).------------------------------------------------------6分 答:奶奶现在的年龄为75岁.------------------------------------==--------------------------7分 28.解:(1)设⼩玲每⽉上⽹x⼩时,根据题意得------------------------------------------1分 (0.05+0.02)×60x=50+0.02×60x,--------------------------------------------------------------2分 解得x=.-----------------------------------------------------------------------------------------5分 答:⼩玲每⽉上⽹⼩时;--------------------------------------------------------------------6分 (2)如果⼀个⽉内上⽹的时间为65⼩时, 选择A、计时制费⽤:(0.05+0.02)×60×65=273(元),----------------------------------8分 选择B、⽉租制费⽤:50+0.02×60×65=128(元). 所以⼀个⽉内上⽹的时间为65⼩时,采⽤⽉租制较为合算.--------------------------------10分 【篇三】 ⼀、选择题:每⼩题3分,共30分。
七年级数学全部试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -2.5B. -3.2C. 0D. 1.2答案:D2. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 长方形C. 平行四边形D. 梯形答案:B3. 下列代数式中,同类项是()A. 3x^2yB. 2xyC. 4x^2D. 5y^2答案:B4. 已知一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的面积是()A. 40cm^2B. 32cm^2C. 48cm^2D. 64cm^2答案:A5. 如果a=3,b=-2,那么2a-b的值是()A. 1B. 5C. -1D. -5答案:B6. 下列各数中,能被3整除的是()A. 16B. 27C. 34D. 49答案:B7. 下列图形中,中心对称图形是()A. 等腰三角形B. 正方形C. 等边三角形D. 长方形答案:B8. 一个长方形的长是10cm,宽是5cm,那么它的周长是()A. 25cmB. 30cmC. 35cmD. 40cm答案:B9. 下列各数中,绝对值最大的是()A. -5B. -3C. 2D. 1答案:A10. 下列方程中,解为x=3的是()A. 2x+1=7B. 3x-2=5C. 4x+3=11D. 5x-1=13答案:A二、填空题(每题3分,共30分)11. 有理数-3的相反数是__________。
答案:312. 下列各数中,负数是__________。
答案:-213. 下列图形中,有3条对称轴的是__________。
答案:正方形14. 下列各数中,绝对值最小的是__________。
答案:015. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是__________。
答案:22cm16. 如果a=2,b=3,那么a^2+b^2的值是__________。
答案:1317. 下列各数中,能被5整除的是__________。
答案:2518. 下列图形中,中心对称图形是__________。
七年级数学大题试卷及答案

一、解答题(本大题共4小题,共40分)1. (10分)已知一元二次方程 $x^2 - 4x + 3 = 0$,求其解。
2. (10分)一个长方形的长是10cm,宽是长的一半,求这个长方形的面积。
3. (10分)一辆汽车从甲地出发,以每小时80公里的速度行驶,3小时后到达乙地。
如果汽车以每小时100公里的速度行驶,需要多少时间才能到达乙地?4. (10分)小明从家出发去图书馆,他可以选择骑自行车或者步行。
骑自行车每小时可以行驶15公里,步行每小时可以行驶5公里。
小明从家到图书馆的距离是30公里,他应该选择哪种方式去图书馆?二、应用题(本大题共2小题,共20分)5. (10分)某工厂生产一批零件,计划每天生产200个,用5天完成。
实际生产时,由于技术改进,每天多生产了30个零件。
实际用了多少天完成生产?6. (10分)一个梯形的上底是10cm,下底是20cm,高是15cm。
求这个梯形的面积。
三、证明题(本大题共1小题,共10分)7. (10分)已知在直角三角形ABC中,∠C是直角,∠A和∠B是锐角。
证明:∠A + ∠B = 90°。
答案:一、解答题1. 解:$x^2 - 4x + 3 = 0$ 可以分解为 $(x - 1)(x - 3) = 0$,所以 $x =1$ 或 $x = 3$。
2. 解:长方形的长是10cm,宽是5cm(10cm的一半),面积 $S = 长 \times 宽= 10cm \times 5cm = 50cm^2$。
3. 解:甲地到乙地的距离为 $80公里/小时 \times 3小时 = 240公里$。
以100公里/小时的速度行驶,需要的时间为 $240公里 \div 100公里/小时 = 2.4小时$。
4. 解:骑自行车到图书馆需要的时间为 $30公里 \div 15公里/小时 = 2小时$,步行需要的时间为 $30公里 \div 5公里/小时 = 6小时$。
因此,小明应该选择骑自行车去图书馆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学试卷答案 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ82007-2008学年度第二学期期末考试七年级数学试卷答案一、1、a <0 2、⊥ 3、如(2,-2)(答案不唯一) 4、20 5、三角形稳定性6、27、18、189、十二 10、-1二、11、C 12、A 13、D 14、A 15、B 16、A三、17、解:⎪⎩⎪⎨⎧==-=421c b a --------------------------------------------------------------------------------------5分18、解:解不等式①得,x ≤3,解不等式②得,x >-2 ------------------------------------------2分所以原不等式组得解集为-2<x ≤3----------------------------------------------------------3分用数轴表示解集如图所示----------------------------------------------------5分19、解:由三角板可知∠EAD =450 ∠C =300 ∠BAC =∠ADE =900 -----------------------1分因为AE ∥BC 所以∠EAC =∠C =300所以∠DAF =∠EAD -∠EAC =450-300=150 -------------------------------------------------3分所以∠AFD =1800-∠ADE -∠EAC =1800-150-900=750---------------------------------5分(注:方法不唯一)20、解:设该同学买x 支钢笔,根据题意得-----------------------------------------------------------1分15×6+8x >200 ----------------------------------------------------------------------------------3分解得x >4313--------------------------------------------------------------------------------------4分因为x 为整数,所以x=14答:该同学至少要买14支钢笔才能打折---------------------------------------------------------5分四、21、解:根据题意得,⎩⎨⎧-=+=-②x y ①y x 5215 -----------------------------------------------------2分解这个方程组得⎩⎨⎧==13y x --------------------------------------------------------------------------4分 所以851232132222=⨯+⨯-⨯=+-y x y x -------------------------------------------------------------6分(注:用整体带入求值正确也可以)22.(1)16--------------------------------------------------------------------------------------------------3分(2)如图所示:-------------------------------------------------------6分23、解:如图,由折叠可得,∠3=∠4,∠5=∠6 -----------------------------------------------1分因为∠A +∠B +∠C =1800 ∠A +∠3+∠5=1800所以∠B +∠C =∠3+∠5=∠4+∠6 -------------------------------------------------3分又因为∠B +∠C +∠CED +∠BDE =3600所以∠B +∠C +∠1+∠2+∠4+∠6=3600--------------------------------------------4分因为∠1+∠2=1240所以2(∠B +∠C )+(∠1+∠2)=3600所以2(∠B +∠C )=3600-1240=2360所以∠B +∠C =1180所以∠A=1800-1180=620------------------------------------------------------------------6分五、24、解:(1)(2)如图---------------------------2分--------------------------4分(3)把x=10 y=-9代入方程x +ny =1得n =----------------------------5分把x=10 y=-9代入方程x-my=16得,32=m -----------------------------------6分 所以原方程组为⎪⎩⎪⎨⎧=-=+16321y x y x ---------------------------------------------------7分此方程组不符合(2)中的规律----------------------------------------------------8分25、解:(1)设购进甲种商品x 件,则购进乙种商品为(20-x )件,根据题意得,--1分190≤12x +8(20-x)≤200---------------------------------------------------------2分解得≤x ≤-----------------------------------------------------------3分因为x 为整数 所以x=8、9、10,有三种进货方案:方案一:甲8件,乙12件;方案二:甲9件,乙11件;方案三:甲10件,乙10件-------------------------------------------------------4分(2)结论:该公司王经理的说法不正确。
--------------------------------------------5分理由为:方案一获利为:8×()+(20-8)×(10-8)=44(万元)方案二获利为:9×()+(20-9)×(10-8)=(万元)方案三获利为:10×()+(20-10)×(10-8)=45(万元)--------------------7分因此,按上述三种方案销售后获利最大为45万元,所以该公司王经理的说法错误--8分26、⑴ 丙-------------------------------------------------------------------------------------------------------2分⑵ 如图:-----------------------------5分(说明:补全条形图时,未标记人数但图形基本准确,不扣分;补全扇形图时,只要在图形中标记出符合条件的“基本不参加”和“参加锻炼约10分钟”的扇形即可.)⑶ 900人--------------------------------------------------------------------------------------------------7分建议:略 .--------------------------------------------------------------------------------------------8分(说明:提出的建议,只要言之有理(有加强体育锻炼相关内容)都可给分.)六、27、解:(1)98-60×1=38 要节约38元---------------------------------------------2分(2)设乙团有x 人,甲团有y 人 (x<y) -------------------------------------------------3分由题意得: x+y=60 或 x+y=602x+=98 2x+y=98-------------------------------------5分解得: x 1=16, x 2=38y 1=44, y 2=22 ----------------------------------------------------6分因x<y ,故x 2=-38不合题意,舍∴x=16,y=44答:甲团44人,乙团16人 ----------------------------------------------------------7分(3)方案一:32×+16×2=48+32=80方案二:(32+16)×=72方案三:51×1=51综上所述:应该甲乙两个团联合起来,购买50人以上的团体票花钱最少-------10分28、解:(1)结论:∠A +∠D =∠C +∠B -------------------------------------------------------2分(2) 结论:六个---------------------------------------------------------------------------------4分(3)如图,因为AP 平分∠DAB 、CP 平分∠DCB 所以 ∠1=∠2 ∠3=∠4由图可得,∠1+∠D =∠P +∠3 ① ∠2+P =∠4+∠B ②① -②得,∠D -∠P =∠P -∠B 所以∠P =21(∠D +∠B) 因为∠D =400 ∠B =360所以∠P =21(∠D +∠B)=21(400+360)=380-----------------------------------8分(4)结论:∠P =21(∠D +∠B)--------------------------------------------------------------10分29、解:设2路公交车的速度是x 米/分,小刚行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆2路公交车,则 s y x =-66 ① 每隔3分钟从迎面驶来一辆2路公交车,则 s y x =+33 ②由①,②可得 x s 4=,所以 4=xs . 即2路公交车总站发车间隔的时间是4分钟.。