极点配置法设计状态反馈控制器——自动控制原理共19页
状态反馈极点配置基本理论与方法

状态反馈极点配置基本理论与方法IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第2章 状态反馈极点配置设计基本理论引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。
反馈的基本类型包括状态反馈和输出反馈。
其中状态反馈能够提供更加丰富的状态信息。
状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。
图是一个多输入多输出线性时不变系统状态反馈的基本结构:图 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+=由图可知,加入状态反馈后,受控系统的输入为:u Fx v =+其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++=闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。
极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。
(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。
(3)矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ=FX G =(4)特征向量法—先找到特征向量x j (等式中矩阵X 的列向量),然后利用等式求解F 。
方法(1)一般难以应用或者数值不稳定。
方法(3)需要解方程,并且对于系统矩阵A 的特征值不能再分配。
最有效并且数值稳定的方法是方法(2)和方法(4)。
其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。
对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。
本文结合以上方法提出了一种新的设计方法:首先通过酉变换将状态方程化为一种控制规范形,然后利用最小二乘法解方程的得到最佳的状态反馈矩阵。
状态反馈和极点配置

为了根据期望的闭环极点位置来设计输出反馈矩阵h的参数,只需将期望的 系统特征多项式与该输出反馈系统特征多项式 hC) 相比较即可。
15
输出反馈到参考输入
设被控对象的状态方程为 x Ax Bu
y Cx
输出量反馈到参考输入时, u=r-hy,则该输出反馈系统的动态
方程为 x (A BhC)x Bv
为
0 0 1
Q [ B AB A2 B ] 0
1
6
1
6 31
得出detQ = -1。因此,rankQ = 3。因而该系统是状态完全可控的,可任意
配置极点。
下面用两种方法求解。
11
极点配置 例1
方法1:利用刚才介绍的求解步骤,计算系统矩阵A的特征多项式,求特征值。
7
极点配置定理_充分性
a0 k0 a0 a1 k1 a1
an1
kn1
a n1
求解上述方程组,得到 ki 的值,则
K KP1 [k0 k1
kn 1 ]P 1
[ a0 a0 a1 a1
an1 an1 ] P1
如果系统是状态完全可控的,则通过对应于上式所选取的矩阵K,可任意 配置所有的特征值。
充分性得证。
8
极点配置定理_必要性
即已知闭环系统可任意配置极点,证明被控系统状态完全可控。 现利用反证法证明。 先证明如下命题:如果系统不是状态完全可控的,则矩阵A-BK 的特征值不可能由线性状态反馈来控制。 假设原线性系统 x Ax Bu 状态不可控,则其可控性矩阵的 秩小于n,即
rank[ B AB An1B ] q n
◆考察系统的可控性条件。如果系统是状态完全可控的,则可按下列步骤继续。
控制系统的极点配置设计法

控制系统的极点配置设计法一、极点配置原理1.性能指标要求n s t ζω4=;当Δ=0.02时,。
ns t ζω3= 当Δ=0.05时,2.极点选择区域主导极点:2111cos tan ξβξξ---==3.其它极点配置原则系统传递函数极点在s 平面上的分布如图(a )所示。
极点s 3距虚轴距离不小于共轭复数极点s 1、s 2距虚轴距离的5倍,即(此处,对应于极点s 1、s 2);同时,极点n s s ξω5Re 5Re 13=≥ξn ωs 1、s 2的附近不存在系统的零点。
由以上条件可算出与极点s 3所对应的过渡过程分量的调整时间为1351451s n s t t =⨯≤ξω式中是极点s 1、s 2所对应过渡过程的调整时间。
1s tn x o (t)(a )(b系统极点的位置与阶跃响应的关系图(b )表示图(a )所示的单位阶跃响应函数的分量。
由图可知,由共轭复数极点s 1、s 2确定的分量在该系统的单位阶跃响应函数中起主导作用,即主导极点。
因为它衰减得最慢。
其它远离虚轴的极点s 3、s 4、s 5所对应的单位阶跃响应衰减较快,它们仅在极短时间内产生一定的影响。
因此,对系统过渡过程进行近似分析时。
可以忽略这些分量对系统过渡过程的影响。
二、极点配置实例磁悬浮轴承控制系统设计1.1磁悬浮轴承系统工作原理图1是一个主动控制的磁悬浮轴承系统原理图。
主要由被悬浮转子、传感器、控制器和执行器(包括电磁铁和功率放大器)四大部分组成。
设电磁铁绕组上的电流为I0,它对转子产生的吸力F和转子的重力mg相平衡,转子处于悬浮的平衡位置,这个位置称为参考位置。
(a)(b)图1 磁悬浮轴承系统的工作原理Fig.1 The magnetic suspension bearing system principledrawing假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置向下运动,此时传感器检测出转子偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器又将该控制信号变换成控制电流I0+i,控制电流由I0增加到I0+i,因此,电磁铁的吸力变大了,从而驱动转子返回到原来的平衡位置。
控制器极点配置方法

控制器极点配置方法如果已知系统的模型或传递函数,通过引入某种控制器,使得闭环系统的极点可以移动到指定的位置,从而使系统的动态性能得到改善。
这种方法称为极点配置法。
例6-12 有一控制系统如图6-38,其中,要求设计一个控制器,使系统稳定。
图6-38解:(1)校正前,闭环系统的极点:> 0因而控制系统不稳定。
(2)在控制对象前串联一个一阶惯性环节,c>0,则闭环系统极点:显然,当,时,系统可以稳定。
但此对参数c 的选择依赖于 a 、b 。
因而,可选择控制器,c 、d ,则有特征方程:当,时,系统稳定。
本例由于原开环系统不稳定,因而不能通过简单的零极点相消方式进行控制器的设计,其原因在于控制器的参数在具体实现中无法那么准确,从而可能导致校正后的系统仍不稳定。
例6-13 已知一单位反馈控制系统的开环传递函数:要求设计一串联校正装置Gc(s) ,使校正后系统的静态速度误差系统,闭环主导极点在处。
解:首先,通过校正前系统的根轨迹可以发现,如图6-39所示,其主导极点为:。
图6-39为使主导极点向左偏移,宜采用超前校正装置。
(2)令超前校正装置,可采用待定系数法确定相关参数:又其中、、、为待定系数。
进一步可得:即将代入式子可以得到:,,,。
进一步可得超前校正装置的传递函数:校正后系统的根轨迹如图6-39所示。
该校正装置与例6-7中由超前装置获取的校正装置结果基本相同,说明结果是正确的。
在matlab中,亦有相应的命令可进行极点配置,主要有三个算法可实现极点配置算法:Bass-Gura算法、Ackermann 算法和鲁棒极点配置算法。
这些算法均以状态空间进行表征,通过设定期望极点位置,获取状态反馈矩阵K。
下面通过示例介绍其中的一种算法。
例6-14 考虑给定的系统,其状态方程模型如下:,期望的闭环系统配置在,,,试设计其控制器。
解:可以使用下面的MATLAB语句来实现极点的配置:A=[0,1,0,0;0,0,-1,0;0,0,0,1;0,0,11,0]; B=[0;1;0;-1];eig(A)'ans =0 0 3.3166 -3.3166P=[-1;-2;-1+sqrt(-1);-1-sqrt(-1)];K=place(A,B,P)place: ndigits= 15Warning: Pole locations are more than 10% in error.K =-0.4000 -1.0000 -21.4000 -6.0000eig(A-B*K)'ans =-1.0000 - 1.0000i -1.0000 + 1.0000i -2.0000 -1.0000。
极点配置法设计状态反馈控制器——自动控制原理理论篇

——《自动控制原理-理论篇》第8.8节
自动化工程学院自动控制原理课程组制 2015年11月
主要内容
状态反馈控制系统 状态反馈控制器设计条件 用极点配置法设计状态反馈控制器 举例
主要内容
状态反馈控制系统 状态反馈控制器设计条件 用极点配置法设计状态反馈控制器 举例
SI系统,所以设 F f1 f2 fn
| sI A BF |
0 1
0 0
s 0
0
s
s
0
a0
0 a1
1
0
1
0
f1
f
2
f
n
an1 1
设计算法--适用于用能控标准形表示的SI系统的算法
a0 f1 0 a1 f 2 1
an1 f n n1
f1 0 a0 f2 1 a1
fn n1 an1
举例
例8-21 设系统的状态空间描述为
x(t)
0 6
1 0 5x(t) 1u(t)
rankB
AB
0 1
1 5
2
系统能控。
举例求解过程
期望闭环系统特征多项式为:
(s s1)(s s2 ) (s 3 2 j)(s 3 2 j) s2 6s 13
设: F f1 f2
s sI A BF
6 f1
1x(t)
F 7 1
反馈控制与极点配置

2021/1/23
h
15
因此,在反馈律u=-Kx+v下,闭环系统状态方程为
0 1 0 0
x
0
0
10 0 0 ]x
在例6-3中,由给定的传递函数通过状态反馈进行极点配置时 需先求系统实现,即需选择状态变量和建立状态空间模型。 ➢ 这里就存在一个所选择的状态变量是否可以直接测量、 可以直接作反馈量的问题。
2021/1/23
h
10
解 1: 判断系统的能控性。
➢ 开环系统的能控性矩阵为
[B
AB]12
-4 1
则开环系统为状态能控,可以进行任意极点配置。
2. 求能控规范II形:
T1 [0 1][B AB]1 1/6 1/3
Tc21
T1 T1A
1 6
1 1
2 8
A~
Tc21ATc2
0 5
1 2
B~
Tc21B
2021/1/23
h
4
• 下面分别讨论:
– 状态反馈极点配置定理 – SISO系统状态反馈极点配置方法 – 输出反馈极点配置
2021/1/23
h
5
6.2.1 状态反馈极点配置定理
在进行极点配置时,存在如下问题: ➢ 被控系统和所选择的期望极点满足哪些条件,则是可以进 行极点配置的。 ➢ 下面的定理就回答了该问题。
2 8
-7/3 26/3
则在反馈律u=-Kx+v下的闭环系统的状态方程为
2021/1/23
h
12
x13141 1578x12u
通过验算可知,该闭环系统的极点为-1±j2,达到设计要求。
状态反馈极点配置基本理论与方法

第2章 状态反馈极点配置设计基本理论2.1引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。
反馈的基本类型包括状态反馈和输出反馈。
其中状态反馈能够提供更加丰富的状态信息。
状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。
图2.1是一个多输入多输出线性时不变系统状态反馈的基本结构:图2.1 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+= (2.1)由图2.1可知,加入状态反馈后,受控系统的输入为:u Fx v =+ (2.2)其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++= (2.3)闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦ (2.4)由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。
2.2极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。
(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。
(3) 矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ= (2.5a)FX G = (2.5b)(4) 特征向量法—先找到特征向量x j (等式(2.5)中矩阵X 的列向量),然后利用等式(2.5b)求解F 。
方法(1)一般难以应用或者数值不稳定。
方法(3)需要解(2.5a)方程,并且对于系统矩阵A 的特征值不能再分配。
最有效并且数值稳定的方法是方法(2)和方法(4)。
其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。
对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。
极点配置法设计状态反馈控制器——自动控制原理

这两个多项式的系数相等,可得出:
0 0
1
1
n n1
i中含F阵系数fij
当F阵为1 n时
n个方程可解n个系数 fi
(i 1,2,...,n)
设计算法--适用于用能控标准形表示的SI系统的算法
设系统期望的闭环极点为s1、s2、sn ,则其
闭环特征式为s s1 s s2 s s3 s sn
SI系统,所以设 F f1 f2 fn
ห้องสมุดไป่ตู้
设计算法--适用于用能控标准形表示的SI系统的算法
s
1
0
0
0
0
s
1
0
0
0
0
0
s
1
a0 f1 a1 f2 a2 f3 an2 fn1 an1 fn s
sn (an1 fn )sn1 a1 f2 s a0 f1
设计算法--适用于用能控标准形表示的SI系统的算法
解:
系统能控。
举例----求解过程
期望闭环系统特征多项式为:
设: F f1 f2
F 7 1
w
u+
x2 ∫
--
++ -5
x2 x1
∫ x1
-
F 7 1
1
+
2
+
y
-6 1
7
a0 f1 0 a1 f 2 1
an1 f n n1
f1 0 a0 f2 1 a1
fn n1 an1
举例
例8-21 设系统的状态空间描述为
试求:(1)求状态反馈矩阵F使闭环系统有期望 极点s1,2=-3±2j; (2)绘制带有状态反馈控制器的状态变量图