反馈控制与极点配置(1)

合集下载

状态反馈极点配置基本理论与方法

状态反馈极点配置基本理论与方法

状态反馈极点配置基本理论与方法IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第2章 状态反馈极点配置设计基本理论引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。

反馈的基本类型包括状态反馈和输出反馈。

其中状态反馈能够提供更加丰富的状态信息。

状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。

图是一个多输入多输出线性时不变系统状态反馈的基本结构:图 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+=由图可知,加入状态反馈后,受控系统的输入为:u Fx v =+其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++=闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。

极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。

(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。

(3)矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ=FX G =(4)特征向量法—先找到特征向量x j (等式中矩阵X 的列向量),然后利用等式求解F 。

方法(1)一般难以应用或者数值不稳定。

方法(3)需要解方程,并且对于系统矩阵A 的特征值不能再分配。

最有效并且数值稳定的方法是方法(2)和方法(4)。

其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。

对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。

本文结合以上方法提出了一种新的设计方法:首先通过酉变换将状态方程化为一种控制规范形,然后利用最小二乘法解方程的得到最佳的状态反馈矩阵。

控制器极点配置方法

控制器极点配置方法

控制器极点配置方法如果已知系统的模型或传递函数,通过引入某种控制器,使得闭环系统的极点可以移动到指定的位置,从而使系统的动态性能得到改善。

这种方法称为极点配置法。

例6-12 有一控制系统如图6-38,其中,要求设计一个控制器,使系统稳定。

图6-38解:(1)校正前,闭环系统的极点:> 0因而控制系统不稳定。

(2)在控制对象前串联一个一阶惯性环节,c>0,则闭环系统极点:显然,当,时,系统可以稳定。

但此对参数c 的选择依赖于 a 、b 。

因而,可选择控制器,c 、d ,则有特征方程:当,时,系统稳定。

本例由于原开环系统不稳定,因而不能通过简单的零极点相消方式进行控制器的设计,其原因在于控制器的参数在具体实现中无法那么准确,从而可能导致校正后的系统仍不稳定。

例6-13 已知一单位反馈控制系统的开环传递函数:要求设计一串联校正装置Gc(s) ,使校正后系统的静态速度误差系统,闭环主导极点在处。

解:首先,通过校正前系统的根轨迹可以发现,如图6-39所示,其主导极点为:。

图6-39为使主导极点向左偏移,宜采用超前校正装置。

(2)令超前校正装置,可采用待定系数法确定相关参数:又其中、、、为待定系数。

进一步可得:即将代入式子可以得到:,,,。

进一步可得超前校正装置的传递函数:校正后系统的根轨迹如图6-39所示。

该校正装置与例6-7中由超前装置获取的校正装置结果基本相同,说明结果是正确的。

在matlab中,亦有相应的命令可进行极点配置,主要有三个算法可实现极点配置算法:Bass-Gura算法、Ackermann 算法和鲁棒极点配置算法。

这些算法均以状态空间进行表征,通过设定期望极点位置,获取状态反馈矩阵K。

下面通过示例介绍其中的一种算法。

例6-14 考虑给定的系统,其状态方程模型如下:,期望的闭环系统配置在,,,试设计其控制器。

解:可以使用下面的MATLAB语句来实现极点的配置:A=[0,1,0,0;0,0,-1,0;0,0,0,1;0,0,11,0]; B=[0;1;0;-1];eig(A)'ans =0 0 3.3166 -3.3166P=[-1;-2;-1+sqrt(-1);-1-sqrt(-1)];K=place(A,B,P)place: ndigits= 15Warning: Pole locations are more than 10% in error.K =-0.4000 -1.0000 -21.4000 -6.0000eig(A-B*K)'ans =-1.0000 - 1.0000i -1.0000 + 1.0000i -2.0000 -1.0000。

7.4 状态反馈和极点配置

7.4 状态反馈和极点配置
3
可配置条件_极点配置定理
考虑线性定常系统
x Ax Bu
假设控制输入u的幅值是无约束的。如果选取控制规律为
u r Kx
式中K为线性状态反馈矩阵。
定理 (极点配置定理) 线性定常系统可通过线性状态反馈任意地 配置其全部极点的充要条件是,此被控系统状态完全可控。
该定理对多变量系统也成立。
证明 (对单输入单输出系统) 1、充分性 2、必要性
kn 1 ]
由于 u r Kx r KPx ,此时该系统的状态方程为 x ( Ac Bc K ) x Bcr
相应的特征方程为 sI Ac BcK 0
因为非奇异线性变换不改变系统的特征值,当利用 u=r-Kx作为控制输 入时,相应的特征方程与上式相同,均有如下结果。
s
1
0
0
s
0
sI Ac BcK
◆确定将系统状态方程变换为可控标准形的变换矩阵P。若给定的状态方程已是 可控标准形,则P = I。此时无需再写出系统的可控标准形状态方程。非奇异线 性变换矩阵P=QW。
◆利用给定的期望闭环极点,可写出期望的特征多项式为
(s 1() s 2 ) (s n ) sn an1sn1 a1s a0
从而确定出a1* , a2 *,… an *的值。
◆最后得到状态反馈增益矩阵K为
K [ a0 a0 a1 a1
a n1
an1
]
P 1
10
极点配置 例1
【例】 考虑如下线性定常系统
0
1
0
0
x Ax Bu A 0
0
1 , B 0
1 5 6
1
利用状态反馈控制,希望该系统的闭环极点为s = -2±j4和s = -10。试确定状

反馈控制与极点配置

反馈控制与极点配置
下面,先通过一输出反馈闭环系统的极点变化,考察输出反馈 能否像状态反馈那样对能控系统进行极点配置,然后给出相关 结论。
例 考察下述能控能观的系统
它在输出反馈下u=-hy下的闭环系统为 其闭环特征多项式为s2+h。
上例说明,输出反馈对能控能观系统可以改变极点位置,但不能 进行任意的极点配置。
2. 系统的开环特征多项式f(s)和由期望的闭环极点所确定的闭 环特征多项式f*(s)分别为
f(s)=s3+3s2+2s f*(s)=s3+4s2+6s+4 则相应的反馈矩阵K为 K=[a3*-a3 a2*-a2 a1*-a1]
因此,在反馈律u=-Kx+v下,闭环系统状态方程为
在例3中,由给定的传递函数通过状态反馈进行极点配置时需 先求系统实现,即需选择状态变量和建立状态空间模型。 ➢ 这里就存在一个所选择的状态变量是否可以直接测量、 可以直接作反馈量的问题。
证明过程的思路为:
•对状态不 完全能控开 环系统进行 能控分解
•对能控分 解后的系 统进行状 态反馈
•其完全不 能控子系统 不能进行极
点配置
•与假设 矛盾,必
要性得 证
➢ 被控系统(A,B,C)状态不完全能控,则一定存在线性变换 x=Pc ,对其可进行能控分解,得到如下状态空间模型:
其中状态变量 是完全能控的;状态变量 是完全不能控
➢ 由于状态反馈闭环系统保持其开环系统的状态完全能控 特性,故该闭环系统只能是状态不完全能观的。
➢ 这说明了状态反馈可能改变系统的状态能观性。
➢ 从以上说明亦可得知,若SISO系统没有零点,则状态反馈不 改变系统的状置方法
极点配置算法1(维数较大) 1. 对于SISO线性定常连续系统的极点配置问题,若其状态 空间模型为能控规范I形,则相应反馈矩阵为 K=[k1 … kn]=[an*-an … a1*-a1] 其中ai和ai*(i=1,2,…,n)分别为开环系统特征多项式和所期 望的闭环系统特征多项式的系数。

自动控制原理学生实验:线性系统的状态反馈及极点配置

自动控制原理学生实验:线性系统的状态反馈及极点配置

实验报告线性系统的状态反馈及极点配置一.实验要求了解和掌握状态反馈的原理,观察和分析极点配置后系统的阶跃响应曲线。

二.实验内容及步骤1.观察极点配置前系统极点配置前系统的模拟电路见图3-3-64所示。

图3-3-64 极点配置前系统的模拟电路实验步骤:注:‘S ST’不能用“短路套”短接!(1)将信号发生器(B1)中的阶跃输出0/+5V作为系统的信号输入r(t)。

(2)构造模拟电路:按图3-3-64安置短路套及测孔联线,表如下。

(3)虚拟示波器(B3)的联接:示波器输入端CH1接到A3单元输出端OUT(Uo)。

注:CH1选‘X1’档。

(4)运行、观察、记录:将信号发生器(B1)Y输出,施加于被测系统的输入端rt,按下信号发生器(B1)阶跃信号按钮时(0→+5V阶跃),观察Y从0V阶跃+5V时被测系统的时域特性。

等待一个完整的波形出来后,点击停止,然后移动游标测量其调节时间ts。

实验图像:由图得ts=3.880s 2.观察极点配置后系统 极点的计算:受控系统如图所示,若受控系统完全可控,则通过状态反馈可以任意配置极点。

受控系统设期望性能指标为:超调量M P ≤5%;峰值时间t P ≤0.5秒。

由1095.01t 707.0%5eM n n 2n p 1/p 2=≥⇒≤-==⇒≤=--ωωζωπζζζπ取因此,根据性能指标确定系统希望极点为:⎪⎩⎪⎨⎧--=+-=07.707.707.707.7*2*1j j λλ受控系统的状态方程和输出方程为:⎪⎩⎪⎨⎧=+=-----⋅-xC y b x A x μ式中][01,10,020120,21=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=----C b A x x x系统的传递函数为:202020a S a S βS β)(2012010++=+++=S S S G受控制系统的可控规范形为:[][]020T C C b T b a a T A T A X T X X C Y U b X A X K K i o K K KK k K K K ===⎥⎦⎤⎢⎣⎡==⎥⎦⎤-⎢⎣⎡-=⎥⎦⎤-⎢⎣⎡-===⎩⎨⎧=+=---10111,1020120010T ββ为变换阵),(式中当引入状态反馈阵K K =[K 0K 1]后,闭环系统()K K K K K C b K b A ,,-的传递函数为:()()()01201120120)20(20)(K S K S K a S K a S S S G o ++++=+++++=ββ而希望的闭环系统特征多项为:1001.14))(()(2*2*1**12*++=--=++=S S S S a S a S S f oλλ 令G K (S)的分母等于F #(S),则得到K K 为:[][]9.58010-==K K K k最后确定原受控系统的状态反馈阵K :由于 1-=T K K k求得和===---111,T C b T b T A T A K k K求得 ⎥⎥⎦⎤⎢⎢⎣⎡-=-1102011T所以状态反馈阵为: [][]9.59.91102019.580-=⎥⎥⎦⎤⎢⎢⎣⎡--=K极点配置系统如图所示:极点配置后系统根据极点配置后系统设计的模拟电路见下图所示。

极点配置与状态反馈

极点配置与状态反馈

输出反馈对能控性、能观性的影响
定理:输出至状态微分处的反馈不改变系统 的能观性,但可能改变系统的能控性。
u
B
x x C y
A
x (A HC)x Bv
y Cx
H
示例:Y (s) U (s)
b1s b0 s2 a1s a0
A
0 1
a0 a1
,
b
b1 b2
,
c
0
1
A
hc
0 1
无直接传输系统的状态反馈
原系统
x Ax Bu
y Cx
引入状态反馈 新系统
u v Kx
x (A BK)x Bv
y Cx
v uB
x x C y
A
K
状态反馈增益矩阵K的维数?系统的特征多项式和传 递函数?
输出反馈至参考微分处
新系统
x (A HC)x Bu y Cx
传递函数 C(sI A HC)1B
Ao P1AP, bo P1b, co cP
0 1 0 0 0 0
0
0
1
0
0
1
Ao
0 0
0 0
0 0
1 0
0 1
,
bo
2 3
,
co
1
0
0
0
0
a0 a1 a2 a3 a4 4
第一能观标准型
Review
SISO系统第二能控、能观标准型1
第二能控标准型
0 1 0 0 0
0 0 0 0 a0
b1
1
0
0
0
a1
b2
Ao
0 0
1 0
0 1

现代控制理论 极点配置

现代控制理论   极点配置
那么
− −
= [ − − A − ]
= [ − − + ( − )( )]
ഥ−

ഥ )]
= [ − (
ഥ −
其中, = , 即 =
这说明对于任意给定的期望极点 ∗ ,∗ , ⋯ ,∗ ,都可以找到状态反馈矩阵
,
= 2
1 3
满秩,系统是完全能控的,可由状态反馈任意配置系统的闭环极点。
(2)闭环系统的期望特征多项式为 :
∗ = ( − 1 )( − 2 ) = 2 + 2 + 5
(3)设状态反馈阵为: =
− −
=





−2
4Hale Waihona Puke ,则状态反馈控制系统的特征多项式为:
二. 状态反馈极点可配置的条件
定理:线性定常系统
ሶ =A+B , 0 = , ≥0
=
可通过状态反馈 = − + 任意配置全部极点的充要条件是系统完全能控。
5.2
极点配置问题
证明:充分性(只讨论单输入单输出系统)
已知系统为完全能控,证明可任意配置极点。
即通过状态反馈必成立 − −
1. 利用非动态输出反馈 = − + ,不能任意地配置系统的全部极点。
以单输入单输出系统为例,设受控系统的传递函数为 (),则输出反馈系统的传递函
数为:
()
=
1 + ()
因此,闭环系统的根轨迹方程为: 1 + =
当从0到∞ 变化时,就得到了闭环系统的根轨迹。
5.2
极点配置问题
三.单输入单输出系统状态反馈极点配置的算法

状态反馈控制

状态反馈控制
(9-157)式的系统通过 x Px 的变换化为可控标准形。
9
x Ax b u
y cx (9-161)
式中 0 1
A
0
1
a0
a1
an1
c c0 c1 cn1
现引入 k k 0 k1 k n1
0
b
0
1
(9-162)
10
这时(9-158)式的状态反馈式可写为:
28
按给定极点,期望多项式为
( s 2 )( s 1 j )( s 1 j ) s3 4s2 6s 4
比较上两特征多项式,令s同次的系数相等,可得
k0 4
k1 4

k=[4 4 1 ]
k2 1
状态反馈系统的方框图如图9-16所示。
29
图9-16 例9-23在引入状态反馈后的结构图
det[sI (A bk)] det[sI (PAP1 PbkP 1)]
det{P[sI (A bk)]P1} det[sI (A bk)]
故 A b k 的特征式即是 A bk 的特征式,所以 A b k 和 A bk 有相同的特征值。
12
设任意给定的闭环极点为 1 ,2 , ,n , 且
(
s
1
)( s
2
)(
s
n
)
sn
s n1 n1
1s
0
(9-166)
式中 i ( i 1,2,,n 1 ) 完全由 i 所决定。比较 (9-165a) 式和(9-166)式可知,若要(9-166)的根为 i ,需有
ai ki i ( i 0,1,,n 1)
ki i ai
(9-167)
u v kx v kP1x v kx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2.2 SISO系统状态反馈极点配置方法
上述定理及其证明不仅说明了被控系统能进行任意极点配置 的充分必要条件,而且给出了求反馈矩阵K的一种方法。对此, 有如下讨论: 1. 由上述定理的充分性证明中可知,对于SISO线性定常连续 系统的极点配置问题,若其状态空间模型为能控规范I形, 则相应反馈矩阵为 K=[k1 … kn]=[an*-an … a1*-a1] 其中的a闭i和环ai系*(i统=1特,2,征…多,n)项分式别的为系开数环。系统特征多项式和所期望
证明 (1) 先证充分性(条件结论)。 ➢ 即证明,若被控系统(A,B,C)状态完全能控,则状态反馈闭 环系统K(A-BK,B,C)必能任意配置极点。 ➢ 由于线性变换和状态反馈都不改变状态能控性,而开环被 控系统(A,B,C)状态能控,因此一定存在线性变换能将其 变换成能控规范II形。 ✓ 不失一般性,下面仅对能控规范I形证明充分性。
K=[k1 k2 … kn] 则闭环系统K(A-BK,B,C)的系统矩阵A-BK为
0
A-BK
...
0
-an -k1
1 ... 0 -an1-k2
... 0
...
...
... 1
... -a1-kn
➢ 相应的状态反馈闭环控制系统的传递函数和特征多项式 分别为
Gk(s)sn(a1b1ksnn)s1n1.....b.n(ank1)
h
4
状态反馈极点配置定理(1/11)
4.2.1 状态反馈极点配置定理
在进行极点配置时,存在如下问题: ➢ 被控系统和所选择的期望极点满足哪些条件,则是可以进 行极点配置的。 ➢ 下面的定理就回答了该问题。
h
5
状态反馈极点配置定理(2/11)
定理4-1 对线性定常系统(A,B,C)利用线性状态反馈阵K,能 使 被闭控环系系统统(A,KB(A,C-B)状K,态B,完C)全的能极控点。任意配置的充分必要条件为 □
n
det[sIA ] (ssi) i1,2,...,n i 1
n
d e t[ hsI (A B K )] (s si* ) i 1 ,2 ,1.1..,n i 1
SISO系统状态反馈极点配置方法(2/10)
2. 若SISO被控系统的状态空间模型不为能控规范I形,则利 用线性变换将系统(A,B)变换成能控规范I形
a1+kn=a1* an+k1=an* 则可多将项状式态f*(反s)所馈规闭定环的系极统点K上(A。-BK,B,C)的极点配置在特征
✓ 即证明了充分性。 ➢ 同时,我们还可得到相应的状态反馈阵为
其中
K=[k1 k2 … kn]
ki an *i1ani1
h
10
SISO系统状态反馈极点配置方法(1/10)
AT c 11A T c1 BT c 11B 对能控规范I形~进行极点配置,求得相应的状态反馈阵如下
K a n * a n a n * 1 a n 1
a 1 * a 1
因此,原系统的相应状态反馈阵K为
K KTc11
参见P129
h
12
SISO系统状态反馈极点配置方法(7/10)—例3
别为
0 1 ... 0
A
...
0
...
...Leabharlann ...0 ... 1
an an1 ... a1
C bn bn1 ... b1
且其传递函数为
0 B ...
0 1
G(s)snb1san1s1n1.. ...b.nan
h
8
状态反馈极点配置定理(5/11)
➢ 若SISO被控系统(A,B,C)的状态反馈阵K为
例4-3 已知系统的传递函数为 G(s) 10 s(s1)(s2)
p2 p1
p3
h
3
反馈控制与极点配置(4/5)
基于指定的期望闭环极点,线性定常连续系统的状态反馈极点 配置问题可描述为: ➢ 给定线性定常连续系统
确定反馈控制律
x AxBu uKxv
x (ABK)xBv y Cx
使得状态反馈闭环系统的闭环极点配置在指定的n个期望的闭环 极点也就是成立
n
d e t[sI (A B K )] (s si* ) i 1 ,2 ,...,n i 1
fk(s)sn(a1kn)sn1... (ank1)
h
9
n
d e t[sI (A B K )] (s si* )
i 1 ,2 ,...,n状态反馈极点配置定理(6/11)
i 1
➢ 如果由期望的闭环极点所确定的特征多项式为
f*(s)=sn+a1*sn-1+…+an* 那么,只需令fK(s)=f*(s),即取
h
2
反馈控制与极点配置(3/5)
由于线性定常系统的特征多项式为实 系数多项式,因此考虑到问题的可解性, 对期望的极点的选择应注意下列问题: 1) 对于n阶系统,可以而且必须给出n 个期望的极点; 2) 期望的极点必须是实数或成对出 现的共轭复数; 3) 期望的极点必须体现对闭环系统 的性能品质指标等的要求。
h
6
状态反馈极点配置定理(3/11)
➢ 下面仅对SISO系统进行充分性的证明,对MIMO系统可 完全类似于SISO的情况完成证明过程。
➢ 证明过程的思路为:
分别求出开
环与闭环系
统的传递函 数阵
比较两传
递函数阵
的特征多 项式
建立可
极点配
置的条 件
h
7
状态反馈极点配置定理(4/11)
证明过程: ➢ 设SISO被控系统(A,B,C)为能控规范I形,则其各矩阵分
反馈控制与极点配置(1/5)
4.2 反馈控制与极点配置
本节讨论如何利用状态反馈与输出反馈来进行线性定常连续 系统的极点配置,即使反馈闭环控制系统具有所指定的闭环极 点。 ➢ 对线性定常离散系统的状态反馈设计问题,有完全平行的 结论和方法。
h
1
反馈控制与极点配置(2/5)
对线性定常系统,系统的稳定性和各种性能的品质指标,在很 大程度上是由闭环系统的极点位置所决定的。 ➢ 因此在进行系统设计时,设法使闭环系统的极点位于s平 面上的一组合理的、具有所期望的性能品质指标的极点, 是可以有效地改善系统的性能品质指标的。 ✓ 这样的控制系统设计方法称为极点配置。 ✓ 在经典控制理论的系统综合中,无论采用频率域法还 是根轨迹法,都是通过改变极点的位置来改善性能指 标,本质上均属于极点配置方法。 ➢ 本节所讨论得极点配置问题,则是指如何通过状态反馈阵 K的选择,使得状态反馈闭环系统的极点恰好处于预先选 择的一组期望极点上。
相关文档
最新文档