安徽省马鞍山市2021年中考数学试卷D卷

合集下载

马鞍山市2021版中考数学一模试卷D卷

马鞍山市2021版中考数学一模试卷D卷

马鞍山市2021版中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共30分)1. (3分)的相反数是A .B .C .D .2. (3分)已知点关于y轴的对称点的坐标是,则的值为()A . 10B . 25C . -3D . 323. (3分)下列叙述中,正确的有()①如果,那么;②满足条件的n不存在;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC在平移过程中,对应线段一定相等.A . 4个B . 3个C . 2个D . 1个4. (3分) (2019九上·北碚期末) 已知在△ABC中,∠A,∠B都是锐角,,则∠C的度数是()A . 30°B . 45°C . 60°D . 90°5. (3分)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1 ,作正方形A1B1C1C;延长C1B1交x轴于点A2 ,作正方形A2B2C2C1 ,…,按这样的规律进行下去,第2013个正方形的面积为()A .B .C .D .6. (3分)下列命题中,假命题是()A . 平行四边形是中心对称图形B . 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C . 对于简单的随机样本,可以用样本的方差去估计总体的方差D . 若x2=y2 ,则x=y7. (3分) (2017八上·陕西期末) 如图,在平面直角坐标系中,以原点为圆心的同心圆的半径由内向外依次为,,,,…,同心圆与直线和分别交于,,,,…,则的坐标是()A .B .C .D .8. (3分)(2020·乾县模拟) 如图,正方形ABCD和正方形DEFC的边长分别是5和3,且点E、C分别在AD、CD边上,H为BF的中点,连接HG,则HG的长为()A . 4B .C .D . 29. (3分)(2020·乾县模拟) 如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=70°,∠C=50°,则∠ADB的度数是()A . 70°B . 80°C . 82°D . 85°10. (3分)(2020·乾县模拟) 已知二次函数y=ax²-8ax(a为常数)的图象不经过第二象限,在自变量x 的值满足2≤x≤3时,其对应的函数值y的最大值为3,则a的值为()A .B .C .D .二、填空题 (共4题;共12分)11. (3分)一元二次方程x²+2x+c=0有两个相等的实数根,则满足条件的实数c=________。

2021年数学中考试题及答案

2021年数学中考试题及答案

初中毕业、升学考试试卷数 学考生须知:1、全卷满分为150分;考试时间为120分钟.2、全卷分“卷一”和“卷二”两部分;其中“卷一”为选择题卷;“卷二”为非选择题卷.3、答题前;请在答题卡上先填写姓名和准考证号;再用铅笔将准考证号和科目对应的括号或方框涂黑.4、请在“卷二”密封区内填写座位号、县(市、区)学校、姓名和准考证号.5、答题时;允许使用计算器.卷一说明:本卷有一大题;12小题;共48分.请用铅笔在答题卡上将所选选项的对应字母的方框涂黑、涂满.一、细心选一选(本题有12小题;每小题4分;共48分.请选出各题中一个符合题意的正确选项;不选、多选、错选均不给分) 1.-2的绝对值是(A )2 (B )-2 (C )12 (D )-122.tan45°的值是 (A )1 (B )12(C )22 (D )33.据丽水气象台“天气预报”报道;今天的最低气温是17℃;最高气温是25℃;则今天气温t (℃)的范围是(A )t <17 (B )t >25 (C )t=21 (D )17≤t ≤254.把n aa a a a 个记作(A )n a (B )n +a (C )n a (D )a n5.据丽水市统计局2005年公报;我市2004年人均生产总值约为10582元;则近似数10582的有效数字有(A )1个 (B )3个 (C ) 4个 (D )5个6.如图;抛物线的顶点P 的坐标是(1;-3);则此抛物线对应的二次函数有(A )最大值1 (B )最小值-3 (C )最大值-3 (D )最小值1亲爱的同学:充满信心吧;成功等着你!7.如图, 在Rt △ABC 中, ∠ACB=90°,CD ⊥AB 于D;若AD=1;BD=4;则CD=(A )2 (B )4 (C )2 (D )38.方程20x -=的解是(A )x =2 (B )x =4 (C )x =-2 (D )x =0 9.两圆的半径分别为3㎝和4㎝;圆心距为1㎝;则两圆的位置关系是(A )外切 (B )内切 (C )相交 (D )外离10.如图;将图中的阴影部分剪下来;围成一个几何体的侧面;使AB 、DC 重合;则所围成的几何体图形是(A ) (B )(C ) (D )11.如图;小明周末到外婆家;走到十字路口处;记不清前面哪条路通往外婆家;那么他能一次选对路的概率是(A )12 (B )13(C )14(D )012.如图;在山坡上种树;已知∠A=30°;AC=3米;则相邻两株树的坡面距离AB=(A )6米 (B )3米 (C )23米 (D )22米初中毕业、升学考试试卷DCBA(第7题)(第10题) (第11题)CAB(第12题)数学卷二大题号二三卷二总分小题号13~18 19 20 21 22 23 24 25得分说明:本卷有二大题;13小题;共102分;请用蓝黑墨水的钢笔或圆珠笔直接在试卷上答题.二、专心填一填(本题有6小题;每小题5分;共30分)13.已知52ab=;则a bb-= .14.当a≥0时;化简:23a= .15.因式分解:x3-x= .16.在平行四边形、矩形、菱形、正方形、等腰梯形的五种图形中;既是轴对称、又是中心对称的图形是.17.下列是三种化合物的结构式及分子式;请按其规律;写出后一种化合物的分子..式..18.如图;ABCD是⊙O的内接四边形;AB是⊙O的直径;过点D的切线交BA的延长线于点E;若∠ADE=25°;则∠C= 度.三、耐心答一答(本题有7小题;共72分)以下各题必须写出解答过程.19.(本题8分)选做题(请在下面给出的二个小题中选做一小题;若每小题都答;按得分高的给分)(1)计算:(-2)0 +4×(-12).得分评卷人得分评卷人C3H8C2H6CH4HHHHHH HHHHHHHH CCCCCH HHHC(第18题)只要选做一题就可以噢!(2)计算:2(x+1)-x.20(本题8分)已知关于x的一元二次方程x2-(k+1) x-6=0的一个根是2;求方程的另一根和k的值.21(本题8分)如图;在⊙O中;弦AB与CD相交于点P;连结AC、DB.(1)求证:△PAC∽△PDB;(2)当ACDB为何值时;PACPDBSS=4.得分评卷人PDC BAO22、(本题10分)某校的围墙上端由一段段相同的凹曲拱形栅栏组成;如图所示;其拱形图形为抛物线的一部分;栅栏的跨径AB 间;按相同的间距0.2米用5根立柱加固;拱高OC 为0.6米.(1) 以O 为原点;OC 所在的直线为y 轴建立平面直角坐标系;请根据以上的数据;求出抛物线y=ax 2的解析式;(2)计算一段栅栏所需立柱的总长度.(精确到0.1米)23、(本题12分)某公园有一个边长为4米的正三角形花坛;三角形的顶点A 、B 、C 上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行四边形花坛;要求三棵古树不能移动;且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程中画图工具不限. (1)按圆形设计;利用图1画出你所设计的圆形花坛示意图;得分评卷人得分评卷人(2)按平行四边形设计;利用图2画出你所设计的平行四边形花坛示意图; (3)若想新建的花坛面积较大;选择以上哪一种方案合适?请说明理由.24、(本题12分)如图;AB 是⊙O 的直径;CB 、CE 分别切⊙O 于点B 、D; CE 与BA 的延长线交于点E;连结OC 、OD . (1)求证:△OBC ≌△ODC ;(2)已知DE=a;AE=b;BC=c;请你思考后;选用以上适当的数;设计出计算⊙O 半径r 的一种方案:得分评卷人图1 图2AB CABC你选择a 、b 、c 时可要慎重噢!!b a OED A①你选用的已知数是;②写出求解过程.(结果用字母表示)25、(本题14分)视台摄制组乘船往返于丽水(A)、青田(B)两码头;在A、B间设立拍摄中心C;拍摄瓯江沿岸的景色.往返过程中;船在C、B处均不停留;离开码头A、B的距离s(千米)与航行的时间t(小时)之间的函数关系如图所示.根据图象提供的信息;解答下列问题:(1)船只从码头A→B;航行的时间为小时、航行的速度为千米/时;船只从码头B→A;航行的时间为小时、航行的速度为千米/时;(2)过点C作CH∥t轴;分别交AD、DF于点G、H;设AC=x;GH=y;求出y与x之间的函数关系式;(3)若拍摄中心C设在离A码头25千米处; 摄制组在拍摄中心C分两组行动;一组乘橡皮艇漂流而下;另一组乘船到达码头B后;立即返回.①求船只往返C、B两处所用的时间;②两组在途中相遇;求相遇时船只离拍摄中心C有多远.;初中毕业、升学考试试卷数学参考答案和评分标准一、选择题(本题有12小题;每小题4分;共48分)题次 1 2 3 4 5 6 7 8 9 10 11 12答案 A A D C D B A B B D B C二、填空题(本题有6小题;每小题5分;共30分)13. 3214. 3a 15. x(x+1)(x-1)16.矩形、菱形、正方形 17. C4H10 18. 115三、解答题(本题有6小题;共72分)以下各题必须写出解答过程.19、(本题8分)(1)解:原式=1-2 …………………………………………………6分 =-1. …………………………………………………2分(2)解:原式=2x+2-x ……………………………………………4分= x+2. ………………………………………………4分(若两小题都答;按得分高的题给分)20、(本题8分)解:设方程的另一根为x1;由韦达定理:2 x1=-6;∴ x1=-3. …………………………………………………………4分由韦达定理:-3+2=k+1;∴k=-2. ……………………………………………………………4分21、(本题8分)(1)证明:∵∠A=∠D;∠C=∠B; …………………………………2分∴△PAC∽△PDB; ………………………………………2分 (2)解:由(1)△PAC∽△PDB ;得PAC PDBS S=2()AC DB; ………………2分 即2()AC DB =4;∴ACDB=2. …………………………………………2分 22、(本题10分) 解:(1) 由已知:OC=0.6;AC=0.6;得点A 的坐标为(0.6;0.6); ……2分 代入y=ax 2;得a=53;………………2分 ∴抛物线的解析式为y=53x 2.………1分(2)点D 1;D 2的横坐标分别为0.2;0.4;…………………………1分代入y=53x 2;得点D 1;D 2的纵坐标分别为:y 1=53×0.22≈0.07;y 2=53×0.42≈0.27; ………………………………1分∴立柱C 1D 1=0.6-0.07=0.53;C 2D 2=0.6-0.27=0.33; ……………2分 由于抛物线关于y 轴对称;栅栏所需立柱的总长度为:2(C 1D 1+ C 2D 2)+OC=2(0.53+0.33)+0.6≈2.3米. ……………1分 23、(本题12分)解:(1)作图工具不限;只要点A 、B 、C 在同一圆上;…………………4分 (2)作图工具不限;只要点A 、B 、C 在同一平行四边形顶点上;…4分(3)∵r=OB=cos30BD ︒………………………………1分∴S ⊙O =πr 2=163π≈16.75; ……………………………1分 又S 平行四边形=2S △ABC =2×12×42≈13.86, (1)∵S ⊙O > S 平行四边形 ∴选择建圆形花坛面积较大. …………………1分 24、(本题12分)(1)证明:∵CD、CB 是⊙O 的切线;∴∠ODC=∠OBC=90°; …………2分 OD=OB;OC= OC; ……………………………………………………1分 ∴△OBC ≌△ODC (HL ); ………………………………………1分(2)①选择a 、b 、c;或其中2个均给2分;②若选择a 、b :由切割线定理:a 2=b (b+2r) ;得r=222a b b-.若选择a 、b 、c :方法一:在Rt△EBC 中;由勾股定理:(b+2r)2+c 2=(a+c)2;得.方法二:Rt△ODE∽Rt△CBE ;2a b rr c+=;得r=4b -+.方法三:连结AD;可证:AD//OC;a b c r =;得r=bca. 若选择a 、c :需综合运用以上的多种方法;得r=2a c+.若选择b 、c;则有关系式2r 3+br 2-bc 2=0.(以上解法仅供参考;只要解法正确均给6分) 25.(本题14分)解:(1)3、25;5、15;……………………………………………………4分 (2)解法一:设CH 交DE 于M;由题意:ME=AC=x ;DM=75–x; … ……………………………………1分 ∵GH//AF;△DGH ∽△DAF ; …………………………………1分∴ GH DM AF DE =;即75875y x -=; ………………………………2分 ∴ y=8875x -. …………………………………………………1分解法二:由(1)知:A→B(顺流)速度为25千米/时;B→A(逆流)速度为15千米/时;y 即为船往返C 、B 的时间. y=75752515x x --+;即y=8875x -.(此解法也相应给5分) (3)①当x=25时;y=881625753-⨯=(小时).……………………2分②解法一:设船在静水中的速度是a 千米∕时;水流的速度是b 千米∕时; a+b=25 a=20 a –b=15 b=5 船到B 码头的时间t 1=752525-=2小时;此时橡皮艇漂流了10千米.设船又过t 2小时与漂流而下橡皮艇相遇;则(5+15)t 2=75–25–10;∴t 2=2. ……………………………1分 ∴船只离拍摄中心C 距离S=(t 1+ t 2)×5=20千米. …………1分解法二:设橡皮艇从拍摄中心C 漂流至P 处与船返回时相遇;即水流的速度是5 千米∕时.…………1分即 解得得505052515CP CP-=+;∴CP=20千米.(此解法也相应给3分)。

安徽省马鞍山市2021年九年级上学期数学期末考试试卷D卷

安徽省马鞍山市2021年九年级上学期数学期末考试试卷D卷

安徽省马鞍山市2021年九年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·合肥模拟) 2019的相反数是()A .B . -C . -2019D . 20192. (2分)(2016·临沂) 下列计算正确的是()A . x3﹣x2=xB . x3•x2=x6C . x3÷x2=xD . (x3)2=x53. (2分) (2017八下·江海期末) 使式子有意义的条件是()A . x≥4B . x=4C . x≤4D . x≠44. (2分)若干桶方便面摆放在桌子上,如图是它的三视图,则这一堆方便面共有()桶。

A . 10B . 9C . 8D . 75. (2分)(2018·定兴模拟) 某小组同学在一周内参加家务劳动时间与人数情况如表所示:劳动时间(小时)234人数321下列关于“劳动时间”这组数据叙述正确的是()A . 中位数是2B . 众数是2C . 平均数是3D . 方差是06. (2分) (2016八上·沂源开学考) 抛物线y=(x﹣1)2+3的对称轴是()A . 直线x=1B . 直线x=3C . 直线x=﹣1D . 直线x=﹣37. (2分) (2019八下·高新期中) 已知关于x的不等式组有解,则m的取值范围为()A .B .C .D .8. (2分)(2018·郴州) 如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于 CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A . 6B . 2C . 3D .9. (2分)如图,表示甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶的路程是()A . 0.5千米B . 1千米C . 1.5千米D . 2千米10. (2分) (2016九上·黑龙江月考) 如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF的长为()A .B .C .D . 15二、填空题 (共8题;共8分)11. (1分)(2019·盘龙模拟) 2019年春节期间某省某州接待旅游人数大约为1767500人,将这个数据1767500用科学记数法表示为________.12. (1分) (2018九上·翁牛特旗期末) 把3x2-12x+12因式分解的结果是________.13. (1分) (2019八下·北京期中) 阅读材料:如果,是一元二次方程的两根,那么有 .这是一元二次方程根与系数的关系,我们利用它可以用来解题.例是方程的两根,求的值.解法可以这样:则 .请你根据以上解法解答下题:已知是方程的两根,求:(1) + =________ ;(2) =________ ;(3) =________;(4) =________.14. (1分) (2019九上·天河期末) 一个圆锥的母线长为5,高为4,则这个圆锥的侧面积是________.15. (1分)(2016·邵阳) 将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是________.16. (1分)(2018·咸安模拟) 如果实数x、y满足方程组,那么x2﹣y2的值为________17. (1分) (2018九上·长兴月考) 如图,在平面直角坐标系xOy中,已知抛物线与x轴相交于A,B两点,过点B的直线与抛物线相交于点C.将直线BC沿y轴向下平移4个单位后,与x轴,y轴分别相交于D,E两点.点F,G分别为抛物线的对称轴和直线DE上的动点.则CF+FG的最小值为________.18. (1分)(2018·黔西南模拟) 二次函数(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣ c;④若△ABC是等腰三角形,则b=﹣.其中正确的有________(请将结论正确的序号全部填上)三、解答题 (共10题;共102分)19. (10分) (2017八下·山西期末) 综合题。

马鞍山市2021年八年级上学期数学期中考试试卷D卷

马鞍山市2021年八年级上学期数学期中考试试卷D卷

马鞍山市2021年八年级上学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共8分)1. (1分) (2018八下·邯郸开学考) 下列四个图形中是轴对称图形的是()。

A . 1个B . 2个C . 3个D . 4个2. (1分)下列各数中为无理数的是()A .B .C . 3.1415926D .3. (1分)等腰三角形的两边分别为1和2,则其周长为()A . 4B . 5C . 4或5D . 无法确定4. (1分)下列是勾股数的一组是()A . 4,5,6B . 5,7,12C . 12, 13,15D . 21,28,355. (1分) (2018八上·仙桃期末) 如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点 , 若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为()A . 6B . 8C . 10D . 126. (1分)(2020·黄石模拟) 如图,在平面直角坐标系中,,,,点P为的外接圆的圆心,将绕点O逆时针旋转,点P的对应点P’的坐标为()A .B .C .D .7. (1分)下列条件不可以判定两个直角三角形全等的是()A . 两条直角边对应相等B . 有两条边对应相等C . 一条边和一锐角对应相等D . 一条边和一个角对应相等8. (1分)(2015·金华) 以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A . 如图1,展开后测得∠1=∠2B . 如图2,展开后测得∠1=∠2且∠3=∠4C . 如图3,测得∠1=∠2D . 如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD二、填空题 (共9题;共9分)9. (1分)如图所示,已知△ABC≌△ADE ,∠C=∠E , AB=AD ,则另外两组对应边为________,另外两组对应角为________.10. (1分) 4的平方根是________11. (1分) (2019七上·九龙坡期中) 用四舍五入法把0.079精确到百分位为________12. (1分)如图,若AB=AD,∠BAC=∠DAC,则△ABC≌△ADC,全等的依据是________;13. (1分)第二象限内的点P(x,y)满足|x|=5,y2=4,则点P的坐标是________.14. (1分) (2018八上·武汉月考) 直角三角形纸片 ABC 中,∠ACB=90°,AC≤BC.如图,将纸片沿某条直线折叠,使点 A 落在直角边 BC 上,记落点为 D.设折痕与 AB、AC 边分别交于点 E、点 F,当折叠后的△CDF 与△BDE 均为等腰三角形,那么纸片中∠B 的度数是________15. (1分)(2020·西安模拟) 如图,在四边形ABCD中,∠B=∠C=90°,AB=BC,∠ADC=∠AEB+∠BAD,若CD=4,BE=5,则AD=________.16. (1分) (2016八上·萧山期中) 已知等腰三角形的一边等于3cm,别一边等于6cm,则周长为________cm。

2021年马鞍山中考数学试卷

2021年马鞍山中考数学试卷

2021年马鞍山中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。

1.9-的绝对值是( )A .9B .9-C .19D .19- 2.《2020年国民经济和社会发展统计公报》显示,2020年我国共资助8990万人参加基本医疗保险.其中8990万用科学记数法表示为( )A .689.910⨯B .78.9910⨯C .88.9910⨯D .90.89910⨯3.计算23()x x ⋅-的结果是( )A .6xB .6x -C .5xD .5x -4.几何体的三视图如图所示,这个几何体是( )A .B .C .D .5.两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BM D ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒6.某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( )A .23cmB .24cmC .25cmD .26cm7.设a ,b ,c 为互不相等的实数,且4155b a c =+,则下列结论正确的是( ) A .a b c >> B .c b a >> C .4()a b b c -=- D .5()a c a b -=-8.如图,在菱形ABCD 中,2AB =,120A ∠=︒,过菱形ABCD 的对称中心O 分别作边AB ,BC 的垂线,交各边于点E ,F ,G ,H ,则四边形EFGH 的周长为( )A .33+B .223+C .23+D .123+9.如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以围成一个矩形,从这些矩形中任选一个,则所选矩形含点A 的概率是( )A .14B .13C .38D .4910.在ABC ∆中,90ACB ∠=︒,分别过点B ,C 作BAC ∠平分线的垂线,垂足分别为点D ,E ,BC 的中点是M ,连接CD ,MD ,ME .则下列结论错误的是( )A .2CD ME =B .//ME ABC .BD CD = D .ME MD =二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:04(1)+-= .12.埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形.底面正方形的边长与侧面等腰三角形底边上的高的比值是51-,它介于整数n 和1n +之间,则n 的值是 . 13.如图,圆O 的半径为1,ABC ∆内接于圆O .若60A ∠=︒,75B ∠=︒,则AB = .14.设抛物线2(1)y x a x a =+++,其中a 为实数.(1)若抛物线经过点(1,)m -,则m = ;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是 .三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:1103x -->.16.(8分)如图,在每个小正方形的边长为1个单位的网格中,ABC ∆的顶点均在格点(网格线的交点)上.(1)将ABC ∆向右平移5个单位得到△111A B C ,画出△111A B C ;(2)将(1)中的△111A B C 绕点1C 逆时针旋转90︒得到△221A B C ,画出△221A B C .四、(本大题共2小题,每小题8分,满分16分)17.(8分)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD 为矩形,点B 、C 分别在EF 、DF 上,90ABC ∠=︒,53BAD ∠=︒,10cm AB =,6cm BC =.求零件的截面面积.参考数据:sin530.80︒≈,cos530.60︒≈.18.(8分)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;(2)若一条这样的人行道一共有(n n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?五、(本大题共2小题,每小题10分,满分20分)19.(10分)已知正比例函数(0)y kx k=≠与反比例函数6yx=的图象都经过点(,2)A m.(1)求k,m的值;(2)在图中画出正比例函数y kx=的图象,并根据图象,写出正比例函数值大于反比例函数值时x的取值范围.20.(10分)如图,圆O中两条互相垂直的弦AB,CD交于点E.(1)M是CD的中点,3CD=,求圆O的半径长;OM=,12(2)点F在CD上,且CE EF⊥.=,求证:AF BD21.(12分)为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:)kW h⋅调查,按月用电量50~100,100~150,150~200,200~250,250~300,300~350进行分组,绘制频数分布直方图如图.(1)求频数分布直方图中x的值;(2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果);(3)设各组居民用户月平均用电量如表:组别50~100100~150150~200200~250250~300300~350月平均用电75125175225275325量(单位:)kW h⋅根据上述信息,估计该市居民用户月用电量的平均数.22.(12分)已知抛物线221(0)y ax x a =-+≠的对称轴为直线1x =.(1)求a 的值;(2)若点1(M x ,1)y ,2(N x ,2)y 都在此抛物线上,且110x -<<,212x <<.比较1y 与2y 的大小,并说明理由;(3)设直线(0)y m m =>与抛物线221y ax x =-+交于点A 、B ,与抛物线23(1)y x =-交于点C ,D ,求线段AB 与线段CD 的长度之比.23.(14分)如图1,在四边形ABCD中,ABC BCD∠=∠,点E在边BC上,且//AE CD,//DE AB,作//CF AD交线段AE于点F,连接BF.(1)求证:ABF EAD△≌△;(2)如图2.若9AB=,5CD=,ECF AED∠=∠,求BE的长;(3)如图3,若BF的延长线经过AD的中点M,求BEEC的值.。

安徽省马鞍山市2021版中考数学试卷(II)卷

安徽省马鞍山市2021版中考数学试卷(II)卷

安徽省马鞍山市2021版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2020七下·顺义期中) 的倒数是()A .B .C .D .2. (2分) (2016七上·莒县期末) 某市地铁一号与地铁二号线接通后,该市交通通行和转换能力成倍增长,该工程投资预算约为930000万元,这一数据用科学记数法表示为()A . 9.3×105万元B . 9.3×106万元C . 0.93×106万元D . 9.3×104万元3. (2分)图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是()A .B .C .D .4. (2分)一个饭店所有员工的月收入情况如下:精力领班迎宾厨房厨师助理服务员洗碗工人数/人1222382月收入/元4700190015002200150014001200你认为用来描述该饭店员工的月收入水平不太恰当的是()A . 所有员工月收入的平均数B . 所有员工月收入的中位数C . 所有员工月收入的众数D . 所有员工月收入的中位数或众数5. (2分)如图,在正方形ABCD的外侧作等边△ADE,则∠AEB的度数为()A . 10°B . 12.5°C . 15°D . 20°6. (2分)(2019·萍乡模拟) 夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A .B .C .D .7. (2分) (2020八下·椒江期末) 如图,在菱形ABCD中,点E,F、G,H分别是边,AB,BC,CD和DA的中点,连接EF.FG.GH和HE.若EH=3EF,则下列结论正确的是()A . AB= EFB . AB=2 EFC . AB=3EFD . AB= EF8. (2分)一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是()A . b=2a+kB . a=b+kC . a>b>0D . a>k>0二、填空题 (共8题;共8分)9. (1分)已知四个有理数a,b,x,y同时满足以下关系式:b>a,x+y=a+b,y﹣x<a﹣b.请将这四个有理数按从小到大的顺序用“<”连接起来是________10. (1分) (2016八上·孝南期中) 小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此反复,小林共走了108米回到点P,则角α的度数为________.11. (1分) (2019九上·阳信开学考) 关于x的一元二次方程x2-x-n=0没有实数根,则抛物线y=x2-x-n的顶点在第________象限.12. (1分) (2020八上·洛宁期末) 实数,,,,中,其中无理数出现的频数是________.13. (1分) (2016九上·淅川期末) 如图,在等边△ABC中,O为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3.CE=2,则AB的长为________.14. (1分)如图,⊙O是△ABC的外接圆,∠A=45°,BD为⊙O的直径,BD=,连结CD,则CD的长为________15. (1分)(2020·黄浦模拟) 已知⊙O的直径AB=4,⊙D与半径为1的⊙C外切,且⊙C与⊙D均与直径AB相切、与⊙O内切,那么⊙D的半径是________.16. (1分)(2017·黔东南模拟) 在平面直角坐标系中,四边形OABC为矩形,点A的坐标为(4,0),点B 的坐标为(4,3),动点M,N分别从O、B同时出发,以每秒1个单位长度的速度运动,其中,点M沿OA向终点A 运动,点N沿BC向终点C运动,过点M作MP⊥OA,交AC于P,连接NP.下列说法①当点M运动了2秒时,点P 的坐标为(2,);②当点M运动秒时,△NPC是等腰三角形;③当点N运动了2秒时,△NPC的面积将达到最大值.其中正确的有________.三、解答题 (共9题;共77分)17. (5分)(2017·松北模拟) 先化简,再求值:,其中x=6tan30°﹣2.18. (11分)(2020·银川模拟) 随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了________人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为________;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是▲ ”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.19. (6分) (2019九上·余杭期中) 一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球.(2)搅匀后从中任意摸出2个球,2个都是白球.(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?20. (5分)(2018·岳阳) 为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?21. (5分)如图是A,B,C三岛的平面图,C岛在A岛的北偏东60°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西30°方向.求从C岛看A,B两岛的视角∠ACB的度数.22. (10分)(2018·秦淮模拟) 【数学概念】若四边形ABCD的四条边满足AB CD AD BC,则称四边形ABCD是和谐四边形.(1)【特例辨别】下列四边形:①平行四边形,②矩形,③菱形,④正方形.其中一定是和谐四边形的是________.(2)【概念判定】如图①,过⊙O外一点P引圆的两条切线PS、PT,切点分别为A、C,过点P 作一条射线PM,分别交⊙O于点B、D,连接AB、BC、CD、DA.求证:四边形ABCD是和谐四边形.(3)【知识应用】如图②,CD是⊙O的直径,和谐四边形ABCD内接于⊙O,且BC AD.请直接写出AB与CD的关系.23. (15分)(2017·黄冈模拟) 某生物科技发展公司投资2000万元,研制出一种绿色保健食品.已知该产品的成本为40元/件,试销时,售价不低于成本价,又不高于180元/件.经市场调查知,年销售量y(万件)与销售单价x(元/件)的关系满足下表所示的规律.销售单价x(元/件)…6065708085…年销售量y(万件)…140135*********…(1) y与x之间的函数关系式及自变量x的取值范围。

┃精选3套试卷┃2021年马鞍山市初三数学调研测试卷

┃精选3套试卷┃2021年马鞍山市初三数学调研测试卷

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.【答案】A【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选A.点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.2.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是()A.B.C.D.【答案】D【解析】本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【详解】要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.【点睛】本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.3.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形【答案】C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA 证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.4.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A.180元B.200元C.225元D.259.2元【答案】A【解析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 5.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0D.k≥﹣1且k≠0【答案】C【解析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.6.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为()A.4.25分钟B.4.00分钟C.3.75分钟D.3.50分钟【答案】C【解析】根据题目数据求出函数解析式,根据二次函数的性质可得.【详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:930.7 1640.8 2550.5a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得:a=−0.2,b=1.5,c=−2,即p=−0.2t2+1.5t−2,当t=−1.5-0.22⨯=3.75时,p取得最大值,故选C.【点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键.7.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A.甲B.乙C.丙D.都一样【答案】B【解析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.【详解】解:降价后三家超市的售价是:甲为(1-20%)2m=0.64m,乙为(1-40%)m=0.6m ,丙为(1-30%)(1-10%)m=0.63m ,∵0.6m <0.63m <0.64m ,∴此时顾客要购买这种商品最划算应到的超市是乙.故选:B .【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.8.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为( )A .2,4x y =⎧⎨=⎩B .4,2x y =⎧⎨=⎩C .4,0x y =-⎧⎨=⎩D .3,0x y =⎧⎨=⎩【答案】A【解析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4),∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩ 故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.9.如图,矩形ABCD 中,E 为DC 的中点,AD :AB =3:2,CP :BP =1:2,连接EP 并延长,交AB 的延长线于点F ,AP 、BE 相交于点O .下列结论:①EP 平分∠CEB ;②2BF =PB•EF ;③PF•EF =22AD ;④EF•EP =4AO•PO .其中正确的是( )A .①②③B .①②④C .①③④D .③④【答案】B【解析】由条件设,AB=2x ,就可以表示出,x ,用三角函数值可以求出∠EBC 的度数和∠CEP 的度数,则∠CEP=∠BEP ,运用勾股定理及三角函数值就可以求出就可以求出BF 、EF 的值,从而可以求出结论.【详解】解:设x ,AB=2x∵四边形ABCD 是矩形∴AD=BC ,CD=AB ,∠D=∠C=∠ABC=90°.DC ∥AB∴,CD=2x∵CP :BP=1:2∴,x ∵E 为DC 的中点,∴CE=12CD=x ,∴tan ∠CEP=PC EC =3,tan ∠EBC=EC BC =3 ∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP 平分∠CEB ,故①正确;∵DC ∥AB ,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP ∽△EFB , ∴BE BP EF BF∴BE·BF=EF·BP∵∠F=∠BEF ,∴BE=BF∴2BF =PB·EF ,故②正确∵∠F=30°,∴PF=2PB=433x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·43x·32 2AD2=2×3x)2=6x2,∴PF·EF≠2AD2,故③错误. 在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=33x∵tan∠PAB=PBAB =3∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,3,PO=3 3∴4AO·3x·33x=4x2又EF·3x·232∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.10.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是A .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+ 【答案】C【解析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x 2+2向下平移1个单位,∴抛物线的解析式为y=x 2+2-1,即y=x 2+1.故选C .二、填空题(本题包括8个小题)11.已知抛物线y=ax 2+bx+c=0(a≠0) 与 x 轴交于 A ,B 两点,若点 A 的坐标为 ()2,0-,线段 AB 的长为8,则抛物线的对称轴为直线 ________________.【答案】2x =或x=-1【解析】由点A 的坐标及AB 的长度可得出点B 的坐标,由抛物线的对称性可求出抛物线的对称轴.【详解】∵点A 的坐标为(-2,0),线段AB 的长为8,∴点B 的坐标为(1,0)或(-10,0).∵抛物线y=ax 2+bx+c (a≠0)与x 轴交于A 、B 两点,∴抛物线的对称轴为直线x=262-+=2或x=2102--=-1. 故答案为x=2或x=-1.【点睛】本题考查了抛物线与x 轴的交点以及二次函数的性质,由抛物线与x 轴的交点坐标找出抛物线的对称轴是解题的关键.12.关于x 的一元二次方程2210ax x -+=有实数根,则a 的取值范围是 __________.【答案】a≤1且a≠0【解析】∵关于x 的一元二次方程2210ax x -+=有实数根, ∴()20240a a ≠⎧⎪⎨=--≥⎪⎩,解得:a 1≤, ∴a 的取值范围为:a 1≤且0a ≠ .点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此0a ≠ ;(2)这道一元二次方程有实数根,因此()2240a =--≥ ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.13.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.【答案】1【解析】观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.【详解】由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,个位数字1,3,1,5循环出现,四个一组,2019÷4=504…3,∴22019﹣1的个位数是1.故答案为1.【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键.14.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律.已知21i =-,那么(1)(1)i i +⋅-=________.【答案】2【解析】根据定义即可求出答案.【详解】由题意可知:原式=1-i 2=1-(-1)=2故答案为2【点睛】本题考查新定义型运算,解题的关键是正确理解新定义.15.分解因式:ax 2﹣2ax+a=___________.【答案】a (x-1)1.【解析】先提取公因式a ,再对余下的多项式利用完全平方公式继续分解.【详解】解:ax 1-1ax+a ,=a (x 1-1x+1),=a (x-1)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.如图,在Rt △AOB 中,直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后,得到△A′O′B ,且反比例函数y =k x的图象恰好经过斜边A′B 的中点C ,若S ABO =4,tan ∠BAO =2,则k =_____.【答案】1【解析】设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=12•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=12A′O′=1,BD=12BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x·y=3×2=1.故答案为1.17.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=_____度.【答案】25【解析】∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案为:25.18.如果某数的一个平方根是﹣5,那么这个数是_____.【答案】25【解析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.三、解答题(本题包括8个小题)19.如图,点D在O的直径AB的延长线上,点C在O上,且AC=CD,∠ACD=120°.求证:CD是O 的切线;若O的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)图中阴影部分的面积为2 3π.【解析】(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.【详解】(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切线;(2)解:∠1=∠2+∠A =60°.∴S 扇形BOC =2602360π⨯=23π. 在Rt △OCD 中,∠D =30°,∴OD =2OC =4,∴CD∴SRt △OCD =12OC×CD =12×2× ∴图中阴影部分的面积为:23π. 20.今年3月12日植树节期间,学校预购进A ,B 两种树苗.若购进A 种树苗3棵,B 种树苗5棵,需2100元;若购进A 种树苗4棵,B 种树苗10棵,需3800元.求购进A ,B 两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A 种树苗至少需购进多少棵.【答案】(1)A 种树苗的单价为200元,B 种树苗的单价为300元;(2)10棵【解析】试题分析:(1)设B 种树苗的单价为x 元,则A 种树苗的单价为y 元.则由等量关系列出方程组解答即可;(2)设购买A 种树苗a 棵,则B 种树苗为(30﹣a )棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.试题解析:(1)设B 种树苗的单价为x 元,则A 种树苗的单价为y 元,可得:352100{4103800y x y x +=+=, 解得:300200x y =⎧⎨=⎩, 答:A 种树苗的单价为200元,B 种树苗的单价为300元.(2)设购买A 种树苗a 棵,则B 种树苗为(30﹣a )棵,可得:200a+300(30﹣a )≤8000,解得:a≥10,答:A 种树苗至少需购进10棵.考点:1.一元一次不等式的应用;2.二元一次方程组的应用21.在锐角△ABC 中,边BC 长为18,高AD 长为12如图,矩形EFCH 的边GH 在BC 边上,其余两个顶点E 、F 分别在AB 、AC 边上,EF 交AD 于点K ,求EF AK的值;设EH =x ,矩形EFGH 的面积为S ,求S 与x 的函数关系式,并求S 的最大值.【答案】(1)32;(2)1. 【解析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH =KD =x ,得出AK =12﹣x ,EF =32(12﹣x ),再根据S =32x (12﹣x )=﹣32(x ﹣6)2+1,可得当x =6时,S 有最大值为1.【详解】解:(1)∵△AEF ∽△ABC ,∴EF AK BC AD=, ∵边BC 长为18,高AD 长为12,∴EF BC AK AD ==32; (2)∵EH =KD =x ,∴AK =12﹣x ,EF =32(12﹣x ), ∴S =32x (12﹣x )=﹣32(x ﹣6)2+1. 当x =6时,S 有最大值为1.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.22.已知:如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,过点D 作AE 的垂线交AE 于点G ,交AB 延长线于点F ,连接EF ,ED .求证:EF ED =; 若60ABC ∠=︒,6AD =, 2CE =,求EF 的长.【答案】(1)详见解析;(2)27EF =【解析】(1)根据题意AB 平分BAD ∠可得90AGF AGD ∠=∠=︒,从而证明()FAG DAG ASA ∆≅∆即可解答(2)由(1)可知6AF AD ==,再根据四边形ABCD 是平行四边形可得642BF AF AB =-=-=,过点F 作FH EB ⊥延长线于点H ,再根据勾股定理即可解答【详解】(1)证明:AB 平分BAD ∠FAG DAG ∴∠=∠DG AE ⊥90AGF AGD ∴∠=∠=︒又AG AG =()FAG DAG ASA ∴∆≅∆GF GD ∴=又DF AE ⊥EF ED ∴=(2)FAG DAG ∆≅∆6AF AD ∴==四边形ABCD 是平行四边形//AD BC ∴,6BC AD ==180********BAD ABC ∴∠=︒-∠=︒-︒=︒ 1602FAE BAD ∴∠=∠=︒ 60FAE B ∴∠=∠=︒ ABE ∴∆为等边三角形624AB AE BE BC CE ∴===-=-=642BF AF AB =-=-=过点F 作FH EB ⊥延长线于点H .在Rt BFH ∆中,60HBF ABC ∠=∠=︒30HFB ∴∠=︒112BH BF ∴== 2222213HF BF BH =--=415EH BE BH =+=+=()22223527EF FH EH =+=+=【点睛】此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线 23.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.【答案】 (1) 现在平均每天生产1台机器.(2) 现在比原计划提前5天完成.【解析】(1)因为现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间,由此列出方程解答即可;(2)由(1)中解得的数据,原来用的时间-现在用的时间即可求得提前时间.【详解】解:(1)设现在平均每天生产x 台机器,则原计划可生产(x-50)台. 依题意得:60045050x x =-, 解得:x=1.检验x=1是原分式方程的解.(2)由题意得3000300020050200--=20-15=5(天) ∴现在比原计划提前5天完成.【点睛】此题考查分式方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.24.关于x的一元二次方程20x m +=有两个实数根,则m 的取值范围是( )A .m≤1B .m <1C .﹣3≤m≤1D .﹣3<m <1【答案】C 【解析】利用二次根式有意义的条件和判别式的意义得到230(3)40m m m +≥⎧⎪⎨+-≥⎪⎩=,然后解不等式组即可. 【详解】根据题意得230(3)40m m m +≥⎧⎪⎨+-≥⎪⎩=, 解得-3≤m≤1.故选C .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.25.解方程组4311,213.x y x y -=⎧⎨+=⎩①② 【答案】53x y =⎧⎨=⎩【解析】将②×3,再联立①②消未知数即可计算.【详解】解:②3⨯得:6339x y += ③①+③得:1050x =5x =把5x =代入③得10339y +=3y =∴方程组的解为53x y =⎧⎨=⎩【点睛】本题考查二元一次方程组解法,关键是掌握消元法.26.为了预防“甲型H 1N 1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (mg )与时间x (min )成正比例,药物燃烧后,y 与x 成反比例,如图所示,现测得药物8min 燃毕,此时室内空气每立方米的含药量为6mg ,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y 关于x 的函数关系式?自变量x 的取值范围是什么?药物燃烧后y 与x 的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg 时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg 且持续时间不低于10min 时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?【答案】(1)()3084{?48(8)x x y x x≤≤=>;(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的. 【解析】(1)药物燃烧时,设出y 与x 之间的解析式y=k 1x ,把点(8,6)代入即可,从图上读出x 的取值范围;药物燃烧后,设出y 与x 之间的解析式y=2k x,把点(8,6)代入即可; (2)把y=1.6代入反比例函数解析式,求出相应的x ;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x ,两数之差与10进行比较,大于或等于10就有效.【详解】解:(1)设药物燃烧时y 关于x 的函数关系式为y=k 1x (k 1>0)代入(8,6)为6=8k 1∴k 1=34设药物燃烧后y 关于x 的函数关系式为y=2k x (k 2>0)代入(8,6)为6=2k 8, ∴k 2=48 ∴药物燃烧时y 关于x 的函数关系式为3y x 4=(0≤x≤8)药物燃烧后y 关于x 的函数关系式为48y x =(x >8) ∴()30x 84y 48(8)xx x ⎧≤≤⎪⎪⎨=⎪>⎪⎩ (2)结合实际,令48y x =中y≤1.6得x≥30 即从消毒开始,至少需要30分钟后生才能进入教室.(3)把y=3代入3y x 4=,得:x=4 把y=3代入48y x=,得:x=16 ∵16﹣4=12所以这次消毒是有效的.【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =- B .11x =,23x =C .11x =-,23x =D .13x =-,21x = 【答案】C【解析】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.2.按如下方法,将△ABC 的三边缩小的原来的12,如图,任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF ,则下列说法正确的个数是( )①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形③△ABC 与△DEF 的周长比为1:2 ④△ABC 与△DEF 的面积比为4:1.A .1B .2C .3D .4【答案】C 【解析】根据位似图形的性质,得出①△ABC 与△DEF 是位似图形进而根据位似图形一定是相似图形得出 ②△ABC 与△DEF 是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC 与△DEF 是位似图形,②△ABC 与△DEF 是相似图形,∵将△ABC 的三边缩小的原来的12, ∴△ABC 与△DEF 的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC 与△DEF 的面积比为4:1.故选C .【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.3.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是( )A .①②③④B .②①③④C .③②①④D .④②①③【答案】B 【解析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.4.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15【答案】D 【解析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.5.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-【答案】D【解析】分析:详解:如图,∵AB ⊥CD,CE ⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF ⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF ≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF ≌△CDE 是关键.6.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、40【答案】D【解析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数. 7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【答案】B【解析】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.8.如图,若数轴上的点A,B分别与实数﹣1,1对应,用圆规在数轴上画点C,则与点C对应的实数是()A.2 B.3 C.4 D.5【答案】B【解析】由数轴上的点A、B 分别与实数﹣1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C对应的实数.【详解】∵数轴上的点A,B 分别与实数﹣1,1 对应,∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴与点C 对应的实数是:1+2=3.故选B.【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键.9.如果数据x 1,x 2,…,x n 的方差是3,则另一组数据2x 1,2x 2,…,2x n 的方差是( )A .3B .6C .12D .5 【答案】C【解析】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,再根据方差公式进行计算:()()()()222221231n S x x x x x x x x n ⎡⎤=-+-+-++-⎣⎦即可得到答案. 【详解】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,根据方差公式:()()()()222221231n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦=3, 则()()()()22222123122222222n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦ =()()()()222212314444n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦ =4×()()()()22221231n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦ =4×3=12,故选C .【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.10.若抛物线y =x 2﹣3x+c 与y 轴的交点为(0,2),则下列说法正确的是( )A .抛物线开口向下B .抛物线与x 轴的交点为(﹣1,0),(3,0)C .当x =1时,y 有最大值为0D .抛物线的对称轴是直线x =32 【答案】D【解析】A 、由a=1>0,可得出抛物线开口向上,A 选项错误;B 、由抛物线与y 轴的交点坐标可得出c 值,进而可得出抛物线的解析式,令y=0求出x 值,由此可得出抛物线与x 轴的交点为(1,0)、(1,0),B 选项错误;C 、由抛物线开口向上,可得出y 无最大值,C 选项错误;D 、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D 选项正确. 综上即可得出结论.【详解】解:A 、∵a=1>0,∴抛物线开口向上,A 选项错误;B 、∵抛物线y=x 1-3x+c 与y 轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x 1-3x+1.当y=0时,有x 1-3x+1=0,解得:x 1=1,x 1=1,∴抛物线与x 轴的交点为(1,0)、(1,0),B 选项错误;C 、∵抛物线开口向上,∴y 无最大值,C 选项错误;D 、∵抛物线的解析式为y=x 1-3x+1,∴抛物线的对称轴为直线x=-b 2a =-321⨯=32,D 选项正确. 故选D .【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.二、填空题(本题包括8个小题)11.将一副三角尺如图所示叠放在一起,则BE EC的值是 .【答案】3 【解析】试题分析:∵∠BAC=∠ACD=90°,∴AB ∥CD .∴△ABE ∽△DCE .∴BE AB EC CD=. ∵在Rt △ACB 中∠B=45°,∴AB=AC . ∵在RtACD 中,∠D=30°,∴AC CD 3AC tan30==︒. ∴BE AB 3EC CD 3AC===. 12.如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM =_______.【答案】48°【解析】连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.【详解】连接OA,∵五边形ABCDE是正五边形,∴∠AOB=3605︒=72°,∵△AMN是正三角形,∴∠AOM=3603︒=120°,∴∠BOM=∠AOM-∠AOB=48°,故答案为48°.点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.13.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.【答案】2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.14.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.【答案】y=2x+1【解析】分析:直接根据函数图象平移的法则进行解答即可.详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=_____.【答案】31-【解析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF ,即可得出结论.【详解】如图,过点A 作AF ⊥BC 于F ,在Rt △ABC 中,∠B=45°,∴BC=2AB=2,BF=AF=22AB=1, ∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt △ADF 中,根据勾股定理得,DF=22AD AF -=3 ∴CD=BF+DF-BC=1+3-2=3-1,故答案为3-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.16.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .【答案】10.5【解析】先证△AEB ∽△ABC ,再利用相似的性质即可求出答案.【详解】解:由题可知,BE ⊥AC ,DC ⊥AC∵BE//DC ,∴△AEB ∽△ADC ,∴BE AB CDAC=, 即:1.2 1.61.612.4CD =+, ∴CD =10.5(m ).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.17.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.做法中用到全等三角形判定的依据是______.【答案】SSS .【解析】由三边相等得△COM ≌△CON ,即由SSS 判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【详解】由图可知,CM=CN ,又OM=ON ,∵在△MCO 和△NCO 中MO NO CO CO NC MC ⎧⎪⎨⎪⎩===,∴△COM ≌△CON (SSS ),∴∠AOC=∠BOC ,即OC 是∠AOB 的平分线.故答案为:SSS .【点睛】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.18.分解因式: 22a b ab b -+=_________.【答案】【解析】先提取公因式b ,再利用完全平方公式进行二次分解.解答:解:a 1b-1ab+b ,=b (a 1-1a+1),…(提取公因式)。

马鞍山市2021版九年级上学期期中数学试卷D卷

马鞍山市2021版九年级上学期期中数学试卷D卷

马鞍山市2021版九年级上学期期中数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2020·中山模拟) 下图是用来证明勾股定理的图案被称为“赵爽弦图”,由四个全等的直角三角形和一个小正方形拼成的大正方形,对其对称性表述,正确的是()A . 轴对称图形B . 中心对称图形C . 既是轴对称图形又是中心对称图形D . 既不是轴对称图形又不是中心对称图形2. (2分)方程x2-3x-2 = 0的根的情况是()A . 有两个相等的实数根B . 只有一个实数根C . 没有实数根D . 有两个不相等的实数根3. (2分)(2018·绍兴模拟) 如图,点A,C,B在⊙O上,已知∠AOB=∠ACB= ,则的值为()A . 135°B . 100°C . 110°D . 120°4. (2分)如图,AB是的直径,弦,,,则阴影部分的面积为()A .B .C .D .5. (2分)把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式()A . y=-(x-1)2+3B . y=-(x+1)2+3C . y=-(x-1)2-3D . .y=-(x+1)2-36. (2分)(2017·安顺模拟) 如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:①ab>0,②a+b+c>0,③当﹣2<x<0时,y<0.正确的个数是()A . 0个B . 1个C . 2个D . 3个7. (2分)(2017·乌鲁木齐模拟) △ABC是⊙O内接三角形,∠BOC=80°,那么∠A等于()A . 80°B . 40°C . 140°D . 40°或140°8. (2分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=()A . 135°B . 125°C . 90°D . 60°9. (2分)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A . 78°B . 75°C . 60°D . 45°10. (2分) (2019九上·黄石月考) 某医院内科病房有护士x人,每2人一班,轮流值班,每8小时換班一次,某两人同值班后,到下次两人再同班,最长需要的天数是70天,则x=()A . 15B . 18C . 21D . 3511. (2分)下列命题中,是真命题的是()①两条直线被第三条直线所截,同位角相等;②在同一平面内,垂直于同一直线的两条直线互相平行;③三角形的三条高中,必有一条在三角形的内部;④三角形的三个外角一定都是锐角.A . ①②B . ②③C . ①③D . ③④12. (2分) (2019九上·台州开学考) 把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么q的值是________ .14. (1分)(2019·澄海模拟) 如图,扇形AOB的圆心角为直角,边长为1的正方形OCDE的顶点C,E,D 分别在OA,OB,上,过点A作AF⊥ED,交ED的延长线于点F,则图中阴影部分的面积等于________.15. (1分) (2018·柘城模拟) 如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为________.16. (1分) (2016九上·九台期中) 不解方程3x2+5x﹣4=0,可以判断它的根的情况是________.17. (1分)点A(2,1)关于原点对称的点B的坐标为________18. (1分)已知点A、B的坐标分别为:(2,0),(2,4),以A、B、P为顶点的三角形与△ABO全等,写出三个符合条件的点P的坐标:________.三、解答题 (共7题;共70分)19. (10分) (2018九上·韶关期末) 已知关于x的方程x2+2x+a-2=0一个根为1 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省马鞍山市2021年中考数学试卷D卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)有理数-1,-2,0,3中,最小的一个数是()
A . -1
B . -2
C . 0
D . 3
2. (2分)三国魏景元四年(公元263年),由我国古典数学理论的奠基人之一刘徽完成了《九章算术注》十卷,《重差》为第一卷,它是我国学者编撰的最早的一部测量数学著作,亦为地图学提供了数学基础,该卷中的第一个问题是求海岛上的山峰的高度,这本书的名称是()
A . 《海岛算经》
B . 《孙子算经》
C . 《九章算术》
D . 《五经算术》
3. (2分)化简(﹣)÷ 的结果是()
A . ﹣x﹣1
B . ﹣x+1
C . ﹣
D .
4. (2分) (2018九上·江苏月考) 方程组有唯一解,则m的值是()
A .
B .
D . 以上答案都不对
5. (2分)(2019·贵港模拟) 若一组数据9、6、x、7、5的平均数是2x,则这组数据的中位数是()
A . 5
B . 6
C . 7
D . 9
6. (2分)(2018·秀洲模拟) 根据嘉兴市统计局的人口统计,截至2017年末,嘉兴全市常住人口约为4656000人,“4656000用科学记数法可表示为()
A . 4.656×105
B . 46.56×105
C . 4.656×106
D . 0.4656×107
7. (2分)在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个白球,2个红球,3个黄球.从口袋中任意摸出一个球是红球的概率是()
A .
B .
C .
D .
8. (2分)(2017·台湾) 如图,△ABC、△ADE中,C、E两点分别在AD,AB上,且BC与DE相交于F点,若∠A=90°,∠B=∠D=30°,AC=AE=1,则四边形AEFC的周长为何()
A . 2
B . 2
C . 2+
9. (2分)设函数y=x2+2kx+k﹣1(k为常数),下列说法正确的是()
A . 对任意实数k,函数与x轴都没有交点
B . 存在实数n,满足当x≥n时,函数y的值都随x的增大而减小
C . k取不同的值时,二次函数y的顶点始终在同一条直线上
D . 对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点
10. (2分)(2018·遵义模拟) 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是()
A .
B .
C .
D .
二、填空题 (共4题;共4分)
11. (1分)计算:=________
12. (1分) (2017九下·万盛开学考) 正六边形的每个外角的度数为________ .
13. (1分) (2017七下·射阳期末) 用不等式表示“ 的2倍与4的和是负数”:________
14. (1分) (2015八下·深圳期中) 如图,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,CD=6cm,则AB的长为________ cm.
三、解答题 (共9题;共65分)
15. (1分) (2018八上·云南期末) 中,,则AC与AB两边的关系是________ .
16. (5分) (2017八上·弥勒期末) 计算:.
17. (7分) (2018八下·青岛期中) 某市的出租车收费y(元)与路程x(千米)之间的函数关系如图所示:
(1)图中AB段的意义是________.
(2)当x>2时,y与x的函数关系式为________.
(3)张先生打算乘出租车从甲地去丙地,但需途径乙地办点事,已知甲地到乙地的路程为1km,乙地至丙地的路程是3km,现有两种打车方案:
方案一:先打车从甲地到乙地,办完事后,再打另一部出租车去丙地
方案二:先打车从甲地到乙地,让出租车司机等候,办完事后,继续乘该车去丙地(出租车等候期间,张先生每分钟另付0.2元,假设计价器不变)
张先生应选择哪种方案较为合算?试说明理由。

18. (11分)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图.请你结合图中信息解答下列问题:
(1)样本中喜欢B项目的人数百分比是________;
(2)把条形统计图补充完整;
(3)已知该校有1 000人,根据样本估计全校喜欢乒乓球的人数是多少?
19. (10分) (2020九上·海曙期末) 我国于2019年6月5日首次完成运载火箭海上发射,达到了发射技术的新高度.如图,运载火箭海面发射站点M与岸边雷达站N处在同一水平高度。

当火箭到达点A处时,测得点A距离发射站点M的垂直高度为9千米,雷达站M测得A处的仰角为37°,火箭继续垂直上升到达点B处,此时海岸边N处的雷达测得B处的仰角为70°,根据下面提供的参考数据计算下列问题:
(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈275,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)
(1)求火箭海面发射站点M与岸边雷达站N的距离
(2)求火箭所在点B处距发射站点M处的高度
20. (5分)(2016·新疆) 某学校为绿化环境,计划种植600棵树,实际劳动中每小时植树的数量比原计划多20%,结果提前2小时完成任务,求原计划每小时种植多少棵树?
21. (3分) (2017九上·五莲期末) 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B (3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)
画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是________;
(2)
以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是________;
(3)
△A2B2C2的面积是________平方单位.
22. (10分)如图,PA,PB分别切☉O于A,B,连结PO,AB,相交于点D,C是☉O上一点,∠C=60°.
(1)求∠APB的大小;
(2)若PO=20 cm,求△AOB的面积.
23. (13分)(2017·安次模拟) 如图,已知抛物线y=x2﹣2bx﹣3(b为常数,b<0).
(1)
抛物线y=x2﹣2bx﹣3总经过一定点,定点坐标为________;
(2)
抛物线的对称轴为直线x=________(用含b的代数式表示),位于y轴的
________侧.
(3)
思考:若点P(﹣2,﹣1)在抛物线y=x2﹣2bx﹣3上,抛物线与反比例函数y= (k>0,x>0)的图象在第一象限内交点的横坐标为a,且满足2<a<3,试确定k的取值范围.
(4)
探究:设点A是抛物线上一点,且点A的横坐标为m,以点A为顶点做边长为1的正方形ABCD,AB⊥x轴,点C在点A的右下方,若抛物线与CD边相交于点P(不与D点重合且不在y轴上),点P的纵坐标为﹣3,求b与m之间的函数关系式.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共4题;共4分)
11-1、
12-1、
13-1、
14-1、
三、解答题 (共9题;共65分)
15-1、
16-1、
17-1、
17-2、
17-3、18-1、
18-2、18-3、19-1、19-2、
20-1、21-1、
21-2、
21-3、
22-1、
22-2、
23-1、
23-2、
23-3、
23-4、。

相关文档
最新文档