Bresenham 画线算法

合集下载

Bresenham画线算法

Bresenham画线算法

Bresenham画线算法Bresenham画线算法是用来描绘由两点所决定的直线的算法,它会算出一条线段在 n 维光栅上最接近的点。

这个算法只会用到较为快速的整数加法、减法和位元移位,常用于绘制电脑画面中的直线。

是计算机图形学中最先发展出来的算法。

Bresenham画法与中点法相似,都是通过每列象素中确定与理想直线最近的像素来进行直线的扫描的转换的。

通过各行、各列的象素中心构造一组虚拟网格线的交点,然后确定该列象素中与此交点最近的像素。

该算法的巧妙之处在于可以采用增量计算,使得对于每一列,只需要检查一个误差项的符号,就可以确定该列的所有对象。

根据直线的斜率确定选择变量在X方向上或在Y方向上每次递增一个单位,另一变量的增量为0或1,它取决于实际直线与最近网格点位置的距离,这一距离称为误差。

设第k步的误差为ek,选取上面象素点后的积累误差为:ek+1﹦ek﹢(m﹣1)选取下面的象素点后的积累误差为:ek+1﹦ek﹢m/* Bresenham */程序代码如下:#include <graphics.h>#include <conio.h>// 使用 Bresenham 算法画任意斜率的直线(包括起始点,不包括终止点)void Line_Bresenham(int x1, int y1, int x2, int y2, int color){int x = x1;int y = y1;int dx = abs(x2 - x1);int dy = abs(y2 - y1);int s1 = x2 > x1 ? 1 : -1;int s2 = y2 > y1 ? 1 : -1;bool interchange = false; // 默认不互换 dx、dyif (dy > dx) // 当斜率大于 1 时,dx、dy 互换{int temp = dx;dx = dy;dy = temp;interchange = true;}int p = 2 * dy - dx;for(int i = 0; i < dx; i++){putpixel(x, y, color);if (p >= 0){if (!interchange) // 当斜率 < 1 时,选取上下象素点y += s2;else // 当斜率 > 1 时,选取左右象素点x += s1;p -= 2 * dx;}if (!interchange)x += s1; // 当斜率 < 1 时,选取 x 为步长elsey += s2; // 当斜率 > 1 时,选取 y 为步长p += 2 * dy;}}// 主函数void main(){initgraph(640, 480);// 测试画线Line_Bresenham(10, 100, 100, 478,BLUE);Line_Bresenham(10, 478, 638, 1, RED);// 按任意键退出getch();}运行结果如下:。

生成直线的bresenham算法

生成直线的bresenham算法

生成直线的bresenham算法
Bresenham算法是由Jack E. Bresenham在1962年提出的一种用于生成直线图形的算法。

它可以根据两个点的坐标来计算出中间所有点的位置,即通过这两个端点可以确定出整条直线的像素点。

Bresenham算法的核心思想是,沿着已知的两个点之间的点,从起点开始向终点靠近,沿途计算斜率的误差,依据误差大小判断是选择水平方向或者垂直方向上的点,从而确定最终的直线图形。

具体步骤如下:
(1)根据两个点坐标计算出斜率dx和dy;
(2)令x0=x1, y0=y1;
(3)计算当前点处斜率误差p,公式为:p=2dy-dx;
(4)根据p的大小,决定下一步是沿水平方向还是垂直方向:
(a)p>0时,下一步沿垂直方向前进,即y++;
(b)p<=0时,下一步沿水平方向前进,即x++;
(5)重复步骤3、4,直到到达终点。

分别解释直线生成算法dda法,中点画线法和bresenham法的基本原理

分别解释直线生成算法dda法,中点画线法和bresenham法的基本原理

分别解释直线生成算法dda法,中点画线法和
bresenham法的基本原理
直线生成算法DDA法、中点画线法和Bresenham法的基本原理如下:
1. DDA直线生成算法:基于差分运算的直线生成算法。

通过将直线分割成
若干个相邻的像素点,并按照一定的步长进行逐点绘制,实现直线的绘制。

算法主要涉及到线性插值的思想,即根据已知的两点坐标,通过计算它们之间的差值,然后根据这个差值和步长来确定新的像素点的位置。

2. 中点画线法:一种线段绘制算法,从线段的起点和终点出发,按照一定的规则向终点逐步逼近,并在途中以控制变量的方式得出每个像素点的坐标,从而绘制出所需的线条。

具体实现中,通过计算线段斜率的变化情况,分为斜率小于1和大于等于1两种情况,并采用Bresenham的对称性原理,以中点的颜色来控制每个像素点的生长方向,从而获得较高的绘制效率和图像质量表现。

3. Bresenham算法:通过一系列的迭代来确定一个像素点是否应该被绘制。

对于一条从点(x1,y1)到点(x2,y2)的直线,首先计算出斜率k。

然后,通过比较每个像素点的y值到直线上的y值,来决定哪些像素点应该被绘制。

当斜率k大于等于1时,在x方向上迭代,而对于每个x值,计算出y值,并将像素点(x,y)绘制。

当斜率k小于1时,在y方向上迭代,而对于每个y值,计算出x值,并将像素点(x,y)绘制。

以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询数学专业人士。

bresenham画线算法详解

bresenham画线算法详解

给定两个点起点P1(x1, y1), P2(x2, y2),如何画它们直连的直线呢,即是如何得到上图所示的蓝色的点。

假设直线的斜率0<k>0,直线在第一象限,Bresenham算法的过程如下:1.画起点(x1, y1).2.准备画下一个点,X坐标加1,判断如果达到终点,则完成。

否则找下一个点,由图可知要画的点要么为当前点的右邻接点,要么是当前点的右上邻接点。

2.1.如果线段ax+by+c=0与x=x1+1的交点y坐标大于(y+*y+1))/2则选右上那个点2.2.否则选右下那个点。

3.画点4.跳回第2步5.结束具体的算法如下,原理就是比较目标直线与x+1直线交点的纵坐标,哪个离交点近就去哪个void Bresenhamline(int x0, int y0, int x1, int y1, int color){int x, y, dx, dy;float k, e;dx = x1 - x0;dy = y1 - y0;k = dy / dx;e = -0.5;x = x0;y = y0;for (x= x0;x < x1; x++){drawpixel(x, y, color);//这个是画点子函数e = e + k;if (e > 0){y++;e = e - 1;}}}上述Bresenham算法在计算直线斜率与误差项时用到小数与除法。

可以改用整数以避免除法。

等式两边同时乘以2*dx,得到2*e*dx = 2*e*dx + 2dy, 2*e*dx = 2*e*dx - 2*dx.由于算法中只用到误差项的符号,因此可作如下替换:2*e*dx.改进的Bresenham画线算法程序:将e统一乘以2*dx即变成了整数的Bresenhan算法了,^_^void InterBresenhamline (int x0, int y0, int x1, int y1, int color){int dx = x1 - x0;int dy = y1 - y0;int dx2 = dx << 1;//乘2int dy2 = dy << 1;//乘2int e = -dx;int x = x0;int y = y0;for (x = x0; x < x1; x++){drawpixel (x, y, color);e=e + dy2;if (e > 0){y++;e = e - dx2;}}}。

Bresenham 画线算法_计算机图形学实用教程(第3版)_[共2页]

Bresenham 画线算法_计算机图形学实用教程(第3版)_[共2页]

50于是,仅包含整数运算的中点画线算法的步骤如下。

(1)初始化。

令a = y1 − y2,b = x2 − x1,d = 2*a + b,deta1 = 2*a,deta2 = 2*(a + b),x = x1,y = y1。

(2)用颜色color画像素(x , y)。

(3)判断x是否小于x2。

如果x<x2,则继续执行(4),否则算法结束。

(4)如果d<0,则执行x = x + 1,y = y + 1,d = d + deta2;否则执行x = x + 1,d = d + deta1。

(5)用颜色color画像素(x , y),并转(3)。

3.1.5 Bresenham画线算法Bresenham画线算法是由J. E. Bresenham提出的一种直线生成算法。

与中点画线算法类似,它也是通过选择与理想直线最近的像素来完成扫描转换。

先考虑0<m<1时直线的扫描转换过程。

当0<m<1时,x方向为最大位移方向,因此x 方向上每次递增一个像素单位,y方向的增量为0(表示选择位于直线下方的像素)或者为1(表示选择位于直线上方的像素)。

Bresenham画线算法通过比较从理想直线到位于直线上方的像素的距离和相邻的位于直线下方的像素的距离,来确定y的取值,即哪一个像素是与理想直线最近的像素。

如图3-3所示,假设扫描转换已进行到第k步,即当前像素在(x k,y k)已确定为是最佳逼近理想直线的像素,在第k+1步,由于0<m<1,因此x方向递增1(即x k+1 = x k + 1),需要确定y方向的增量为0(即y k+1 = y k)还是为1(即y k+1 = y k + 1),这个问题相当于是确定下一步要绘制的像素是选P1(x k + 1, y k) 还是P2(x k + 1, y k + 1) 的问题。

如图3-4所示,定义P1与理想直线路径的垂直偏移距离为误差e。

误差e的大小决定了下一步要绘制的像素应选P1(x k + 1,y k) 还是选P2(x k + 1,y k+1)。

Bresenham画线

Bresenham画线

一、实验目标本次实验目标主要是实现绘制各种情况直线的Bresenham 算法。

二、实验内容本次实验要解决的问题主要是Bresenham 画线法在各个方向的画线的问题。

算法原理简述:过各行各列象素中心构造一组虚拟网格线。

按直线从起点到终点的顺序计算直线与各垂直网格线的交点,然后根据误差项的符号确定该列象素中与此交点最近的象素。

设直线方程为: 其中k=dy/dx 。

因为直线的起始点在象素中心,所以误差项d 的初值d0=0。

x 下标每增加1,d 的值相应递增直线的斜率值k ,即d =d +k 。

一旦d>=1,就把它减去1,这样保证d 在0、1之间。

当d>=0.5时,最接近于当前象素的右上方象素( )而当d<0.5时,更接近于右方象素( )。

为方便计算,令e =d-0.5,e 的初值为-0.5,增量为k 。

当e>=0时,取当前象素(xi ,yi )的右上方象素( );而当e<0时,更接近于右方象素( )。

可以改用整数以避免除法。

三、实验步骤一、打开cgdemoMFC 工程ky x x k y y i i i i i +=-+=++)(1111,++i i y x i i y x ,1+11,++i i y x i i y x ,1+d d dd1.打开Microsoft Visual Studio 20082.File-->Open-->cgdemo.sln二、添加菜单1.左侧视图栏中有三个视图:ClassView、ResourceView、FileView,点击ResourceView2.展开cgdemo,展开Menu,双击IDR_MAINFRAME3.在右侧窗口菜单栏中找到“基本图形生成”菜单项,在该菜单项中添加“Bresenham画线法”,在“Bresenham画线法”属性框中找到ID框填:ID_BRESENHAM。

三、创建、编辑函数1.打开cgdemoView.h头文件,在cgdemoView类枚举类型成员变量m_drawstyle中添加LINE_BRESENHAM。

布雷森汉姆直线算法

布雷森汉姆直线算法

布雷森汉姆直线算法布雷森汉姆直线算法(Bresenham's Line Algorithm)是一种计算机图形学中常用的直线绘制算法,其通过在离散的像素格上选择最接近实际直线路径的点来实现高效绘制直线的目的。

该算法由Jack Elton Bresenham在1962年首次提出,被广泛应用于图形显示、打印机及数码扫描仪等领域。

布雷森汉姆直线算法的核心思想是利用整数运算来代替浮点运算,从而提高计算效率。

该算法通过仅使用加法、减法和位移等基本运算,不需要乘法运算和浮点数运算,从而适用于资源有限的嵌入式系统和低成本的图形设备。

算法的基本步骤如下:1. 根据起点P1(x1,y1)和终点P2(x2,y2)确定直线斜率k。

2. 如果|k|≤1,则沿x轴方向递增遍历起点P1到终点P2,并在每个像素上绘制。

若k>1,则沿y轴方向递增遍历P1到P2,绘制每个像素。

3. 对于每一步,根据递增的方向选择相应的像素。

4. 根据斜率k来决定误差累积量,调整绘制位置,保证直线的连续性。

该算法的优势在于其简单而高效的原理,使得绘制直线的速度非常快。

与传统的基于浮点运算的算法相比,布雷森汉姆直线算法的计算开销较小,而且能够得到非常接近实际直线路径的结果,几乎没有明显的视觉差异。

这使得该算法在计算资源有限的场景下非常有用,例如在嵌入式系统中,可以利用该算法绘制图形界面的边界、线条等。

然而,布雷森汉姆直线算法也存在一些局限性。

由于只考虑了整数坐标,因此绘制出来的直线可能会有些锯齿状,这在一些高精度要求的场景下可能会表现出明显的视觉噪点。

此外,该算法仅适用于绘制直线,并不能直接应用于曲线、圆等其他形状的绘制。

总之,布雷森汉姆直线算法是一种非常经典和实用的绘制直线的算法。

它通过巧妙地利用整数计算来取代浮点计算,以提高效率和减少计算资源开销。

虽然存在一些局限性,但在大多数场景下,它仍然是一种高效且精确的绘制直线的选择,对于计算机图形学的发展和应用有着重要的指导意义。

Bresenham中点画线算法

Bresenham中点画线算法

先标明这转载自/xxxxxx91116/article/details/6295714直线扫描算法之---bresenham改进算法(任何斜率,任何方向)by zxx图形学神马的全都是数学,看来以后我不能搞这个,伤脑筋,所以先把我现在懂得先记录下来吧。

不过呢,我的水平实在有限,对于算法这种东西实在难以说明白,请大家包涵。

书上讲的实在是太过简略,所以这里我把一些简单的推导过程都记录下来:1.重温bresenham未改进算法(斜率在0-1之间的直线)我想要记录的是bresenham改进算法,所以在讲解改进算法之前,我先用一个简单的例子说明一下未改进算法的思想:这是一个斜率k在0-1之间的一条直线,我就用斜率为0-1之间的直线来重温:首先,如图1所示,假设x列的像素已定,其坐标为(x,y),那么下一个坐标一定是:(x+1,y+1)或者(x+1,y)。

而是哪一个取决于d的值,如果d>0.5那么就是(x+1,y+1),如果d<0.5,那么就是(x+1,y),而d是什么呢?当然是斜率了。

(原因如下:y=kx+b当x增加1时:y=kx+k+b所以当x增加1是,y方向的增量是d。

)所以每次我们只需要让d=d+k(k是斜率)即可,当d>=1时,就让d减一,这样就保证了d在0-1之间。

当d>0.5,下一个点取(x+1,y+1)当d<0.5,下一个点取(x+1,y)然后呢,我们为了判断的方便,让e=d-0.5,这样就变成了:当e>0,下一个点取(x+1,y+1)当e<0,下一个点取(x+1,y)2.过渡,重温之后,我们就想要改进,为什么要改进呢?因为我们这里面有0.5,还有k,k里面有dx/dy,这些除法和小数都不是我们想要的,我们想要的是,只有整数,且只有加法的算法,下面就全面讨论一下改进算法。

3.改进算法篇(不同斜率,不同方向)这里,我们主要分为4个角度来说明:A.斜率在0-1只间B.斜率在1-无穷之间C.斜率在0-(-1)之间D.斜率在(-1)-负无穷之间E.两种特殊情况,两条直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Bresenham直线算法是一种高效的画线算法,其原理在于通过构造一组虚拟网格线,然后按照定与该交点最近的像素位置进行绘制。算法的关键在于采用增量计算的方式,对于每一列,只需检查一个误差项的符号,即可确定该列所求像素的位置。误差项的初值设为0,每当x坐标增加1时,误差项的值相应递增直线的斜率值。当误差项大于等于0.5时,取当前像素的右上方像素;当误差项小于0.5时,取当前像素的正右方像素。通过这种方式,Bresenham算法能够高效地绘制直线。此外,该算法仅涉及整数的加法、减法和左移操作,这使得其计算效率非常高,特别适合在硬件中实现。
相关文档
最新文档