八年级期末数学周周练《二》

合集下载

苏科版八年级数学上册初二数学第二周周测试卷.docx

苏科版八年级数学上册初二数学第二周周测试卷.docx

初中数学试卷桑水出品宜兴外国语学校2015-2016学年初二数学第二周周测试卷一、看一看,选一选(每题5分,共25分)1. 在△ABC中,∠C=∠B,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是 ( )A.∠B B.∠A C.∠C D.∠B或∠C2. 如图,已知∠DAC=∠BAC ,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是() A.AB=AD B.∠BCA=∠DCAC.CB=CD D.∠ADC=∠ABC3. 如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. 不成立B.SASC.AASD.ASA4. 如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC≌△ADC C.△AOB≌△COB D.△AOD≌△COD5. 如图,已知点C是∠AOB的平分线上一点,点P、P′分别在边OA、OB上.如果要得到OP=OP′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为()①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.A.①②B.④③C.①②④D.①④③二、想一想,填一填(每空5分,共25分)6.△ABC和△FED中,BE=FC,∠A=∠D.当添加条件时(只需填写一个你认为正确的条件),就可得到△ABC≌△DFE,依据是。

7.如图,△ABC中,∠C=900,AD平分∠CAB,BC=8cm,BD=5cm,那么D点到直线AB的距离是cm.8.如图,∠A=∠E, AC⊥BE,AB=EF,BE=10,CF=4,则AC=________.9.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= cm.第6题第7题第8题第9题三、算一算,答一答(共50分)10.你能把如图所示的(a)长方形分成2个全等图形?把如图所示的(b)能分成3个全等三角形吗?把如图所示的(c)分成4个全等三角形吗?(12分)(a)(b)(c)11.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?(9分)12. 已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC(9分)13.如图,AE=CF,DF∥BE,DF=BE,△AFD与△ CEB全等吗?为什么?(10分)14. 两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部DFCEBA分,点O为边AC和DF的交点.不重叠的两部分△AOF与△DOC是否全等?为什么?(10分)附加题:(1)已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°,(1)求证:①AC=BD;②∠APB=50°.(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为 . (20分)。

八年级数学下学期第二周周练试题试题

八年级数学下学期第二周周练试题试题

宜陵镇中八年级数学周周练〔2〕姓名__________班级___________知识回忆:平行四边形的性质1.判断题〔对的在括号内填“∨〞,错的填“×〞〕〔1〕平行四边形两组对边分别平行;〔〕〔2〕平行四边形的四个内角都相等;〔〕〔3〕平行四边形的相邻两个内角的和等于180°;〔〕〔4〕假如平行四边形相邻两边长分别是2cm和3cm,那么周长是10cm;〔〕〔5〕在 ABCD中,假如∠A=35°,那么∠B=55°;〔〕2.O是 ABCD的对角线交点,AC=10cm,BD=18cm,AD=•12cm,•那么△BOC•的周长是_______. 3.如图,在平行四边形ABCD中,AE平分∠BAD交DC于点E,AD=5cm,AB=8cm,求EC的长.例题:在平行四边形ABCD中,AC=10,BD=6,那么边长AB,AD的可能取值为〔〕.〔A〕AB=4,AD=4 〔B〕AB=4,AD=7 〔C〕AB=9,AD=2 〔D〕AB=6,AD=2 练习平行四边形一边长为12cm,那么它的两条对角线的长度可能是〔〕.〔A〕8cm和14cm 〔B〕10cm和14cm 〔C〕18cm和20cm 〔D〕10cm和34cm 如图,在 ABCD中,AD⊥DB,AC与BD相交于点O,OD=1,∠CAD=30°,求AC和DC的长.平行四边形的断定方法1.可以断定四边形ABCD是平行四边形的题设是〔〕.A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB=AD,CB=CD 2.具备以下条件的四边形中,不能确定是平行四边形的为〔〕.A.相邻的角互补 B.两组对角分别相等C.一组对边平行,另一组对边相等 D.对角线交点是两对角线中点3.如以下图所示,对四边形ABCD是平行四边形的以下判断,正确的打“∨〞,错误的打“×〞.〔1〕因为AD∥BC,AB=CD,所以ABCD是平行四边形.〔〕〔2〕因为AB∥CD,AD=BC,所以ABCD是平行四边形.〔〕〔3〕因为AD∥BC,AD=BC,所以ABCD是平行四边形.〔〕〔4〕因为AB∥CD,AD∥BC,所以ABCD是平行四边形.〔〕〔5〕因为AB=CD,AD=BC,所以ABCD是平行四边形.〔〕〔6〕因为AD=CD,AB=AC,所以ABCD是平行四边形.〔〕练习如图,⊿ABC中,D是AB的中点,E是AC上的一点,EF∥AB,DF∥BE。

数学八年级(下)期末模拟测试(二)试卷及答案

数学八年级(下)期末模拟测试(二)试卷及答案

数学八年级(下)期末模拟测试(二)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列图案中,既是中心对称图形又是轴对称图形的是() A.B.C.D.2.(3分)下列多项式分解因式正确的是()A.223(2)3a a a a--=--B.22363(2)ax ax ax ax-=-C.3(1)(1)m m m m m-=-+D.2222()x xy y x y+-=-3.(3分)在平面直角坐标系中,点(2,3)P-向右平移3个单位长度后的坐标为() A.(3,6)B.(1,3)C.(1,6)D.(6,6) 4.(3分)若关于x的不等式(1)1m x m->-的解集是1x<,则m的取值范围是() A.1m≠B.1m>C.1m<D.m为任何实数5.(3分)内角和为1800︒的多边形是()A.十二边形B.十边形C.八边形D.七边形6.(3分)下列各式从左到右的变形,一定正确的是()A.b c b ca a-++=-B.0.330.22a b a ba b a b--=++C.11b ba a+=+D.2293(3)3a aa a--=++7.(3分)若解关于x的分式方程212x mx+=-时出现了增根,则m的值为()A.4-B.2-C.4D.28.(3分)如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A .//AB DC ,//AD BC B .AB DC =,AD BC = C .AO CO =,BO DO =D .AB DC =,//AD BC9.(3分)如图,在ABC ∆中,90BAC ∠=︒,BD 平分ABC ∠,//CD AB 交BD 于点D ,已知34ACB ∠=︒,则D ∠的度数为( )A .30︒B .28︒C .26︒D .34︒10.(3分)如图, 在ABC ∆中,90ABC ∠=︒,8AB =,6BC =. 若DE 是ABC ∆的中位线, 延长DE 交ABC ∆的外角ACM ∠的平分线于点F ,则线段DF 的长为( )A . 7B . 8C . 9D . 10二、填空题(每小题4分,共16分) 11.(4分)函数y =中,自变量x 的取值范围是 .12.(4分)已知x y +xy 22x y xy +的值为 .13.(4分)如图,在等腰Rt ABC ∆中,90C ∠=︒,D 为AC 边上任意一点,作BD 的垂直平分线交AB 于点E ,交BC 于点F .连接DE 、DF ,当1BC =时,ADE ∆与CDF ∆的周长之和为 .14.(4分)如图,将等腰直角ABC ∆沿BC 方向平移得到△A B C ''',若BC = 4.5PB CS '=,则BB '= .三、解答题(本大题共6个小题,共54分)15.(12分)(1)解不等式组:⎪⎩⎪⎨⎧+<+≤+41353)2(2x x x x ;(2)解分式方程:11322xx x-=---. 16.(8分)先化简,再求值:2443(1)11x x x x x -+÷--++,其中2x =.17.(8分)ABC ∆在平面直角坐标系中如图:(1)画出将ABC ∆绕点O 逆时针旋转90︒所得到的△111A B C ,并写出1A 点的坐标; (2)画出△111A B C 关于原点成中心对称的△222A B C ,并直接写出△12AA A 的面积.18.(8分)如图,在四边形ABCD 中,点E 和点F 是对角线AC 上的两点,AE CF =,DF BE =,且//DF BE .(1)求证:四边形ABCD 是平行四边形;(2)若2CEB EBA ∠=∠,3BE =,2EF =,求AC 的长.19.(8分)某校计划购买一批花卉装饰校园.已知一株海棠比一株牵牛花多1.2元,若用60元购买海棠,用27元购买牵牛花,则购买的牵牛花的株数是海棠的34.求购买一株海棠,一株牵牛花各需要多少元?20.(10分)(1)如图1所示,在等腰ABC ∆中,AB AC =,分别以AB 和AC 为斜边,向ABC ∆的外侧作等腰Rt ABD ∆、等腰Rt ACE ∆,作DF AB ⊥于点F ,BG AC ⊥于点G ,M 是BC 的中点,连接MD 和ME .求证:M E M D =;(2)如图2所示,若在任意ABC ∆中,分别以AB 和AC 为斜边,向ABC ∆的外侧作等腰Rt ABD ∆、等腰Rt ACE ∆,M 是BC 的中点,连接MD 和ME ,则MD 和ME 具有怎样的数量关系?请给出证明过程B 卷(共50分)四、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知|2|0x y -+=,则22x y -的值为 .22.(4分)已知219M a =-,279N a a =-,(a 为任意实数),则M 、N 的大小关系为 .23.(4分)如图1,矩形纸片ABCD 中,8AB =,5BC =,先按图2操作:将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点D '处,折痕为AE ;再按图3操作,沿过点E 的直线折叠,使点C 落在ED '上的点C '处,折痕为EF ,则线段BC '的长为 .24.(4分)设223()121a aA a a a a -=÷-+++.当3a =时,记A 的值为f (3);当4a =时,记A 的值为f (4);⋯;则关于x 的不等式)11()4()3(4722f f f xx +⋅⋅⋅++≤---的解集是 .25.(4分)如图,在Rt ACB ∆中,90C ∠=︒,30ABC ∠=︒,4AC =,N 是斜边AB 上方一点,连接BN ,点D 是BC 的中点,DM 垂直平分BN ,交AB 于点E ,连接DN ,交AB 于点F ,当ANF ∆为直角三角形时,线段AE 的长为 .五. 解答题(本大题共3个小题,共30分)26.(8分)成都某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为60元,用120元购进甲种玩具的件数与用180元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共40件,其中甲种玩具的件数少于20件,并且商场决定此次进货的总资金不超过1320元,求商场共有几种进货方案?(3)在(2)的条件下,若每件甲种玩具售价32元,每件乙种玩具售价50元.请求出卖完这批玩具共获利w (元)与甲种玩具进货量m (件)之间的函数关系式,并求出最大利润为多少元?27.(10分)我们定义:在ABC ∆中,把AB 绕点A 顺时针旋转(0180)αα︒<<︒得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180αβ+=︒时,我们称△AB C ''叫ABC ∆的“旋补三角形”,△ AB C ''的边B C ''上的中线AD 叫做ABC ∆的“旋补中线”.下面各图中,△AB C ''均是ABC ∆的“旋补三角形”, AD 均是ABC ∆的“旋补中线”. (1)如图1,若ABC ∆为等边三角形,8BC =,则AD 的长等于; (2)如图2,若90BAC ∠=︒,求证:12AD BC =; (3)如图3,若ABC ∆为任意三角形,(2)中结论还成立吗?如果成立,给予证明;如果不成立,说明理由.28.(12分)如图1,在平面直角坐标系xOy 中,已知直线1:32AB y x =-+与直线:2CD y kx =-相交于点(4,)M a ,分别交坐标轴于点A 、B 、C 、D ,点P 是线段CD 延长线上的一个点,PBM ∆的面积为15. (1)求直线CD 解析式和点P 的坐标;(2)在(1)的条件下,平面直角坐标系内存在点N ,使得以点B 、N ,M 、P 为顶点的四边形是平行四边形,请直接写出点N 的坐标;(3)如图2,当点P 为直线CD 上的一个动点时,将BP 绕点B 逆时针旋转90︒得到BQ ,连接PQ 与OQ .点Q 随着点P 的运动而运动,请求出点Q 运动所形成直线的解析式,以及OQ 的最小值.数学八年级(下)期末模拟测试(二)参考答案A 卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)下列图案中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .【解答】解:A 、不是中心对称图形,是轴对称图形,故本选项不符合题意;B 、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;C 、是中心对称图形,不是轴对称图形,故本选项不符合题意;D 、既是中心对称图形,又是轴对称图形,故本选项符合题意.故选:D .2.(3分)下列多项式分解因式正确的是( ) A .223(2)3a a a a --=-- B .22363(2)ax ax ax ax -=- C .3(1)(1)m m m m m -=-+D .2222()x xy y x y +-=-【解答】解:A 、223(2)3a a a a --=--,不符合因式分解的定义,故此选项错误;B 、2363(2)ax ax ax x -=-,故此选项错误;C 、3(1)(1)m m m m m -=-+,正确;D 、222x xy y +-,无法运用完全平方公式分解因式,故此选项错误;故选:C .3.(3分)在平面直角坐标系中,点(2,3)P -向右平移3个单位长度后的坐标为( ) A .(3,6)B .(1,3)C .(1,6)D .(6,6)【解答】解:平移后的横坐标为231-+=,纵坐标为3,∴点(2,3)P-向右平移3个单位长度后的坐标为(1,3),故选:B.4.(3分)若关于x的不等式(1)1m x m->-的解集是1x<,则m的取值范围是() A.1m≠B.1m>C.1m<D.m为任何实数【解答】解:将不等式(1)1m x m->-两边都除以(1)m-,得1x<,10m∴-<,解得:1m<,故选:C.5.(3分)内角和为1800︒的多边形是()A.十二边形B.十边形C.八边形D.七边形【解答】解:设这个多边形是n边形,根据题意得:(2)1801800n-⨯=,解得:12n=.故这个多边形是十二边形.故选:A.6.(3分)下列各式从左到右的变形,一定正确的是()A.b c b ca a-++=-B.0.330.22a b a ba b a b--=++C.11b ba a+=+D.2293(3)3a aa a--=++【解答】解:A、b c b ca a-+-=-,故A错误;B、分子、分母同时扩大10倍,结果不变,则0.31030.2102a b a ba b a b--=++,故B错误;C、1a=,2b=时,此时原式不成立,故C错误;D、分子、分母都除以3a+,值不变,故D正确.故选:D.7.(3分)若解关于x的分式方程212x mx+=-时出现了增根,则m的值为()A.4-B.2-C.4D.2【解答】解:方程两边都乘以2x-,得:22x m x+=-,分式方程有增根,x=,∴分式方程的增根为2将2+=-,得:40+=,mx m xx=代入22解得4m=-,故选:A.8.(3分)如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.//=AB DC,//=,AD BCAD BC B.AB DCC.AO COAD BC=,//=D.AB DC=,BO DO【解答】解:A、//AD BC,AB CD,//∴四边形ABCD是平行四边形,故此选项不符合题意;B、AB DC=,=,AD BC∴四边形ABCD是平行四边形,故此选项不符合题意;=,=,BO DOC、AO CO∴四边形ABCD是平行四边形,故此选项不符合题意;D、AB DCAD BC无法得出四边形ABCD是平行四边形,故此选项符合题意;=,//故选:D.9.(3分)如图,在ABC∠,//∠=︒,BD平分ABCCD AB交BD于点D,已BAC∆中,90知34∠的度数为()ACB∠=︒,则DA.30︒B.28︒C.26︒D.34︒【解答】解:90∠=︒,ACB∠=︒,34BAC∴∠=︒-︒-︒=︒,180903456ABCBD 平分ABC ∠,1282ABD ABC ∴∠=∠=︒,//CD AB , 28D ABD ∴∠=∠=︒,故选:B .10.(3分)如图, 在ABC ∆中,90ABC ∠=︒,8AB =,6BC =. 若DE 是ABC ∆的中位线, 延长DE 交ABC ∆的外角ACM ∠的平分线于点F ,则线段DF 的长为()A . 7B . 8C . 9D . 10【解答】解: 在RT ABC ∆中,90ABC ∠=︒,8AB =,6BC =,10AC ∴==,DE 是ABC ∆的中位线,//DF BM ∴,132DE BC ==, EFC FCM ∴∠=∠, FCE FCM ∠=∠, EFC ECF ∴∠=∠, 152EC EF AC ∴===, 358DF DE EF ∴=+=+=.故选:B .二、填空题(每小题4分,共16分) 11.(4分)函数y =中,自变量x 的取值范围是 2x < .【解答】解:依题意得20x ->, 2x ∴<.故答案为:2x <.12.(4分)已知x y +xy 22x y xy +的值为【解答】解:x y +=,xy =22x y xy ∴+()xy x y =+===,故答案为:.13.(4分)如图,在等腰Rt ABC ∆中,90C ∠=︒,D 为AC 边上任意一点,作BD 的垂直平分线交AB 于点E ,交BC 于点F .连接DE 、DF ,当1BC =时,ADE ∆与CDF ∆的周长之和为 2+【解答】解:ABC ∆是等腰直角三角形,1AC BC ∴==,AB =EF 是BD 的垂直平分线, BE DE ∴=,BF DF =,ADE ∆的周长AD D E AE AD BE AE AD AB =++=++=+,CDF∆的周长CD CF DF CD CF BF CD BC =++=++=+,ADE ∴∆与CDF ∆的周长之和2AD AB CD BC AC AB BC =+++=++=故答案为:214.(4分)如图,将等腰直角ABC ∆沿BC 方向平移得到△A B C ''',若BC = 4.5PB CS '=,则BB '【解答】解:ABC ∆是等腰直角三角形, ∴平移后45PB C CBA '∠=∠=︒, ∴△PB C '是等腰直角三角形,11() 4.522PB CSB C B C '''∴==,解得:B C '=BB BC B C ''∴=-=三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)解不等式组:⎪⎩⎪⎨⎧+<+≤+41353)2(2x x x x ;(2)解分式方程:11322xx x-=---.【解答】解:(1)⎪⎩⎪⎨⎧+<+≤+②①41353)2(2x x x x ,解不等式①,得1-≥x , 解不等式②,得3x <,所以原不等式组的解集为31<≤-x ; (2)11322xx x-=---, 方程两边同乘2x -,得:113(2)x x =---, 解这个方程,得:2x =, 因为分式的分母20x -≠,所以2x =是原分式方程的增根,原分式方程无解.16.(8分)先化简,再求值:2443(1)11x x x x x -+÷--++,其中2x =.【解答】解:原式2(2)(1)(1)311x x x x x --+-=÷++ 2(2)11(2)(2)x x x x x -+=⋅++-22x x -=+,当2x时,原式==17.(8分)ABC ∆在平面直角坐标系中如图:(1)画出将ABC ∆绕点O 逆时针旋转90︒所得到的△111A B C ,并写出1A 点的坐标; (2)画出△111A B C 关于原点成中心对称的△222A B C ,并直接写出△12AA A 的面积.【解答】解:(1)如图,△111A B C 为所作,1A 点的坐标为(3,2)-; (2)如图,△222A B C 为所作;△12AA A 的面积21132=⨯=.18.(8分)如图,在四边形ABCD 中,点E 和点F 是对角线AC 上的两点,AE CF =,DF BE =,且//DF BE .(1)求证:四边形ABCD 是平行四边形;(2)若2CEB EBA ∠=∠,3BE =,2EF =,求AC 的长.【解答】(1)证明:AE CF =,AE EF CF EF ∴+=+,即AF CE =,//DF BE , DFA BEC ∴∠=∠,在ADF ∆和CBE ∆中,AF CE DFA BEC DF BE =⎧⎪∠=∠⎨⎪=⎩,()ADF CBE SAS ∴∆≅∆,AD CB ∴=,DAF BCE ∠=∠, //AD CB ∴,∴四边形ABCD 是平行四边形;(2)解:2CEB EBA EAB EBA ∠=∠+∠=∠,EAB EBA ∴∠=∠,3AE BE ∴==, 3CF AE ∴==,3238AC AE EF CF ∴=++=++=.19.(8分)某校计划购买一批花卉装饰校园.已知一株海棠比一株牵牛花多1.2元,若用60元购买海棠,用27元购买牵牛花,则购买的牵牛花的株数是海棠的34.求购买一株海棠,一株牵牛花各需要多少元?【解答】解:设购买一株牵牛花需要x 元,则购买一株海棠花需要( 1.2)x +元, 依题意,得:603271.24x x⨯=+, 解得: 1.8x =,经检验, 1.8x =是原分式方程的解,且符合题意,1.23x ∴+=.答:购买一株海棠需3元,一株牵牛花需1.8元.20.(10分)(1)如图1所示,在等腰ABC ∆中,AB AC =,分别以AB 和AC 为斜边,向ABC ∆的外侧作等腰Rt ABD ∆、等腰Rt ACE ∆,作DF AB ⊥于点F ,BG AC ⊥于点G ,M 是BC 的中点,连接MD 和ME .求证:M E M D =;(2)如图2所示,若在任意ABC ∆中,分别以AB 和AC 为斜边,向ABC ∆的外侧作等腰Rt ABD ∆、等腰Rt ACE ∆,M 是BC 的中点,连接MD 和ME ,则MD 和ME 具有怎样的数量关系?请给出证明过程【解答】(1)证明:M 是BC 的中点,BM CM ∴=. AB AC =, ABC ACB ∴∠=∠,ABC ABD ACB ACE ∴∠+∠=∠+∠,即DBM ECM ∠=∠. 在DBM ∆和ECM ∆中 BD CE DBM ECM BM CM =⎧⎪∠=∠⎨⎪=⎩, ()DBM ECM SAS ∴∆≅∆,M D M E ∴=;(2)解:M D M E =,理由:取AB 、AC 的中点F 、G ,连接DF ,MF ,EG ,MG ,12AF AB ∴=,12AG AC =. ABD ∆和AEC ∆是等腰直角三角形, DF AB ∴⊥,12DF AB =,EG AC ⊥,12EG AC =, 90AFD AGE ∴∠=∠=︒,DF AF =,GE AG =.M 是BC 的中点,//MF AC ∴,//MG AB ,∴四边形AFMG 是平行四边形,AG MF ∴=,MG AF =,AFM AGM ∠=∠.MF GE ∴=,DF MG =,AFM AFD AGM AGE ∠+∠=∠+∠, DFM MGE ∴∠=∠.在DFM ∆和MGE ∆中, MF GE DFM MGE DF MG =⎧⎪∠=∠⎨⎪=⎩, ()DFM MGE SAS ∴∆≅∆,D M ME ∴=.B 卷(共50分)四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21.(4分)已知|2|0x y -+=,则22x y -的值为 6- . 【解答】解:|2|0x y -+=,∴2030x y x y -+=⎧⎨+-=⎩,解得1252x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴222215()()622x y +=-=-.故答案为:6-22.(4分)已知219M a =-,279N a a =-,(a 为任意实数),则M 、N 的大小关系为M N < .【解答】解:N M -272(1)99a a a =---21a a =-+213()024a =-+>,M N ∴<,故答案为:M N <.23.(4分)如图1,矩形纸片ABCD 中,8AB =,5BC =,先按图2操作:将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点D '处,折痕为AE ;再按图3操作,沿过点E 的直线折叠,使点C 落在ED '上的点C '处,折痕为EF ,则线段BC '【解答】解:由矩形的性质与折叠的性质得:5AD AD D E ='='=,CE C E C F BD ='='=',853BD AB AD ∴'=-'=-=, 3C E ∴'=,532D C D E C E ∴''='-'=-=,在Rt △BD C ''中,BC '=24.(4分)设223()121a aA a a a a -=÷-+++.当3a =时,记A 的值为f (3);当4a =时,记A 的值为f (4);⋯;则关于x 的不等式27(3)(4)(11)24x xf f f ---++⋯+的解集是 4x .【解答】解:223()121a aA a a a a -=÷-+++22(1)3(1)1a a a a a a -+-=÷++ 2221(1)3a a a a a a -+=++- 211(2)a a a a -=+-1(1)a a =+,当3a =时,记A 的值为f (3);当4a =时,记A 的值为f (4);⋯; f ∴(3)f +(4)(11)f +⋯+11134451112=++⋯+⨯⨯⨯11111134451112=-+-+⋯+- 11312=- 14=, 27(3)(4)(11)24x xf f f ---++⋯+, ∴271244x x ---, 24(7)1x x ∴---,2471x x ∴--+, 312x ∴, 4x ∴,故答案为:4x .25.(4分)如图,在Rt ACB ∆中,90C ∠=︒,30ABC ∠=︒,4AC =,N 是斜边AB 上方一点,连接BN ,点D 是BC 的中点,DM 垂直平分BN ,交AB 于点E ,连接DN ,交AB 于点F ,当ANF ∆为直角三角形时,线段AE 的长为 6或285.【解答】解:如图1中,当90AFN ∠=︒时,在Rt ACB ∆中,90C ∠=︒,4AC =,30ABC ∠=︒,28AB AC ∴==,BC ==90AFN DFB ∠=∠=︒,30ABC ∠=︒,60FDB ∴∠=︒,CD DB ==12DF BD ∴== DM 垂直平分线段BN ,DB DN ∴=,30FDE EDB EBD ∴∠=∠=∠=︒,DE EB ∴=,2cos30DFDE ==︒,2BE DE ∴==,826AE AB BE ∴=-=-=.如图2中,当90ANF ∠=︒时,连接AD ,CN 交于点O ,过点E 作EH DB ⊥于H .设EH x =,则BH =,DH =.AC AN =,CD DN =,AD ∴垂直平分线段CN ,90AON ∴∠=︒,CD DB =,MN BM =, //DM CN ∴,90ADM AON ∴∠=∠=︒, 90ACD EHD ∠=∠=︒,90ADC EDH ∴∠+∠=︒,90EDH DEH ∠+∠=︒, ADC DEH ∴∠=∠, ACD DHE ∴∆∆∽,∴AC CD DH EH=,∴, 解得65x =, 1225BE x ∴==, 1228855AE AB BE ∴=-=-=, 综上所述,满足条件的AE 的值为6或285. 故答案为6或285. 五. 解答题(本大题共3个小题,共30分)26.(8分)成都某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为60元,用120元购进甲种玩具的件数与用180元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共40件,其中甲种玩具的件数少于20件,并且商场决定此次进货的总资金不超过1320元,求商场共有几种进货方案?(3)在(2)的条件下,若每件甲种玩具售价32元,每件乙种玩具售价50元.请求出卖完这批玩具共获利w (元)与甲种玩具进货量m (件)之间的函数关系式,并求出最大利润为多少元?【解答】解:(1)设甲种玩具进价x 元/件,则乙种玩具进价为(60)x -元/件, 根据题意,得12018060x x=-, 解得24x =,经检验24x =是原方程的解.则6036x -=.答:甲、乙两种玩具分别是24元/件,36元/件;(2)设购进甲种玩具m 件,则购进乙种玩具(40)m -件,由题意,得202436(40)1320m m m <⎧⎨+-⎩, 解得1020m <. m 是整数,故商场共有10种进货方案;(3)设购进甲种玩具m 件,卖完这批玩具获利W 元,则购进乙种玩具(40)m -件, 根据题意得:(3224)(5036)(40)6560w m m m =-+--=-+,60k =-<,w ∴随着m 的增大而减小,∴当10m =时,有最大利润610560500w =-⨯+=元.27.(10分)我们定义:在ABC ∆中,把AB 绕点A 顺时针旋转(0180)αα︒<<︒得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180αβ+=︒时,我们称△AB C ''叫ABC ∆的“旋补三角形”,△ AB C ''的边B C ''上的中线AD 叫做ABC ∆的“旋补中线”.下面各图中,△AB C ''均是ABC ∆的“旋补三角形”, AD 均是ABC ∆的“旋补中线”.(1)如图1,若ABC ∆为等边三角形,8BC =,则AD 的长等于;(2)如图2,若90BAC ∠=︒,求证:12AD BC =; (3)如图3,若ABC ∆为任意三角形,(2)中结论还成立吗?如果成立,给予证明;如果不成立,说明理由.【解答】解:(1)如图1中,ABC ∆是等边三角形,AB BC AC AB AC ∴==='=',DB DC '=',AD B C ∴⊥'',60BAC ∠=︒,180BAC B AC ∠+∠''=︒,120B AC ∴∠''=︒,30B C ∴∠'=∠'=︒,11422AD AB BC ∴='==,(2)证明:如图2中,AB 绕点A 旋转得到AB ',AC 绕点A 旋转得到AC ',AB AB ∴'=,AC AC '=,90BAC ∠=︒,180αβ+=︒,360()B AC BAC αβ∠''=︒-+-∠,3601809090B AC ∴∠''=︒-︒-︒=︒,BAC B AC ∴∠=∠'',BAC ∴∆≅△()B AC SAS ''BC B C ∴='', AD 是△AB C ''边B C ''上的中线,90B AC ∠''=︒.12AD B C ∴=''.12AD BC ∴=.(3)结论12AD BC =成立. 理由:如图3中,延长AD 到A ',使得AD DA =',连接B A '',C A ''.12AD AA ∴=', B D DC '=',AD DA =',∴四边形AB A C '''是平行四边形,AC B A AC ∴'=''=,360180180BAC B AC ∠+∠''=︒-︒=︒,180B AC AB M ∠''+∠'=︒,BAC AB A ∴∠=∠'',AB AB =',BAC ∴∆≅△()AB A SAS ''BC AA ∴=',12AD BC ∴=. 28.(12分)如图1,在平面直角坐标系xOy 中,已知直线1:32AB y x =-+与直线:2CD y kx =-相交于点(4,)M a ,分别交坐标轴于点A 、B 、C 、D ,点P 是线段CD 延长线上的一个点,PBM ∆的面积为15.(1)求直线CD 解析式和点P 的坐标;(2)在(1)的条件下,平面直角坐标系内存在点N ,使得以点B 、N ,M 、P 为顶点的四边形是平行四边形,请直接写出点N 的坐标;(3)如图2,当点P 为直线CD 上的一个动点时,将BP 绕点B 逆时针旋转90︒得到BQ ,连接PQ 与OQ .点Q 随着点P 的运动而运动,请求出点Q 运动所形成直线的解析式,以及OQ 的最小值.【解答】解:(1)将点M 的坐标代入132y x =-+并解得:1a =,故点(4,1)M , 将点M 的坐标代入2y kx =-并解得:34k =, 故直线CD 的表达式为:324y x =-,则点(0,2)D -, PBM ∆的面积11()(32)(4)1522BDM BDP M P P S S BD x x x ∆∆=+=⨯⨯-=⨯+-=, 解得:2P x =-,故点7(2,)2P --;(2)设点(,)N m n ,而点P 、B 、M 的坐标分别为7(2,)2--、(0,3)、(4,1); 当PB 为边时,点P 向右平移2个单位向上平移132个单位得到点B ,同样点()M N 向右平移2个单位向上平移132个单位得到点()N M , 故42m ±=,1312n ±=, 解得:6m =或2,152n =或112-; 故点N 的坐标为15(6,)2或11(2,)2-; 当PB 为对角线时,由中点公式得:204m -+=+,7312n -+=+, 解得:6m =-,32n =-,故点(6, 1.5)N --; 综上,点N 的坐标为(6,7.5)或(2, 5.5)-或(6, 1.5)--;(3)如下图,分别过点P、Q作y轴的垂线,垂足为G、H,设点3(,2)4P m m-,90HQB HBQ∠+∠=︒,90HBQ GBP∠+∠=︒,HQB GBP∴∠=∠,90QHB BGP∠=∠=︒,BP BQ=,()BGP QHB AAS∴∆≅∆,HQ GB∴=,HB GP m==,故333(2)544HQ BG m m==--=-,3OH OB BH m=+=+,故点3(54Q m-,3)m+,令354x m=-,3y m=+,则42933y x=-+,设该直线与坐标轴的交点分别为R、S,则29(4R,0)、29(0,)3S,即294OR=,293OS=,当OQ SR⊥时,OQ最小,则1122ORSS OR OS OQ SR∆=⨯⨯=⨯⨯,即292943OQ ⨯=解得:295 OQ=,即OQ的最小值为295.。

八年级数学第2周周练试卷2023-2024学年八年级下学期数学苏科版

八年级数学第2周周练试卷2023-2024学年八年级下学期数学苏科版

八年级数学周末作业2 (20240301)班级:姓名:一、选择题1.下列调查不适合普查的是()A.了解全班学生的主要娱乐方式B.对甲型H1N1流感患者在同一列车乘客进行医学检查C.日光灯管厂要检测一批灯管的使用寿命D.对载人航天器零部件的检查2.想表示某种品牌奶粉中蛋白质,钙,维生素,糖,其它物质的含量的百分比,应该利用()A.条形统计图B.扇形统计图C.折线统计图D.以上都可以3. 如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2012年该市工业生产总产值为40亿元B.2010年至2014年间工业生产总值逐年增加C.2014年的工业生产总值比前一年增加了40亿元D.从2012年至2013年工业生产总值增长最快4.今年我市有近35000名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.每位考生的数学成绩是个体B.近35000名考生是总体C.这1000名考生是总体的一个样本D.1000名考生是样本容量5.八年级某班50名学生的数学测试成绩分为5组,第1-4组的频数分别为12,10,11,7,则第5组的频率是() A.0.1 B.0.2 C.0.3 D.0.46.在画频数分布直方图时,一组数据的最小值为149,最大值为172.若确定组距为3,则可以分成() A.5 B.6 C.7 D.87.下列成语所描述的事件为随机事件的是()A.水涨船高 B.水中捞月 C.守株待兔 D.缘木求鱼8. 从一副扑克牌中任意抽取1张,下列事件:①抽到“K”;②抽到“黑桃”;③抽到“大王”;④抽到“黑色的,其中,发生可能性最大的事件是()A.① B.② C.③ D.④二、填空题9.“任意打开一本154页的九年级数学书,正好翻到第127页”这是(填“随机“或“必然”)事件.10. 在一个不透明的袋子里装有9个白球和8个红球,这些球除颜色外,其余均相同,将袋中的球摇匀,从中任意取出一个球,摸到红球的可能性摸到白球的可能性.(填“大于”、“小于”或“等于”).11. 为了解某校学生平均每天进行体育活动的时间,从全校2800名学生中随机取了100名学生进行调查,在这次调査中,总体是.样本容量是.12.某校在一次期末考试中,随机抽取七年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上.据此估计该校七年级360名学生中期末考试数学成绩达108分以上的学生约有名.13.班里有18名男生,15名女生,从中任意抽取a人打扫卫生,若女生被抽到是必然事件,则a的取值范围.14.在一个扇形统计图中,表示种植苹果树面积的扇形的圆心角为108°,那么苹果树面积占总种植面积的_________.三、解答题15.一次函数图像CD:y=-x+b与一次函数图像AB:y=kx+6,都经过点B(-1,4).(1)求两条直线的函数表达式;(2)求四边形ABDO的面积.16.盐城市某中学为了预测本校初中毕业女生“30秒钟跳绳”项目考试情况,该校体育老师从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图.请你结合途中信息解答下列问题:(1)请计算本次抽样测试的女生人数?(2)补全频数分布直方图,请计算第一小组所对应扇形圆心角的度数;(3)若测试九年级女生“30秒钟跳绳”次数不低于90次的成绩为优秀,本校九年级女生共有280人,请估计该校九年级女生“30秒钟跳绳”成绩为优秀的人数.17.某社区调查社区居民双休日的学习状况,采取下列调查方式:①从一幢高层住宅楼中选取200名居民;②从不同住宅楼中随机选取200名居民;③选取社区内的200名在校学生.(1)上述调查方式最合理的是(填序号);(2)现将最合理的调查方式得到的数据制成扇形统计图(如图(1))和条形统计图(如图(2)).①请补全直方图(直接画在图(2)中);②在这次调查中,200名居民中,在家学习的有人;③图(1)中,在“图书馆等场所学习”这一扇形的圆心角=°;④请估计该社区2000名居民中双休日学习时间不少于4h的人数.18. 在平面直角坐标系中,直线y=﹣x+4交x轴,y轴分别于点A,点B,将△AOB绕坐标原点逆时针旋转90°得到△COD,直线CD交直线AB于点E,如图1:(1)求:直线CD的函数表达式;(2)如图2,连接OE,过点O作OF⊥OE交直线CD于点F,如图2:①求证:∠OEF=45°;②求:点F的坐标.19.【活学活用】课堂上,小明学习了一次函数图像平移的相关知识,请利用课堂中所学,解决下面问题:(1)把一次函数y=-x+3的图像向左平移3个单位所得一次函数的图像对应的函数表达式是 .【问题探究】联想到平移、翻折、旋转这三种图形运动,小明又对一次函数图像的翻折和旋转做了探究. 探究一:(2)把一次函数y=2x+4沿y 轴翻折后所得一次函数的图像对应的函数表达式是 ;(3)把一次函数y=2x+4沿x 轴翻折后所得一次函数的图像对应的函数表达式是 . 探究二:(4)已知直线1l :434+=x y 与y 轴交于点A ,把直线1l 绕点A 顺时针旋转90°得直线2l ,则直线2l 的函数表达式为 . (5)已知直线1l :434+=x y 与y 轴交于点A ,把直线1l 绕点A 顺时针旋转45°得直线2l (如图所示),求直线2l 的函数表达式.。

八年级下册数学期末模拟测试(二)试题卷

八年级下册数学期末模拟测试(二)试题卷

八年级下册数学期末模拟测试(二)姓名____________班级____________一、选择题:本大题共12小题,每小题3分,共36分. 1.代数式有意义的x 的取值范围是( )A .x ≥B .x ≠﹣2C .D .2.为了了解学生在假期中的阅读量,语文老师统计了全班学生在假期里的看书数量,统计结果如表: 那么假期里该班学生看书数量的平均数与众数分别为( ) A .4,5 B .5,4 C .4,4 D .5,5 3.下列各式中,与是同类二次根式的是( ) A .B .C .D .4.若点A (x 1,y 1)和点B (x 2,y 2)在一次函数y =(1+2m )x ﹣3的图象上,且当x 1<x 2时,y 1<y 2,则m 的取值范围是( ) A .m >B .m <C .m <﹣D .m >﹣5.若点P 在一次函数y =x +3的图象上,则点P 一定不在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.(3分)下列命题中,逆命题是真命题的是( )A .菱形是对角线互相垂直的四边形B .矩形既是轴对称图形,又是中心对称图形C .正方形是对角线互相垂直且相等的四边形D .平行四边形是对角线互相平分的四边形 7.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E .若∠1=20°,则∠2的度数为( ) A .120°B .100°C .110°D .90°8.奥林匹克官方旗舰店最近一段时间各款“冰墩墩”销售记录如下表,厂家决定多生产20cm 高的“冰墩墩”,依据的统计量是( )“冰墩墩”高度(cm )15 20 22 25 销量(个)56876768A .平均数B .众数C .中位数D .方差9.已知钓鱼杆AC 的长为10米,露在水上的鱼线BC 长为6m ,某钓鱼者想看看鱼钩上的情况,鱼竿AC 转动到AC ˈ的位置,此时露在水面上的鱼线B ʹC ʹ长度为8米,则BB ʹ的长为( ) A .4米B .3米C .2米D .1米10.函数y =2x 和y =nx +6的图象相交于点A (m ,4),则不等式组0<nx +6<2x 的整数解有( )个. A .2B .3C .4D . 5看书数量/(本) 2 3 4 5 6 人数/(人)66108511.如图,▱ABCD 的对角线AC 、BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC =60°,AB =12BC ,连接OE.下列结论:①AE >CE ;②S ▱ABCD =AB ·AC ;③S △ABE =2S △AOE ;④OE =14AD ,其中成立的有 ( )A.1个B.2个C.3个D.4个12.(3分)如图,△ABC 中,∠ACB =90°,∠CAB =60°,动点P 在斜边AB 所在的直线m 上运动,连接PC ,那点P 在直线m 上运动时,能使图中出现等腰三角形的点P 的位置有( ) A .6个 B .5个C .4个D .3个二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)在平面直角坐标系中,如果点A (﹣3,m )在一次函数y =x +8图象上,那么点A 和坐标原点的距离是 . 14.(3分)销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.这四种矿泉水某天的销售量如图所示,则销售的矿泉水的平均单价是 元. 15.(3分)在平面直角坐标系中,称横、纵坐标均为整数的点为整点,如图所示的正方形ABCD 内(包括边界)的整点共有 个. 16.(3分)如图,在Rt △ABC 中,∠B =90°,∠ACB =15°,∠ADB =30°,AB =3,则CD = cm .17. 如图11,在平行四边形ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6 cm,BF =12 cm,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1 cm /s 的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2 cm /s 的速度从点C 出发,沿CB 向点B 运动,点P 运动到F 点时停止运动,点Q 也同时停止运动,当点P 运动 s 时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.18.如图所示,在梯形ABCD 中,AD ∥BC (BC >AD ),∠D =90°,BC =CD =12,∠ABE =45°,若AE =10,则CE 的长为_____.三、解答题:本大题共6小题,共46分,请将解答过程写在相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.(6分)计算:(1)+﹣;(2)﹣(+1)2+(+1)(﹣1).20.(7分)北京冬奥会的成功举办掀起了全民“冬奥热”,某校九年级甲班和乙班学生联合举行了“冬奥知识”竞赛.现分别从甲班、乙班各随机抽取10名学生,统计这部分学生的竞赛成绩,相关数据统计整理如下:【收集数据】甲班10名同学测试成绩统计如下:85,78,86,79,72,91,79,72,69,89乙班10名同学测试成绩统计如下:85,80,76,85,80,74,90,74,75,81【整理数据】两组数据各分数段,如表所示:成绩60≤x<70 70≤x<80 80≤x<90 90≤x<100甲班 1 5 3 1乙班0 4 5 1 【分析数据】两组数据的平均数、中位数、众数、方差如表:平均数中位数众数方差甲班80 a72和79 51.8乙班b80 80 c 【问题解决】根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)请估计哪个班级的竞赛成绩更整齐,并说明理由.(3)按照比赛规定80分及以上可以获得冬奥纪念奖品,若甲乙两班学生共87人,其中甲班学生45人,请估计这两个班级可以获得冬奥纪念奖品的总人数.21.(8分)如图,在平面直角坐标系中,直线y=2x+6与x轴,y轴分别交于点A,C,经过点C的直线与x轴交于点B(6,0).(1)求直线BC的解析式;(2)点G是线段BC上一动点,若直线AG把△ABC的面积分成1:2的两部分,请求点G的坐标;(3)已知D为AC的中点,点P是平面内一点,当△CDP是以CD为直角边的等腰直角三角形时,直接写出点P 的坐标.22.(8分)如图,菱形ABCD的对角线AC、BD相交于点O,E是AD的中点,点F,G在CD上,EF⊥CD,OG∥EF.(1)求证:四边形OEFG为矩形;(2)若AD=10,EF=3,求CG的长.23.(8分)某公司销售员的奖励工资由两部分组成:基本工资,每人每月2000元;奖励工资,每销售一件产品,奖励20元.(1)设某营销员月销售产品x件,他应得的工资为y元,求y与x之间的函数关系式;(2)利用所求函数关系式,解决下列问题:①该销售员某月工资为4000元,他这个月销价了多少件产品?②要使月工资超过5000元,该月的销售量应当超过多少件?24.(9分)如图,在平面直角坐标系中,直线l1:y=kx﹣8k与x轴交于点A,与y轴正半轴交于点B,△AOB的面积为16;直线l2:y=x与直线l1:y=kx﹣8k交于点C.(1)求直线l1的解析式;(2)求OC的长;(3)若直线l2上有一点P,满足∠PBA=∠BAO,求点P的坐标.。

初二数学周周测第二张试卷

初二数学周周测第二张试卷

一、选择题(每题3分,共30分)1. 下列各数中,是整数的有()A. 2.5B. -3.14C. 0.001D. -52. 下列各数中,正负数不同类的有()A. 3和-4B. 0和-1C. -2和0.5D. -3和23. 下列各数中,绝对值最小的是()A. -1B. 0C. 1D. -24. 下列各数中,能被2整除的是()A. 17B. 28C. 35D. 495. 下列各数中,能被3整除的是()A. 6B. 15C. 21D. 246. 下列各数中,能被5整除的是()A. 20B. 25C. 30D. 357. 下列各数中,能被7整除的是()A. 14B. 28C. 35D. 428. 下列各数中,能被9整除的是()A. 18B. 27C. 36D. 459. 下列各数中,能被11整除的是()A. 22B. 33C. 44D. 5510. 下列各数中,能被13整除的是()A. 26B. 39C. 52D. 65二、填空题(每题3分,共30分)11. 3的平方根是______,-2的立方根是______。

12. 下列各数的相反数分别是:-5的相反数是______,0的相反数是______。

13. 下列各数的倒数分别是:2的倒数是______,-3的倒数是______。

14. 下列各数的绝对值分别是:|-2|等于______,|3.5|等于______。

15. 下列各数的平方分别是:2的平方是______,-3的平方是______。

16. 下列各数的立方分别是:1的立方是______,-2的立方是______。

17. 下列各数的算术平方根分别是:9的算术平方根是______,16的算术平方根是______。

18. 下列各数的立方根分别是:27的立方根是______,64的立方根是______。

三、解答题(每题10分,共40分)19. (1)计算:(-2)×(-3)×(-4)×(-5)。

初二下册数学 2017版人教版八年级数学下期末模拟试卷(二)含答案

初二下册数学 2017版人教版八年级数学下期末模拟试卷(二)含答案

八年级下期末模拟试卷二(本试卷共五大题,26小题,满分150分)一、选择题(本题共8小题;每小题3分,共24分)1. ()是关于的方程的根,则的值为 ( )n n≠0x x2+mx+2n=0m+nA. B. C. D.x=1x=2x=-1x=-22. 若一个的角绕顶点旋转,则重叠部分的角的大小是 ( )60∘15∘A. B. C. D.15∘30∘45∘75∘3. 直线经过一、三、四象限,则直线的图象只能是图中的 ( )y=kx+b y=bx-kA. B.C. D.4. 如图 1,在菱形中,,,是边上一个动点,是ABCD∠BAD=60∘AB=2E DC F AB 边上一点,.设,图中某条线段长为,与满足的函数关系∠AEF=30∘DE=x y y x 的图象大致如图 2 所示,则这条线段可能是图中的( )A. 线段B. 线段C. 线段D. 线段EC AE EF BF5. 已知:如图,在正方形外取一点,连接,,.过点作的垂线ABCD E AE BE DE A AE 交于点.若,.DE P AE=AP=1PB=5下列结论:①;△APD≌△AEB②点到直线的距离为;B AE2③;EB⊥ED④;S△APD+S△APB=1+6⑤.S正方形ABCD=4+6其中正确结论的序号是 ( )A. ①③④B. ①②⑤C. ③④⑤D. ①③⑤6. 如图,在平面直角坐标中,直线经过原点,且与轴正半轴所夹的锐角为,过l y60∘点作轴的垂线交直线于点,过点作直线的垂线交轴于点,以A(0,1)y l B B l y A1、为邻边作平行四边形;过点作轴的垂线交直线于点,A1B BA ABA1C1A1y l B1过点作直线的垂线交轴于点,以、为邻边作平行四边形B1l y A2A2B1B1A1A1B1;;按此作法继续下去,则的坐标是 ( )A2C2⋯C n(-3×4n,4n)(-3×4n-1,4n-1)A. B.(-3×4n-1,4n)(-3×4n,4n-1)C. D.7. 边长一定的正方形,是上一动点,交于点,过作ABCD Q CD AQ BD M M MN⊥AQ 交于点,作于点,连接,下列结论:①;②BC N NP⊥BD P NQ AM=MN MP=12;③;④为定值.其中一定成立的是 ( ) BD BN+DQ=NQ AB+BNBMA. ①②③B. ①②④C. ②③④D. ①②③④8. 在锐角中,,,(如图),将绕点按逆△ABC AB=5BC=6∠ACB=45∘△ABC B△AʹBCʹA C AʹCʹCʹCA 时针方向旋转得到(顶点、分别与、对应),当点在线段的延长线上时,则的长度为 ( )ACʹ2+732-732+73-7A. B. C. D.(6题图)(7题图)(8题图)二、填空题(本题共8小题;每小题3分,共24分)9. 如图,在笔直的铁路上、两点相距,、为两村庄,,A B25 km C D DA=10 km,于,于,现要在上建一个中转站,使得CB=15 km DA⊥AB A CB⊥AB B AB E、两村到站的距离相等.则应建在距 kmC D E E A△ABC AB=AC BD⊥AC D BD=3DC=1AD=10. 在中,,于,若,,则.11. 如图,点是等边内一点,如果绕点逆时针旋转后能与D△ABC△ABD A△ACE 重合,那么旋转了度.(9题图)(11题图)12. 一食堂需要购买盒子存放食物,盒子有 , 两种型号,单个盒子的容量和价格如A B 表.现有 升食物需要存放且要求每个盒子要装满,由于 型号盒子正做促销活15A 动:购买三个及三个以上可一次性返还现金 元,则购买盒子所需要最少费用为 4 元.型号 A B 单个盒子容量(升) 23单价(元) 5 613. 如图 1, 是边长为 的等边三角形;如图 2,取 的中点 ,画等边三△AB 1C 11AB 1C 2角形 ;如图 3,取 的中点 ,画等边三角形 ,连接 ;如图 4,AB 2C 2AB 2C 3AB 3C 3B 2B 3取 的中点 ,画等边三角形 ,连接 ,则 的长为 .若AB 3C 4AB 4C 4B 3B 4B 3B 4按照这种规律已知画下去,则 的长为 .(用含 的式子表示)B n B n +1n14. 如图,长方体的底面边长分别为 和 ,高为 .若一只蚂蚁从 点开始2 cm 4 cm 5 cm P 经过 个侧面爬行一圈到达 点,则蚂蚁爬行的最短路径长为 .4Q cm 15. 正方形 ,,, 按如图所示的方式放置.点 ,,A 1B 1C 1O A 2B 2C 2C 1A 3B 3C 3C 2…A 1A 2, 和点 ,, 分别在直线 ()和 轴上,已知点 A 3…C 1C 2C 3…y =kx +b k >0x B 1,,则点 的坐标是 ,点 的坐标是 .(1,1)B 2(3,2)B 3B n 16. 方程 全部相异实根是(x 3-3x 2+x -2)⋅(x 3-x 2-4x +7)+6x 2-15x +18=0 .(14题图) (15题图)三、解答题(本大题共4小题;其中17、18题、19各9分,20题12分,共39分) 17. 设 ,, 是 的三边,关于 的方程 有两个相等的a b c △ABC x 12x 2+b x +c -12a =0实数根,方程 的根为 . 3cx +2b =2a x =0(1)试判断 三边的关系;△ABC (2)若 , 为方程 的两个根,求 的值. a b x 2+mx -3m =0m18. 如图,在正方形,点是上任意一点,连接,作于点,ABCD中G CD BG AE⊥BG E 于点.CF⊥BG F(1)求证:;BE=CF(2)若,,求的长.BC=2CF=6EF519. 目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为.家长表示“不赞同”的人数为;(2)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是;(3)求图 2 中表示家长“无所谓”的扇形圆心角的度数.20. 有这样一个问题:探究函数的图象与性质.小东对函数y=(x-1)(x-2)(x-3)的图象与性质进行了探究.y=(x-1)(x-2)(x-3)下面是小东的探究过程,请补充完成:函数的自变量的取值范围是全体实数;y=(x-1)(x-2)(x-3)x(1)下表是与的几组对应值.y xx⋯-2-10123456⋯y⋯m-24-600062460⋯①;m=②若,为该函数图象上的两点,则;M(-7,-720)N(n,720)n=(2)在平面直角坐标系中,,为该函数图象上的两点,且为xOy A(x A,y A)B(x B,y B)A2范围内的最低点,点的位置如图所示.≤x≤3A①标出点的位置;B②画出函数的图象.y=(x-1)(x-2)(x-3)(0≤x≤4)四、解答题(本大题共3小题;其中21、22题各9分,23题10分,共28分)21. 小轿车从甲地出发驶往乙地,同时货车从相距乙地的入口处驶往甲地(两车60 km均在甲、乙两地之间的公路上匀速行驶),如图是它们离甲地的路程与货车y(km)行驶时间之间的函数的部分图象.x(ℎ)(1)求货车离甲地的路程与它的行驶时间的函数表达式.y(km)x(h)(2)哪一辆车先到达目的地?说明理由.22. 菱形的边长为,,对角线,相交于点,动点在线ABCD2∠BAD=60∘AC BD O P 段上从点向点运动,过作,交于点,过作,AC A C P PE∥AD AB E P PF∥AB 交于点,四边形与四边形关于直线对称.设菱形被AD F QHCK PEAF BD ABCD 这两个四边形盖住部分的面积为,:S1AP=x(1)对角线的长为;;(直接写出答案)AC S菱形ABCD=(2)用含的代数式表示;x S1(3)设点在移动过程中所得两个四边形与的重叠部分面积为,当P PEAF QHCK S2S2时,求的值.=1S菱形ABCD x223. 在中,,,分别为,,所对的边,我们称关于的一元二△ABC a b c∠A∠B∠C x 次方程为“ 的方程”.根据规定解答下列问题:ax2+bx-c=0△ABC(1) “ 的方程” 的根的情况是(填序号);△ABC ax2+bx-c=0A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根(2)如图,为圆的直径,为弦,于,,求“ AD O BC BC⊥AD E∠DBC=30∘△的方程” 的解;ABC ax2+bx-c=0(3)若是“ 的方程” 的一个根,其中,,均为整数,c△ABC ax2+bx-c=0a b c x=14且,求方程的另一个根.ac-4b<0五、解答题(本大题共3小题;其中24题11分,25、26题各12分,共35分)24. 在平行四边形中,、、、平分线分别为、ABCD∠BAD∠ABC∠BCD∠CDA AG 、、,与交于点,与交于点,与交于点,与BE CE DG BE CE E AG BE F AG DG G CE 交于点.DG H(1)如图(1),已知,此时点、分别在边、上.AD=2AB E G AD BC①四边形是;EFGHA.平行四边形 B. 矩形 C. 菱形 D. 正方形②请判断与的位置关系和数量关系,并说明理由;EG AB(2)如图(2),分别过点、作、,分别交、于点E G EP∥BC GQ∥BC AG BE、,连接、.求证:四边形为菱形;P Q PQ EG EPQG(3)已知,判断与的位置关系和数量关系(直接写出结AD=nAB(n≠2)EG AB论).25. 如图 1,在中,,,点是角平分线上△ABC∠ACB=90∘∠BAC=60∘E∠BAC 一点,过点作的垂线,过点作的线段,两垂线交于点,连接,点E AE A AB D DB是的中点,,垂足为,连接,.F BD DH⊥AC H EF HF(1)如图 1,若点是的中点,,求,的长.H AC AC=23AB BD(2)如图 1,求证:.HF=EF(3)如图 2,连接,,猜想:是否是等边三角形?若是,请证明;若不是,CF CE△CEF请说明理由.26. 如图,在矩形中,点为坐标原点,点的坐标为,点,在坐标ABCO O B(4,3)A C 轴上,点在边上,直线:,直线:.P BC l1y=2x+3l2y=2x-3(1)分别求直线与轴,直线与的交点坐标.l1x l2AB(2)已知点在第一象限,且是直线上的点,若是等腰直角三角形,求M l2△APM点的坐标.M(3)我们把直线和直线上的点所组成的图形称为图形.已知矩形的顶l1l2F ANPQ点在图形上,是坐标平面内的点,且点的横坐标为,请直接写出的取值N F Q N x x范围(备用图)答案第一部分 1. D 【解析】()是关于 的方程 的根, ∵n n ≠0x x 2+mx +2n =0 ,即 . ∴n 2+mn +2n =0n +m +2=0 .∴m +n =―2 2. C 【解析】∠AOB ʹ=∠AOB ―∠B ʹOB =45∘.3. C 【解析】 直线 经过第一、三、四象限, ∵y =kx +b ,, ∴k >0b <0 ,∴―k <0 直线 经过第二、三、四象限. ∴y =bx ―k 4. B 5. D【解析】① ,, ∵∠EAB +∠BAP =90∘∠PAD +∠BAP =90∘ .∴∠EAB =∠PAD 又 ,,∵AE =AP AB =AD (故①正确); ∴△APD ≌△AEB ③ , ∵△APD ≌△AEB .∴∠APD =∠AEB 又 ,, ∵∠AEB =∠AEP +∠BEP ∠APD =∠AEP +∠PAE . ∴∠BEP =∠PAE =90∘ (故③正确);∴EB ⊥ED ②过 作 ,交 的延长线于 ,B BF ⊥AE AE F,, ∵AE =AP ∠EAP =90∘.∴∠AEP =∠APE =45∘又 ③中 ,, ∵EB ⊥ED BF ⊥AF ,∴∠FEB =∠FBE =45∘又 , ∵BE =BP 2―PE 2=5―2=3 (故②不正确); ∴BF =EF =6④如图,连接 ,在 中, BD Rt △AEP , ∵AE =AP =1 , ∴EP =2又 , ∵PB =5 .∴BE =3 , ∵△APD ≌△AEB .∴PD =BE =3 .(故④不正∴S △ABP +S △ADP =S △ABD ―S △BDP =12S 正方形ABCD ―12×DP ×BE =12×(4+6)―12×3×3=12+62确). ⑤ ,,∵EF =BF =62AE =1 在 中,, ∴Rt △ABF AB 2=(AE +EF )2+BF 2=4+6 (故⑤正确); ∴S 正方形ABCD =AB 2=4+66. C 【解析】 直线 经过原点,且与 轴正半轴所夹的锐角为 ,∵l y 60∘直线 的解析式为 .∴l y =33x 轴,点 ,∵AB ⊥y A (0,1) 可设 点坐标为 ,∴B (x,1)将 代入 ,解得 , B (x,1)y =33x x =3 点坐标为 ,,∴B (3,1)AB =3在 中,,,Rt △A 1AB ∠AA 1B =90∘―60∘=30∘∠A 1AB =90∘ ,,∴AA 1=3AB =3OA 1=OA +AA 1=1+3=4 平行四边形 中,,∵ABA 1C 1A 1C 1=AB =3 点的坐标为 ,即 ;∴C 1(―3,4)(―3×40,41)由 ,解得 ,33x =4x =43 点坐标为 ,.∴B 1(43,4)A 1B 1=43在 中,,,Rt △A 2A 1B 1∠A 1A 2B 1=30∘∠A 2A 1B 1=90∘ ,,∴A 1A 2=3A 1B 1=12OA 2=OA 1+A 1A 2=4+12=16 平行四边形 中,,∵A 1B 1A 2C 2A 2C 2=A 1B 1=43 点的坐标为 ,即 ;∴C 2(―43,16)(―3×41,42)同理,可得 点的坐标为 ,即 ;C 3(―163,64)(―3×42,43)以此类推,则 的坐标是 .C n (―3×4n ―1,4n )7.D 【解析】作 于 ,连接 ,. AU ⊥NQ U AN AC,∵∠AMN =∠ABC =90∘ ,,, 四点共圆.∴A B N M ,.∴∠NAM =∠DBC =45∘∠ANM =∠ABD =45∘ .∴∠ANM =∠NAM =45∘ .故①正确.∴AM =MN 由同角的余角相等知 ,∠HAM =∠PMN .∴Rt △AHM ≌Rt △MPN .故②正确.∴MP =AH =12AC =12BD ,,∵AB =AD ∠BAD =90∘把 绕点 顺时针旋转 得 . △ADQ A 90∘△ABR,,. ∴∠RAN =∠BAN +∠DAQ =∠QAN =45∘DQ =BR AR =AQ .∵AN =AN .∴△AQN ≌△ARN .∴NR =NQ .故③正确.∴BN +DQ =NQ 作 ,垂足为 ,作 ,垂足为 .MS ⊥AB S MW ⊥BC W点 是对角线 上的点,∵M BD 四边形 是正方形.∴SMWB.∴MS =MW =BS =BW .∴△AMS ≌△NMW .∴AS =NW .∴AB +BN =SB +BW =2BW ,∵BW:BM =1:2 故④正确.∴AB +BNBM =22=28. B 【解析】由旋转性质可得 ,,∠A ʹC ʹB =∠ACB =45∘BC =BC ʹ ,∴∠BC ʹC =∠ACB =45∘ .∴∠CBC ʹ=180∘―∠BC ʹC ―∠ACB =90∘ ,∵BC =6 .∴CC ʹ=2BC =62过点 作 于点 .A AD ⊥BC D ,∵∠ACB =45∘ 是等腰直角三角形.∴△ACD 设 ,则 .AD =x CD =x .∴BD =BC ―CD =6―x 在 中,,Rt △ABD AD 2+BD 2=AB 2 ,∴x 2+(6―x )2=52解得 ,(不合题意舍去).x 1=6+142x 2=6―142 ,∴AC =6+142×2=32+7 的长度为:.∴AC ʹ62―(32+7)=32―7第二部分9.15 km 【解析】设 ,则 .AE =x BE =25―x ,DE =CE =102+x 2=152+(25―x )2 .x =1510.4【解析】提示:设 ,则 .勾股定理可以求出 的值.AD =x AB =x +1x 11.6012. 29【解析】设购买 种型号盒子 个,购买盒子所需要费用为 元,则购买 种盒子的个数为个, A x y B 15―2x 3①当 时,,0≤x <3y =5x +15―2x 3×6=x +30 ,∵k =1>0 随 的增大而增大, ∴y x 当 时, 有最小值,最小值为 元;∴x =0y 30②当 时,,x ≥3y =5x +15―2x 3×6―4=26+x ,∵k =1>0 随 的增大而增大,∴y x 当 时, 有最小值,最小值为 元;∴x =3y 29综合①②可得,购买盒子所需要最少费用为 元.2913. ;3832n 【解析】在 中,,; Rt △AB 2B 1AB 2=12B 1B 2=3AB 2=32在 中,,; Rt △AB 3B 2AB 3=14B 2B 3=3AB 3=34=322在 中,,;Rt △AB 4B 3AB 4=12B 3B 4=3AB 4=38=323⋯所以 .B n B n +1=32n 14.13【解析】,,∵PA =2×(4+2)=12QA =5 .∴PQ =13 15. ;(7,4)(2n ―1,2n ―1)【解析】点 ;B 1(1,1)点 ,即 ;B 2(3,2)B 2(22―1,21)点 ,即 ;B 3(7,4)B 3(23―1,22)⋯所以点 .B n (2n ―1,2n ―1)16. 1,2,―2,1+2,1―2【解析】设 , .A =x 3―2x 2―32x +52B =x 2―52x +92则原方程可变为 ,(A ―B )(A +B )+6B ―9=0即A 2―B 2+6B ―9=0,A 2―(B ―3)2=0∴ ,(A +B ―3)(A ―B +3)=0∴ 或 .A +B =3A ―B =―3若 ,则 ,解得 , ;A +B =3x 3―x 2―4x +7=3x =1±2若 ,则 ,解得 , .A ―B =―3x 3―3x 2+x +1=0x =1x =1±2第三部分17. (1) 方程有两个不相等的实数根,. ∴Δ=(b )2―4×12×(c ―12a )=0解得 .a +b ―2c =0把 代入 ,x =03cx +2b =2a 解得 ,即 .2b =2a a =b .∴2a ―2c =0 .∴a =b =c 三边相等.∴△ABC (2) 由 , 为方程的两个根可得 .a b (x ―a )(x ―b )=0 .∴x 2―(a +b )x +ab =0 ,.∴m =―a ―b ―3m =ab .∴―3m =3a +3b =ab .∴a =6 .∴m =―1218. (1) ,,∵AE ⊥BG CF ⊥BG .∴∠AEB =∠BFC =90∘又 ,,∠ABE +∠FBC =90∘∠ABE +∠BAE =90∘ .∴∠FBC =∠BAE ,∵AB =BC .∴△ABE ≌△BCF .∴BE =CF (2) ,,,∵CF ⊥BG BC =2CF =65 . ∴BF =BC 2―CF 2=22―(65)2=85又 , BE =CF =65 .∴EF =BF ―BE =85―65=2519. (1) ;60080【解析】调查的家长总数为 人,360÷60%=600很赞同的人数 人, 600×20%=120不赞同的人数 人.600―120―360―40=80 (2)60% (3) 表示家长“无所谓”的圆心角的度数为:.40600×360∘=24∘20. (1) ① ;② ;m =―60n =11 (2) 点 的位置如图. B函数图象如图.【解析】① 与 关于点 对称 .B A (2,0)21. (1) 设货车离甲地的路程 与行驶时间 的函数表达式是 .代入点 ,,得 y (km)x (h)y =kx +b (0,240)(1.5,150){240=b,150=1.5k +b.解得{k =―60,b =240.所以货车离甲地的路程 与行驶时间 的函数表达式是y (km)x (h) y =―60x +240.(2) 解法一:设小轿车离甲地的路程 与行驶时间 的函数表达式是 .代入点 ,得y 2(km)x (h)y 2=mx (1.5,150)150=1.5m.解得m =100.所以小轿车离甲地的路程 与行驶时间 的函数表达式是y 2(km)x (h) y 2=100x.由(1)知,货车离甲地的路程 与行驶时间 的函数表达式是y 1(km)x (h)y 1=240―60x.当 时,代入 ,得 .y 1=0y 1=―60x +240x 1=4当 时,代入 ,得 ,即小轿车先到达目的地.y 2=300y 2=100x x 2=3【解析】解法二:根据图象,可得小轿车的速度为150÷1.5=100(km/h).货车到达甲地用时240÷60=4(h).小轿车到达乙地用时300÷100=3(h),即小轿车先到达目的地.22. (1) ;AC =23S 菱形ABCD =23【解析】提示:由 ,可知 .∠BAD =60∘∠BAO =∠DAO =30∘从而可得 ,. AO =3BO AB =2BO ,即 .∴AO =32AB AC =3AB (2) 当 时: 0≤x ≤3 ,得菱形 的边长 , ∵AP =x PEAF AE =EF =33x ,S 菱形PEAF =12AP ⋅EF =12x ⋅33x =36x 2 .∴S 1=2S 菱形PEAF =3x 2②当 时:3<x ≤23如图等于大菱形 减去未被遮盖的两个小菱形, S 1ABCD 由菱形 的边长 为 ,PEAF AE 33x . ∴BE =2―33x . ∴S 菱形BEMH =2×34(2―33x )2=36x 2―2x +23 . ∴S 1=23―2S 菱形BEMH =23―2(36x 2―2x +23)=―33x 2+4x ―23.(3) 有重叠,∵ .∴3<x ≤23此时 .OP =x ―3 重叠菱形 的边长 . ∴QMPN MP =MN =233x ―2 . ∴S 2=12PQ ⋅MN =12×2(x ―3)(23x ―2)=23x 2―4x +23令 ,233x 2―4x +23=3解得 ,x =3±6符合题意的是 .x =3+6223. (1) ②【解析】 在 中,,, 分别为 ,, 所对的边,∵△ABC a b c ∠A ∠B ∠C 关于 的一元二次方程 为“ 的 方程”,x ax 2+bx ―c =0△ABC ★ ,,.∴a >0b >0c >0 .∴Δ=b 2+4ac >0 方程有两个不相等的实数根.∴ (2) 为 的直径,∵AD ⊙O.∴∠DBA =90∘ ,∵∠DBC =30∘ .∴∠CBA =60∘ 于 ,,∵BC ⊥AD E ∠DBC =30∘ .∴∠BDA =60∘ .∴∠C =60∘ 是等边三角形.∴△ABC .∴a =b =c “ 的 方程” 可以变为:.∴△ABC ★ax 2+bx ―c =0ax 2+ax ―a =0 ,∵Δ=b 2+4ac >0 . ∴x =―a ±a 2+4a 22a=―1±52即 ,. x 1=―1+52x 2=―1―52 (3) 将 代入 方程中可得:,x =14c ★ac 216+bc 4―c =0方程两边同除以 可得:.c >0ac 16+b 4―1=0化简可得:.ac +4b ―16=0 ,∵ac ―4b <0 .∴ac +ac ―16<0 .∴0<ac <8 ,, 均为整数,,∵a b c ac +4b =16 能被 整除.∴ac 4又 ,0<ac <8 ,.∴ac =4b =3 , 为正整数,∵a c ,(不能构成三角形,舍去)或者 ,∴a =1c =4a =c =2 方程为 .∴★2x 2+3x ―2=0解得:,.x 1=12x 2=―2 ,∵14c >0方程的另一个根是 .x =―224. (1) ① B ;② ,.EG ∥AB EG =AB 四边形 是平行四边形,∵ABCD .∴AD ∥BC .∴∠AEB =∠EBG 平分 ,∵BE ∠ABC ,∴∠ABE =∠EBG ,∴∠ABE =∠AEB .∴AB =AE 同理,,BG =AB .∴AE =BG ,,∵AE ∥BG AE =BG 四边形 是平行四边形.∴ABGE ,.∴EG ∥AB EG =AB (2) 分别延长 、 ,交 于点 、 ,EP GQ AB M N 分别延长 、 ,交 于点 、 , PE QG CD M ʹN ʹ四边形 是平行四边形,∵ABCD , ∴AB ∥DC又 ,PE ∥BC 四边形 是平行四边形,∴MBCM ʹ ,.∴MM ʹ=BC MB =M ʹC ,∵PE ∥BC .∴∠MEB =∠EBC 平分 ,∵BE ∠ABC ,∴∠ABE =∠EBC ,∴∠MEB =∠ABE .∴MB =ME 同理,.M ʹE =M ʹC .∴ME =M ʹE ,∴ME =12MM ʹ又 ,MM ʹ=BC .∴ME =12BC 同理,.NG =12BC .∴ME =NG ,∵GQ ∥BC .∴∠DAG =∠AGN 平分 ,∵AG ∠BAD ,∴∠DAG =∠NAG ,∴∠NAG =∠AGN .∴AN =NG ,,,∵MB =ME AN =NG ME =NG .∴MB =AN ,即 .∴MB ―MN =AN ―MN BN =AM ,∵PE ∥BC ,∴∠DAG =∠APM 又 ,∠DAG =∠BAG ,∴∠APM =∠BAG .∴AM =PM 同理,.BN =QN .∴PM =QN ,,∵ME =NG PM =QN ,即 .∴ME ―PM =NG ―QN PE =QG ,,∵EP ∥BC GQ ∥BC .∴EP ∥GG 又 ,PE =QG 四边形 是平行四边形.∴EPQG 分别平分 ,,∵AG 、BE ∠BAD ∠ABC ,.∴∠BAG =12∠BAD ∠ABG =12∠ABC ,∴∠BAG +∠ABG =12∠BAD +12∠ABC =12×180∘=90∘ ,即 .∴∠AFB =90∘PG ⊥EF 平行四边形 是菱形.∴EPQG (3) ① 时, 且 ;n >1EG ∥AB EG =(n ―1)AB ② 时, 且 ;n <1EG ∥AB EG =(1―n )AB ③ 时,此四边形不存在.(此种情况不写不扣分)n =125. (1) ,,∵∠ACB =90∘∠BAC =60∘ ,∴∠ABC =30∘ .∴AB =2AC =2×23=43 ,,∵AD ⊥AB ∠CAB =60∘ ,∴∠DAC =30∘ ,∵AH =12AC =3 , ∴AD =AH cos30∘=2.∴BD =AB 2+AD 2=213 (2) 连接 .AF 由已知可得 ,△DAE ≌△ADH .∴DH =AE ,∵∠EAF =∠EAB ―∠FAB =30∘―∠FAB ,∠FDH =∠FDA ―∠HDA =∠FDA ―60∘=(90∘―∠FBA )―60∘=30∘―∠FBA .∴∠EAF =∠FDH .∴△DHF ≌△AEF .∴HF =EF (3) 为等边三角形.理由如下:△CEF 取 的中点 ,连接 ,.AB M CM FM 在 中,Rt △ADE , 是 的中位线,AD =2AE FM △ABD ,∴AD =2FM .∴FM =AE 为等边三角形, ∴△ACM ,,.∴AC =CM ∠CAE =12∠CAB =30∘∠CMF =∠AMF ―∠AMC =30∘ .∴△ACE ≌△MCF 为等边三角形.∴△CEF 【解析】(法二)延长 至点 ,使 ,连接 ;延长 至点 ,使 ,连接 ;延长 交 DE N EN =DE AN BC MCB =CM AM BD AM 于点 ,连接 ,. P MD BN 易证:,.△ADE ≌△ANE △ABC ≌△AMC 易证:(手拉手全等模型),故 .△ADM ≌△ANB DM =BN 是 的中位线, 是 的中位线,CF △BDM EF △BDN 故 .EF =12BN =12DM =CF ∠CFE =∠CFD +∠DFE =∠MDP +∠DBN =∠MDP +∠DBA +∠ABN =∠MDP +∠DBA +∠AMD =∠DPA +∠DBA =180∘―∠PAB=180∘―2∠CAB =60∘,故 为等边三角形.△CEF 26. (1) 当 时, . .y =02x +3=0x =―32 与 轴交于 ;∴l 1x (―32,0)当 时, . . y =32x ―3=3x =3直线 与 的交点为 .∴l 2AB (3,3) (2) ①若点 为直角顶点时,点 在第一象限,连接 ,如图.A M AC ,∠APB >∠ACB >45∘ 不可能为等腰直角三角形,∴△APM 点 不存在.∴M ②若点 为直角顶点时,点 在第一象限,如图.P M过点 作 ,交 的延长线于点 ,M MN ⊥CB CB N 则 ,Rt △ABP ≌Rt △PNM , .∴AB =PN =4MN =BP 设 ,则 .M (x,2x ―3)MN =x ―4 .∴2x ―3=4+3―(x ―4) .∴x =143 .∴M (143,193)③若点 为直角顶点,点 在第一象限,如图.M M设 .M 1(x,2x ―3)过点 作 于点 ,交 于点 .M 1M 1G 1⊥OA G 1BC H 1则 .Rt △AM 1G 1≌Rt △PM 1H 1 .∴AG 1=M 1H 1=3―(2x ―3) .∴x +3―(2x ―3)=4 .∴x =2 .∴M 1(2,1)设 ,M 2(x,2x ―3)同理可得 ,x +2x ―3―3=4 ,∴x =103. ∴M 2(103,113)综上所述,点 的坐标可以为,,. M (143,193)(2,1)(103,113) (3) 的取值范围为 或 或 或 .x ―25≤x <00<x ≤4511+315≤x ≤18511―315≤x ≤2。

八年级数学下学期第2周周测试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

八年级数学下学期第2周周测试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

2015-2016学年某某省某某市丹阳市云阳学校八年级(下)第2周周测数学试卷一、填空:(本大题共9小题,每题2分,共18分)1.如图,是从镜中看到的一串数字,这串数字应为.2.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是.(不添加辅助线)3.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.4.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为.5.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为cm.6.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.7.如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为度.8.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.9.如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间有一定的相等关系,请你写出∠OEP与∠ODP所有可能的数量关系.二、选择题:(每小题3分,共18分)10.下列轴对称图形中,只有两条对称轴的图形是()A. B. C.D.11.用尺规作图,不能作出唯一直角三角形的是()A.已知两条直角边B.已知两个锐角C.已知一直角边和直角边所对的一锐角D.已知斜边和一直角边12.直角三角形三边垂直平分线的交点位于三角形的()A.三角形内 B.三角形外 C.斜边的中点D.不能确定13.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA14.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为10cm,求△PAB的周长为()A.5cm B.10cm C.20cm D.15cm15.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称三、解答题:(本大题共6小题,共64分)16.(1)以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形.(2)如图,求作点P,使点P同时满足:①PA=PB;②到直线m,n的距离相等.(尺规作图,保留作图痕迹)17.在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E.若∠CAB=∠B+30°,求∠AEB.18.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.19.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,连接EF交AD 于G,试判断AD与EF垂直吗?并说明理由.20.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.21.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.四、知者加速题:(本大题共2题,共20分)22.如图,已知直线l及其两侧两点A、B.(1)在直线l上求一点O,使到A、B两点距离之和最短;(2)在直线l上求一点P,使PA=PB;(3)在直线l上求一点Q,使l平分∠AQB.23.如图,在△ABC的一边AB上有一点P.(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请画出点M、N的位置;若不能,请说明理由;(2)若∠ACB=48°,在(1)的条件下,求出∠MPN的度数.2015-2016学年某某省某某市丹阳市云阳学校八年级(下)第2周周测数学试卷参考答案与试题解析一、填空:(本大题共9小题,每题2分,共18分)1.如图,是从镜中看到的一串数字,这串数字应为810076 .【考点】镜面对称.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反,∴这串数字应为 810076,故答案为:810076.2.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是DF=DE .(不添加辅助线)【考点】全等三角形的判定.【分析】由已知可证BD=CD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);【解答】解:添加的条件是:DF=DE(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).理由如下:∵点D是BC的中点,∴BD=CD.在△BDF和△CDE中,∵,∴△BDF≌△CDE(SAS).故答案可以是:DF=DE.3.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= 55°.【考点】全等三角形的判定与性质.【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.4.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8 .【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线和已给的周长的值即可求出.【解答】解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.5.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为15 cm.【考点】全等三角形的判定与性质.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为15cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E∴∠DEC=∠A=90°∵CD=CD∴△ACD≌△ECD∴AC=EC,AD=ED∵∠A=90°,AB=AC∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.6.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有 4 个.【考点】全等三角形的判定;角平分线的性质.【分析】根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.【解答】解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;因此其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.7.如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为45 度.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】由等腰直角三角形ABC的两腰相等的性质推知AC=CB,再根据已知条件“∠ACB=∠DCE=90°”求得∠ACE=90°﹣∠ACD=∠DCB,然后再加上已知条件DC=EC,可以根据全等三角形的判定定理SAS判定△ACE≌△BCD;最后由全等三角形的对应角相等的性质证明结论即可.【解答】解:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=CB.∵∠ACB=∠DCE=90°,∴∠ACE=90°﹣∠ACD=∠DCB.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS).∴∠B=∠EAC(全等三角形的对应角相等).∵∠B=45°,∴∠EAC=45°.故答案为45°.8.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有 4 个.【考点】利用轴对称设计图案.【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【解答】解:如图所示,有4个位置使之成为轴对称图形.故答案为:4.9.如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间有一定的相等关系,请你写出∠OEP与∠ODP所有可能的数量关系∠OEP=∠ODP或∠OEP+∠ODP=180°.【考点】全等三角形的判定与性质.【分析】数量关系是∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,根据SAS证△E2OP≌△DOP,推出E2P=PD,得出此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,根据等腰三角形性质推出∠PE2E1=∠PE1E2,求出∠OE1P+∠ODP=180°即可.【解答】解:∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是:以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,∵在△E2OP和△DOP中,∴△E2OP≌△DOP(SAS),∴E2P=PD,即此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,则此点E1也符合条件PD=PE1,∵PE2=PE1=PD,∴∠PE2E1=∠PE1E2,∵∠OE1P+∠E2E1P=180°,∵∠OE2P=∠ODP,∴∠OE1P+∠ODP=180°,∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°,故答案为:∠OEP=∠ODP或∠OEP+∠ODP=180°.二、选择题:(每小题3分,共18分)10.下列轴对称图形中,只有两条对称轴的图形是()A. B. C.D.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形,看各个图形有几条对称轴即可.【解答】解:A、有两条对称轴,符合题意;B、C、都只有一条对称轴,不符合题意;D、有六条,对称轴,不符合题意;故选A.11.用尺规作图,不能作出唯一直角三角形的是()A.已知两条直角边B.已知两个锐角C.已知一直角边和直角边所对的一锐角D.已知斜边和一直角边【考点】作图—复杂作图.【分析】能不能作出唯一直角三角形要看所给条件是否满足全等三角形的判定条件,然后利用三角形全等的判定方法对各选项进行判定.【解答】解:A、已知两条直角边和直角,可根据“SAS”作出唯一直角三角形,所以A选项错误;B、已知两个锐角,不能出唯一的直角三角形,所以B选项之前;C、已知一直角边和直角边所对的一锐角,可根据“AAS”或“ASA”作出唯一直角三角形,所以B选项错误;D、已知斜边和一直角边,可根据“HL”作出唯一直角三角形,所以D选项错误.故选B.12.直角三角形三边垂直平分线的交点位于三角形的()A.三角形内 B.三角形外 C.斜边的中点D.不能确定【考点】线段垂直平分线的性质.【分析】垂直平分线的交点是三角形外接圆的圆心,由此可得出此交点在斜边中点.【解答】解:∵直角三角形的外接圆圆心在斜边中点可得直角三角形三边垂直平分线的交点位于三角形的斜边中点.故选C.13.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA【考点】全等三角形的判定;等边三角形的性质.【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE ≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.14.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为10cm,求△PAB的周长为()A.5cm B.10cm C.20cm D.15cm【考点】轴对称的性质.【分析】由轴对称的性质可得PA=PG,PB=BH,从而可求得△PAB的周长.【解答】解:∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴PA=PG,PB=BH,∴PA+AB+PB=GA+AB+BH=GH=10cm,即△PAB的周长为10cm,故选B.15.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称【考点】作图—基本作图;全等三角形的判定与性质;角平分线的性质.【分析】连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE 是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.【解答】解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选:D.三、解答题:(本大题共6小题,共64分)16.(1)以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形.(2)如图,求作点P,使点P同时满足:①PA=PB;②到直线m,n的距离相等.(尺规作图,保留作图痕迹)【考点】作图-轴对称变换.【分析】(1)分别作出A、B、C关于直线MN的对称点即可.(2)作线段AB的垂直平分线,直线m、n组成的角的平分线,两线的交点就是所求的点.【解答】解:(1)如图1中,作点A关于直线MN的对称点E,点B关于直线MN的对称点F,点C关于直线NM的对称点G,连接EF、FG.EG,△EFG就是所求作的三角形.(2)如图2中,图中点P和点P′就是满足条件的点.17.在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E.若∠CAB=∠B+30°,求∠AEB.【考点】线段垂直平分线的性质.【分析】已知DE垂直平分斜边AB可求得AE=BE,∠EAB=∠EBA.易求出∠AEB.【解答】解:∵DE垂直平分斜边AB,∴AE=BE,∴∠EAB=∠EBA.∵∠CAB=∠B+30°,∠CAB=∠CAE+∠EAB,∴∠CAE=30°.∵∠C=90°,∴∠AEC=60°.∴∠AEB=120°18.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.【考点】等腰三角形的性质;全等三角形的判定与性质;角平分线的性质.【分析】先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD 中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC.【解答】证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.19.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,连接EF交AD 于G,试判断AD与EF垂直吗?并说明理由.【考点】角平分线的性质;全等三角形的判定与性质.【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF,然后利用“HL”证明Rt △AED和Rt△AFD全等,根据全等三角形对应边相等可得AE=AF,再利用等腰三角形三线合一的性质证明即可.【解答】解:AD⊥EF.理由如下:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△AED和Rt△AFD中,∵,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠EAF,∴AD⊥EF(等腰三角形三线合一).20.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.【考点】线段垂直平分线的性质.【分析】(1)先根据线段垂直平分线的性质得出AD=BD,AE=CE,再根据AD+DE+AE=BD+DE+CE 即可得出结论;(2)先根据线段垂直平分线的性质得出OA=OC=OB,再由∵△OBC的周长为16cm求出OC的长,进而得出结论.【解答】解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.21.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD 与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.四、知者加速题:(本大题共2题,共20分)22.如图,已知直线l及其两侧两点A、B.(1)在直线l上求一点O,使到A、B两点距离之和最短;(2)在直线l上求一点P,使PA=PB;(3)在直线l上求一点Q,使l平分∠AQB.【考点】线段垂直平分线的性质;线段的性质:两点之间线段最短;角平分线的性质.【分析】(1)根据两点之间线段最短,连接AB,线段AB交直线l于点O,则O为所求点;(2)根据线段垂直平分线的性质连接AB,在作出线段AB的垂直平分线即可;(3)作B关于直线l的对称点B′,连接AB′交直线l与点Q,连接BQ,由三角形全等的判定定理求出△BDQ≌△B′DQ,再由全等三角形的性质可得出∠BQD=∠B′QD,即直线l平分∠AQB.【解答】解:(1)连接AB,线段AB交直线l于点O,∵点A、O、B在一条直线上,∴O点即为所求点;(2)连接AB,分别以A、B两点为圆心,以任意长为半径作圆,两圆相交于C、D两点,连接CD与直线l 相交于P点,连接BD、AD、BP、AP、BC、AC,∵BD=AD=BC=AC,∴△BCD≌△ACD,∴∠BED=∠AED=90°,∴CD是线段AB的垂直平分线,∵P是CD上的点,∴PA=PB;(3)作B关于直线l的对称点B′,连接AB′交直线l与点Q,连接BQ,∵B与B′两点关于直线l对称,∴BD=B′D,DQ=DQ,∠BDQ=∠B′DQ,∴△BDQ≌△B′DQ,∴∠BQD=∠B′QD,即直线l平分∠AQB.23.如图,在△ABC的一边AB上有一点P.(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请画出点M、N的位置;若不能,请说明理由;(2)若∠ACB=48°,在(1)的条件下,求出∠MPN的度数.【考点】轴对称-最短路线问题.【分析】(1)如图:作出点P关于AC、BC的对称点D、G,然后连接DG交AC、BC于两点,标注字母M、N;(2)根据对称的性质,易求得∠C+∠EPF=180°,由∠ACB=48°,易求得∠D+∠G=48°,继而求得答案.【解答】解:(1)①作出点P关于AC、BC的对称点D、G,②连接DG交AC、BC于两点,③标注字母M、N;(2)∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°,∴∠C+∠EPF=180°,∵∠C=48°,∴∠EPF=132°,∵∠D+∠G+∠EPF=180°,∴∠D+∠G=48°,由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=48°,∴∠MPN=132°﹣48°=84°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、计算
(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy
2、计算: +
3、解方程: +=1
4、先化简,再求值:,x=3
5、如图,在△ABC 中,D 是B C 的中点,DE⊥AB 于E,DF⊥AC 于F,BE=CF.(1)求证:AD 平分∠BAC;
(2)连接E F,求证:AD 垂直平分E F.
6、某超市预测某饮料的消费市场满意度较高,就用1600元、购进了一批饮料。

面市后果然供不应求,又用6000元购进这种饮料。

已知第二批饮料的数量是第一批的3倍,但单价比第一批贵2元。

(1)求第一批饮料的进货单价是多少元?
(2)若两次购进饮料都按同一价格销售,两批饮料全部售完后,要使获利不少于1200元,那么销售单价至少为多少元?
7、如图,△ABC是等边三角形,AB=6,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B 重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)证明:在运动过程中,点D是线段PQ的中点;
(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.。

相关文档
最新文档