有理数的易混易错题
有理数概念十大易错题-解析

1、绝对值等于本身的数是,绝对值是相反数的数是。
答案:非负数;非正数解析:绝对值等于本身的数是非负数,绝对值是相反数的数是非正数。
2、下列说法中正确的是()A.平方是它本身的数是正数 B.绝对值是它本身的数是零C.立方是它本身的数是±1D.倒数是它本身的数是±1答案:选 D解析:∵平方是它本身的数是 1 和 0;绝对值是它本身的数是零和正数;立方是它本身的数是±1 和 0;倒数是它本身的数是±1,∴正确的答案为 D.3、下列说法中正确的是①正整数、负整数、零统称为整数;②正分数,负分数统称为分数;③整数、分数和零统称为有理数;④ 0 是偶数,也是自然数。
答案:①②④解析:第③项错误,整数和分数统称为有理数。
4、下列判断中,错误的是().①.一个有理数的相反数一定是负数;②.一个非正数的绝对值一定是正数;③.任何有理数的绝对值都是正数;④. 任何有理数的绝对值都不是负数。
答案:①②③解析:①:0 的相反数是0,故本选项错误;②:一个非正数的绝对值还可能为0,故本选项错误;③:有理数的绝对值还可能为0,故本选项错误;④:任何有理数的绝对值都不是负数,故本选项正确.5、下列说法正确的有①.整数包括正整数、负整数;②.0 是整数,也是自然数;③.分数包括正分数、负分数和 0;④.有理数中,不是负数就是正数答案:②解析:整数包括正、负整数和 0;分数包括正分数和负分数;有理数中,除了负数和正数还有 0.6、下列各组量中,具有相反意义的量是①节约汽油 10 升和浪费粮食 10 千克;② 向东走 10 公里和向北走 8 公里;③盈利 100 元和支出 200 元;④增加 10%与减少 20%。
答案:④7、在−22,3.1415926,0,−1.234 ⋯,˙,π,有理数的个数是().7 0. 3 2A . 2B . 3C . 4D . 5答案: C解析:−22,3.1415926,0,˙是有理数.7 0. 38、下列说法正确的是① 带有正号的数是正数,带有负号的数是负数;② 有理数是正数和小数的统称;③ 有最小的正整数,但没有最小的正有理数;④非负数一定是正数。
有理数混合运算易错题

有理数混合运算易错题
有理数混合运算的易错题有很多,以下是一些例子:
1. 计算 (-2)^2 × -3 - (-1)^4
学生可能会错误地计算 (-2)^2 为 -4,或者计算 (-1)^4 为 -1。
实际上,(-2)^2 = 4,(-1)^4 = 1。
因此,正确的计算过程应该是:
4 × 3 - (-1) = 12 + 1 = 13。
2. 计算 (-1/2) × [4/(1/4) - 4]
学生可能会错误地将分数的分母和分子混淆,或者在计算中忽略负号。
正确的计算过程应该是:
(-1/2) × [4/(1/4) - 4] = (-1/2) × (16 - 4) = (-1/2) × 12 = -6。
3. 计算 (-5/6) × (3/5) - (-5/6) × (-3/5)
学生可能会错误地将两个分数相加,或者在计算中忽略负号。
正确的计算过程应该是:
(-5/6) × (3/5) - (-5/6) × (-3/5) = (-5/6) × (3/5 + 3/5) = (-5/6) × 6/5 = -1。
总的来说,要避免在有理数混合运算中出现错误,需要注意以下几点:首先,要准确掌握运算顺序(先乘方、再乘除、最后加减);其次,要注意符号的运算(尤其是括号、正负号);最后,要仔细检查每一步的计算结果,确保没有出现错误。
(易错题精选)初中数学有理数的运算易错题汇编含答案解析(1)

(易错题精选)初中数学有理数的运算易错题汇编含答案解析(1)一、选择题1.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示为( )A .8.5×105B .8.5×106C .85×105D .85×106【答案】B【解析】【分析】根据科学记数法的表示形式:a×10n ,其中1≤|a|<10,n 为整数.解答即可.【详解】8500000=8.5×106,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为( )A .138.8910⨯B .128.8910⨯C .1288.910⨯D .118.8910⨯【答案】A【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】3.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.4.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A .61.20710⨯B .70.120710⨯C .512.0710⨯D .51.20710⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1207000=1.207×106,故选A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )亿次/秒 A .81.2510⨯B .91.2510⨯C .101.2510⨯D .812.510⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.2018年全国高考报名总人数是975万人,用科学记数法表示为( )A .30.97510⨯人B .29.7510⨯人C .69.7510⨯人D .70.97510⨯人【答案】C【解析】【分析】根据科学计数法的定义进行作答.【详解】A.错误,应该是69.7510⨯;B.错误,应该是69.7510⨯;C.正确;D. 错误,应该是6⨯.综上,答案选C.9.7510【点睛】本题考查了科学计数法的定义:将一个数字表示成(a⨯10的n次幂的形式),其中1≤a<10,n表示整数,熟练掌握科学计数法的定义是本题解题关键.7.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A.611.610⨯C.7⨯B.7116101.1610⨯⨯D.81.1610【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:(a+2b)(a+b)=22++,则C类卡片需要3张.a ab b32考点:整式的乘法公式.9.暑期爆款国产动漫《哪吒之降世魔童》票房已斩获4930000000,开启了国漫市场崛起新篇章,4930000000用科学计数法可表示为()A.49.3×108B.4.93×109C.4.933×108D.493×107【答案】B【解析】【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【详解】解:4930000000=4.93×109. 故选B .【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.10.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A .861B .863C .865D .867【答案】C【解析】【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【详解】输出数据的规律为2+1n n , 当输入数据为8时,输出的数据为288+1=865. 故答案选:C.【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.11.如图,是一个计算流程图.当16x 时,y 的值是( )A2B.2C.2±D.2±【答案】A【解析】【分析】观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】解:输入16x=后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根22是无理数,数出结果.故A为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.12.一根1m长的小棒,第一次截去它的12,第二次截去剩下的12,如此截下去,第五次后剩下的小棒的长度是()A.12m B.15m C.116m D.132m【答案】D【解析】【分析】根据题意和乘方的定义可以解答本题.【详解】解:第一次是12m,第二次是211112224⎛⎫⨯==⎪⎝⎭m,第三次是31111122228⎛⎫⨯⨯==⎪⎝⎭m,第四次是411216⎛⎫=⎪⎝⎭m,…,∴第五次后剩下的小棒的长度是511232⎛⎫= ⎪⎝⎭m , 故选:D .【点睛】本题考查了有理数的乘方运算,此题的关键是联系生活实际,从中找出规律,利用有理数的乘方解答.13.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.14.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.15.6万亿=296000000000000=2.96×1013.故选B .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示的关键是要正确确定a的值以及n的值.16.双十一是阿里巴巴打造的年中购物狂欢,从2009年到2018年十年时间,双十一就像一个符号一样,融入到人们的日常生活当中.2018年京东在双十一期间(11月1日﹣11月11日)累计下单金额达1598亿元人民币.用科学记数法表示数1598亿是( )A.1.598×1110B.15.98×101010C.1.598×1010D.1.598×8【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】用科学记数法表示数1598亿是1.598×1011.故选A.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为()A.0.278 09×105B.27.809×103C.2.780 9×103D.2.780 9×104【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】27 809=2.780 9×410,故选D.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值18.北京市将在2019年北京世园会园区、北京新机场、2022年冬奥会场馆等地,率先开展5G网络的商用示范.目前,北京市已经在怀柔试验场对5G进行相应的试验工作.现在4G网络在理想状态下,峰值速率约是100Mbps ,未来5G 网络峰值速率是4G 网络的204.8倍,那么未来5G 网络峰值速率约为( )A .1×102 MbpsB .2.048×102 MbpsC .2.048×103 MbpsD .2.048×104 Mbps 【答案】D【解析】【分析】已知4G 网络的峰值速率,5G 网络峰值速率是4G 网络的204.8倍,可得5G 网络峰值速率,通过化简,用科学计数法表示即可.【详解】解:由题干条件可得,5G 网络峰值速率:100Mbps×204.8=20480 Mbps=2.048×104 Mbps ,故选D.【点睛】本题考查了文字语言转化为数学语言的能力,灵活理解题干的内容并化简是解题的关键.19.2018年4月8日11-日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”.开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元.6000亿用科学计数法可以表示为( )A .3610⨯亿B .4610⨯亿C .30.610⨯亿D .40.610⨯亿 【答案】A【解析】【分析】科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:6000亿3610=⨯⨯亿,故选A .【点睛】此题考查科学计数法的表示方法.科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1【答案】A【解析】试题分析:当n 为奇数时,(n +1)为偶数,n n 1(1)(1)2+-+-=(1)12-+=0; 当n 为偶数时,(n +1)为奇数,n n 1(1)(1)2+-+-=1(1)2+-=0. 故选A .点睛:本题考查有理数乘方,解答本题的关键是明确有理数乘方的计算方法,利用分类讨论的数学思想解答.。
《有理数》易错题

初学有理数的常见错误剖析 对于初学有理数者,在解题中出现错误是难免的,也是正常的,但必须弄清产生错误的原因,掌握正确的解答方法,只有这样才能逐步形成数学基本技能和能力,本文就有理数这一部分中的解题易犯错误归纳剖析如下.一、答案不完整例1.若一个有理数的:①倒数②绝对值③平方④立方,等于它本身,则这个数分别是⑴ ;(2) ;(3) ;(4) .错误答案:⑴ 1 ⑵ 正数 ⑶ 1 ⑷±1 .分析:给出的答案不完整,漏掉了一些符合条件的数,产生错误的原因主要是把数的认识局限在正数范围之内,忽视0和才引进的负数,对数的范围的拓宽不适应,另外由于对负数、倒数、绝对值等概念没有完全正确理解而造成的错误. 正确答案是:⑴ ±1 ⑵ 正数和0 ⑶ 1和0 ⑷ ±1和0.二、分类不明确例2.有理数中,⑴最小的正整数是 ;⑵最小的整数是 ;⑶绝对值最小的数是 ;⑷最小的正数是 .错误答案:⑴ 0 ⑵ 1 ⑶ 1 ⑷ 1 .分析:产生错误的原因,一是对有理数的分类没有弄清楚,二是“任意两个有理数之间总至少存在一个有理数”的性质不理解,当然也有一部分同学因“正数”和“整数”的概念混淆而导致错误.正确答案:⑴ 1 ⑵ 不存在 ⑶ 0 ⑷ 不存在 .三、概念不清晰例3.判断正误:(1)任何一个有理数的相反数和它的绝对值都不可能相等( )(2)任何一个有理数的相反数都不会等于它的倒数( ) 错误答案:⑴ ∨ ⑵ × .分析:第(1)小题失误原因,一是误认为一个有理数a 的相反数-a 总是负数; 二是误认为a 能够等于a ,而得到a ≠-a ,究其根源是对“相反数”和“绝对值”的概念还没弄明白.第(2)小题失误原因是对一个有理数和它的倒数,以及相反数的符号之间的关系不清晰所致.正确答案:⑴ × ⑵∨.四、运算不准确1.运算符号错误例4.计算)15(120)4()25.6(-÷--⨯-错解:原式=25-8=17.剖析:此解将120前面的“-”号既视为运算符号,又视为性质符号,以致出错.应当注意“-”号在运算中只能当作二者中的一种.正解:原式=25-(-8)=33.例5.计算5)6(42-----错解:原式=16+6-5=17.剖析:此解忽略了24-与2)4(-的区别,24-表示4的平方的相反数,其结果为-16,2)4(-表示两个-4相乘,其结果为16。
有理数概念十大易错题

1、绝对值等于本身的数是________,绝对值是相反数的数是_______。
2、下列说法中正确的是()A.平方是它本身的数是正数B.绝对值是它本身的数是零C.立方是它本身的数是±1 D.倒数是它本身的数是±13、下列说法中正确的是_________①正整数、负整数、零统称为整数;②正分数,负分数统称为分数;③整数、分数和零统称为有理数;④0是偶数,也是自然数。
4、下列判断中,错误的是().①.一个有理数的相反数一定是负数;②.一个非正数的绝对值一定是正数;③.任何有理数的绝对值都是正数;④. 任何有理数的绝对值都不是负数。
5、下列说法正确的有_______①.整数包括正整数、负整数;②.0是整数,也是自然数;③.分数包括正分数、负分数和0;④.有理数中,不是负数就是正数6、下列各组量中,具有相反意义的量是________①节约汽油10升和浪费粮食10千克;②向东走10公里和向北走8公里;③盈利100元和支出200元;④增加10%与减少20%。
7、在−227,3.1415926,0,−1.234⋯,0.3˙,π2,有理数的个数是( ). A . 2 B . 3 C . 4 D . 58、下列说法正确的是_________①带有正号的数是正数,带有负号的数是负数;② 有理数是正数和小数的统称;③ 有最小的正整数,但没有最小的正有理数;④非负数一定是正数。
9、下列说法中正确的有( )①−3和+3互为相反数;②符号不同的两个数互为相反数;③互为相反数的两个数必定一个是正数,一个是负数;④π的相反数是−3.14;⑤一个数和它的相反数不可能相等.A . 0个B . 1个C . 2个D . 3个或更多10.在有理数中,存在这样的一个数a ,它________.①既是自然数又是整数; ②既是分数又是负数; ③既是非正的数又是非负的数; ④既是正数又是负数。
初一数学有理数易错题

初一数学有理数易错题1.下列哪个选项是有理数?A.3.14B.2π+1C.0.576D. 10答案:C解析:有理数是指分数和整数,无理数是无限不循环小数。
A是有限小数,属于有理数;B是无限不循环小数,属于无理数;D是无理数。
2.下列哪个选项是正确的?A.(−3)²=−3²B.(−3)²=−3×2C.(−3)²=−3+2D.(−3)²=−3÷2答案:A解析:根据有理数乘方的定义,(−3)²表示2个(−3)相乘,即(−3)²=(−3)×(−3),其结果是9,而其他选项的计算结果均不是9。
3.下列哪个选项是正确的?A.1÷(−3)=−1÷3=−\frac{1}{3}B.(−7)÷(−3)=7÷3=2 (1)C.(−6)÷(−2)=6÷(−2)=−3D.(−16)÷8=(−2)×\frac{1}{8}=−\frac{1}{4}答案:A解析:有理数的除法法则:除以一个不为0的数,等于乘以这个数的倒数。
因此,1÷(−3)=−1÷3=−\frac{1}{3}。
4.下列哪个选项是正确的?A.−\frac{7}{8}<0<\frac{7}{8}<1B.−\frac{7}{8}<0<1<\frac{7}{8}C.−\frac{7}{8}<0<1<\frac{8}{7}D.−\frac{7}{8}<0<\frac{8}{7}<1答案:B解析:有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小。
因此,−8/7<0<1<8/7。
5.下列哪个选项是正确的?A.(−4)×(−5)=20B.(−4)×(−5)=−20C.(−4)×(−5)=45D.(−4)×(−5)=50答案:A解析:有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
有理数地易混易错题

第二章有理数易混易错题一.分类讨论思想:1.在数轴上到-4.5的距离为9的点所表示的数是________8.若|x|=|y|,且x =-3,则y =________.9.若|-x|=-(-8),则x =______,若|-x|=|-2|,则x =________.10.(1)已知|a|=5,|b|=8,且a<b ,则a =________,b =________;(2)有理数a ,b 在数轴上的位置如图所示,若|a|=4,|b|=2,求a ,b 的值.11.如图,数轴的单位长度为1,如果点B 表示的数的绝对值是点A 表示的数的绝对值的3倍,那么点A表示的数是________.12.已知x 是整数,且3≤|x|<5,则x =______________.二.特值法:2.=5=8a3.a 7,10,a-b m 4,6,m ,m 3-1,m ________6.a,b a =6b 17.-x 34,x ________.(3)x 26a b b n n m n n m b x ====+=+--=---==++-已知,,且满足a+b <0,则求-b 的值若则求的值4.已知且则求的值5.如果则的值为已知互为相反数,且,计算的值数轴上两点分别表示5与2,则(1)这两点距离为_________;(2)已知则同理表示数________x 2610,_______.(4)26x x x x ++-=++-轴上有理数所对应的点到和所对应的两点的距离之和,请你找出所有符合条件的有理数的x ,使得这样的数是是否有最小值?如果有,写出最小值;如果没有,说明理由()1..0b 0b b ,02.0--A a a a b a b -下列结论不正确的是若<,>,则a-b <0B.若a >0,<0,则a-b >0C.若a <0,b <0,则a-(-b)>0D.若a <0,b <0,且>则<若<<,则a 与b 的大小关系是__________3.与比较大小,必定为().A .B .C . D.这要取决于b4. 有理数a,b,c的大小关系如图:则下列式子中一定成立的是().A .B .C .D .5. 如图,有理数对应数轴上两点A,B,判断下列各式的符号:________0;________0;0;________0.6.已知满足,则代数式的值是________7.已知a,b是有理数,且a,b异号,则|a+b|,|a-b|,|a|+|b|的大小关系为_____________________________.三.数形结合思想:1.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”、“15cm”分别对应数轴上的,则().A .B .C .D .2. 如图:数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、 D对应的数分别是整数a,b,c,d,且b-2a=9,那么数轴的原点对应点是().A.A点 B.B点 C.C点 D.D点3.绝对值不大于3的所有整数为________________________________________.4.已知a>0,b<0,且|b|<a,试比较a,-a,b,-b的大小.5.某同学在做数学作业时,不小心将墨水洒在所画的数轴上,如图,被墨水污染部分的整数点有个.(第1题)6.在数轴上任取一条长为2 01613个单位长度的线段,则此线段在数轴上最多能盖住的整数点的个数为()A.2 017B.2 016C.2 015D.2 0141117.(1) 1.50-3----422111--4--在数轴上表示下列各数:,,,(),,并利用“<”把它们连接起来;(2)根据(1)中的数轴,找出大于的最小整数和小于()的最大整数,四.简便计算:(1). 请你设计一种几何图形求的值.1011001110802-29-98173-3619184981212115--+36941832156-13+0.34+-13+0.34273717-2-28-2+-2⨯⨯⨯÷÷⨯⨯⨯⨯()()()()()() ()()()()()()()()()()()第三章整式及其加减一.代数式知识概要代数式的定义____________________________________________________________代数式的书写要求:_______________________________________________________典例精讲1. 在式子m+5,ab,a=1,0,π,3(x+y), 2n k 180π,x>3中,是代数式的有( )A 6个B 5个C 4个D 3个2.一个两位数,个位上的数是a ,十位上的数字比个位上的数小3,这个两位数为__ _______,当a=5时,这个两位数为___.3.比x 和y 2的差的一半大3的数应表示为_________________________.4.某品牌服装以a 元购进,加20%作为标价.由于服装销路不好,按标价的八五折出售,降价后的售价是__________元,这时仍获利________________________元.5.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折。
有理数的运算易错题汇编含答案解析

【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
389亿用科学记数法表示为89×1010.
故选:C.
【答案】B
【解析】
【分析】
【详解】
A. 正确,故此选项不合题意;
B. ,故此选项符合题意;
C. 正确,故此选项不合题意;
D. 61200 = 6.12×104正确,故此选项不合题意;
故选B.
18.若 则 的值是()
A.2 B、1 C、0 D、
【答案】B
【解析】
试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B.
【详解】
科学记数法表示384 000=3.84×105km
故选B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
15.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为()
A.2× B.2× C.20× D.0.2×
【答案】B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
故选:C.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B .B 点
C. C 点
D .D 点
a,b,c,d ,
3.绝对值不大于 3 的所有整数为 ________________________________________. 4.已知 a> 0, b<0,且 |b|<a,试比较 a,- a,b,- b 的大小 .
5.某同学在做数学作业时, 不小心将墨水洒在所画的数轴上, 如图,被墨水污染部分的整数点有
5. 如果 m 3 -1 ,则m的值为 ________ 6.已知 a,b互为相反数,且 a b =6,计算 b 1的值
7.数轴上两点分别表示 5与-2,则 (1) 这两点距离为 _________; (2) 已知 x 3 4,则x ________. (3)同理 x 2 x 6 表示数 轴上有理数 x所对应的点到 ____ 和 ____ 所对应的两点的距离之和,请你找出所有符合条件的有理数的 x,使 得 x 2 x 6 10,这样的数是 _______. (4) x 2 x 6 是否有最小值?如果有,写出最小值;如果没有,说明理由
1. 下列式子中不是整式的是(
)
1
A - 23x
B
x
C 12
x+ 5x
D0
2.下列判断:( 1)
xy2
xy
1x
不是单项式;( 2)
是多项式;( 3)0 不是单项式;( 4)
是整
3
x
式,其中正确的有(
)
A1 个
B2
个
C3
个
D4
个
ab
2
3
3. 在下列代数式:
, 4, abc,0, x y, 中,单项式有 ( )
C. - 2000
D.2001
2a 1
15.关于代数式
的值,下列说法错误的是
a3
(
)
1
A.当 a= 时,其值为 0
2
B.当 a=- 3 时,其值不存在
C.当 a≠-3 时,其值存在
D.当 a= 5 时,其值为 5
16 若 x= 4 时,代数式 x2- 2x+a 的值为 0 ,则 a 的值为 ________ 。 二.整式
知识概要
1. 整式的定义: ______________________
2. 单项式的定义: ___________________________________, 特别的 _______________________
3. 单 项 式 的 系 数 指 __________________________________;
时,这个两位数为 ___.
3. 比 x 和 y 2 的差的一半大 3 的数应表示为 _________________________.
4. 某品牌服装以 a 元购进,加 20%作为标价 . 由于服装销路不好,按标价的八五折出售,降价后的售价是 __________元,这时仍获利 ________________________元 .
3
3
x
A3 个
B4
个
C5
个
D6
个
4. 单项式
2 3 xy 4
的次数是 ( )
7
A8 次
B3
次
C4
次
D5
次
5. 下列说法中正确的是 ( )
A 代数式一定是单项式
B
单项式一定是代数式
C 单项式 x 的次数是 0
D
单项式- π2x 2y 2 的次数是 6
11 6. 在下列代数式: ab, a
b, ab 2
代数式的书写要求: _______________________________________________________
典例精讲
1. 在式子 m+5,ab,a=1,0, π,3(x+y),
n k2
,x>3 中,是代数式的有 ( )
180
A6 个
B5
个
C4
个
D3
个
2. 一个两位数, 个位上的数是 a,十位上的数字比个位上的数小 3,这个两位数为 __ _______ ,当 a=5
11.如图,数轴的单位长度为 1,如果点 B 表示的数的绝对值是点 表示的数是 ________. 12.已知 x 是整数,且 3≤|x|< 5,则 x =___________ ___ .
二.特值法:
A 表示的数的绝对值的
3 倍,那么点 A
1.下列结论不正确的是
A.若 a<0, b>0,则 a-b < 0 B. 若 a> 0,b< 0,则 a-b > 0 C. 若 a< 0, b<0,则 a-(-b) > 0
18. 已知单项式
1 x 4 y 3的次数与多项式 a 2 8am 1b a 2b 2 的次数相同,求 m 的值。 2
19. 当多项式 5x 2 2m 1 x2 2 3n x 1 不含二次项和一次项时,求 m、 n 的值。
20. 多项式 8x2+mxy-5y2+xy-8 中不含 xy 项,则 m的值为( )
第二章有理数易混易错题 一.分类讨论思想: 1.在数轴上到 -4.5 的距离为 9 的点所表示的数是 ________ 2.已知 a=5,b =8,且满足 a+b< 0,则求 a-b 的值
3.若 a 7, b 10,则求 a-b 的值
4. 已知 m 4, n 6,且m n m n ,则求 m n的值
Am
B
2n
11. 若
abm 1
是四次单项式,则
6
C m的值是
m 2n D
,系数是
m 、 2n 中较大的数
。
12. 单项式 a 2 b3 的系数是
,次数是
。
24
13. 单项式
ab c
的系数是
2
22
,次数是 ,多项式 3x y 8x y 9 的最高次项为
。
3
14. 写出系数是- 2,且含有字母 a、b 的所有 4 次单项式:_____
( 2)根据( 1)中的数轴,找出大于 - -4 1 的最小整数和小于 -(- 11)的最大整数,
四.简便计算:
2
2
并求出它们的和
(1). 请你设计一种几何图形求
(2)( -29 80 )(-9) 81
(3)( -36) 19 7 18
(4) 98 12
(5)( - 1 )( 2 - 1 + 1 ) 36 9 4 18
D. 若 a< 0,b< 0,且 a > b ,则 a b<0
2.若a<b<0,则 -a与-b的大小关系是 __________
3.
与 比较大小,必定为(
).
A.
B.
C.
4. 有理数 a,b,c 的大小关系如图:
则下列式子中一定成立的是(
).
D .这要取决于 b
A.
B.
C.
D.
5. 如图,有理数
对应数轴上两点 A, B,判断下列各式的符号:
个.
(第 1 题)
6.在数轴上任取一条长为
(
)
2 01613个单位长度的线段,则此线段在数轴上最多能盖住的整数点的个数为
A.2 01 7 B.2 016 C.2 015 D.2 014
11
1
7.(1)在数轴上表示下列各数: 1.5,0,-3,-(- ),- -4 ,
2
2
并利用 “ <” 把它们连接起来;
________0 ;
________0;
0;
________0.
6. 已知
满足
,则代数式
的值是 ________
7.已知 a,b 是有理数, 且 a,b 异号,则 |a+ b|,|a- b|,|a|+|b|的大小关系为 _____________________________. 三. 数形结合思想:
b
1,
22
2 3,
1 ,x2
x 1中,多项式有
2
A2 个
B3
的是 ( )
A.单项式
x2 的系数是 3
B
3
C. 1 是单项式
D
x
.单项式
23 π2ab4 的指数是 7
2
.单项式可能不含有字母
8. 下列多项式次数为 3 的是 ( )
A - 5x2+6x -1 B
2
πx +x -1
单 项式的次 数指
______________________________________ 注意: ________________________________________________________ 4 多项式的定义 ___________________________________________________ 5. 多 项 式 的 项 指 ______________________________________;
1.将一刻度尺如图所示放在数轴上(数轴的单位长度是
数轴上的
,则( ) .
1cm),刻度尺上的“ 0cm”、“ 15cm”分别对应
A.
B.
C.
D.
2. 如图:数轴上标出若干个点,每相邻两点相距 1 个单位,点 A、B、C、 D 对应的数分别是整数
且 b-2a=9, 那么数轴的原点对应点是(
).
A. A 点
(6)-13
3 +0.34
2 + 1 (-13)+ 5
2
73
7
(7)( -2)101 (- 1 )100 2
(8)( -2)11+ (-2)10
0.34
的值 .
第三章整式及其加减