高数 数项级数收敛性判别法总结论文
数项级数敛散性判别法。(总结)

证明:由假设 f (x) 为[1,) 上非负减函数,则对任何正数 A, f (x) 在
[1,A]上可积,从而有
n
f (n)
f (x)dx
n1
f (n 1) , n 2,3,
依次相加,得
m
m
m
m1
f (n) f (x)dx f (n 1) f (n)
1
n2
n2
n1
若反常积分收敛,则对m ,有
P--级数
111 1p 2p 3p
1 np
1
n1 n p
在以下的判别中这几类级数将会有重要的运用
二、相关定理
定理一:如果
lim
n
an
0
,则可判断该级数一定不收敛。
-3-
定理二、等比级数判别法:
n1
ar
n 1
(a
0)
当 r 1时,级数收敛; (2)当 r 1时,级数发散
定理三、 p 级数判别法:
n 1
u
n
绝对
收敛;若级数 n1 un
收敛,而级数 n1
un
发散,则称级数
n 1
u
n
条件收敛.易
(1)n1 1
(1) n1 1
知 n1
n2 是绝对收敛级数,而 n1
n 是条件收敛级数.
定理八、 若 n1 un 收敛,则 n1 un 必收敛.
对于有些特殊级数,既不是正项级数也不是交错级数,可以通过
s in 2 n2
n
也收敛。
注:如果级数中不是所有的项都满足 vn un ,而是从有限项开始才满
足。也可以用比较法判断敛散性。因为改变级数的前有限项不改变级
数的敛散性。
级数收敛证明方法总结

级数收敛证明方法总结级数收敛是数学中重要的概念之一,而证明一个级数是否收敛是数学研究中的一项基本任务。
在本文中,我们将总结一些常用的级数收敛证明方法,以便读者更好地理解和运用这些方法。
首先,我们介绍一些基本的概念。
对于一个级数∑an,我们定义其部分和为Sn=∑n=1nan。
当Sn的极限存在并有限时,我们称该级数收敛,反之称为发散。
接下来,我们将介绍一些常见的级数收敛证明方法。
1.比值判别法。
比值判别法是一种常用的判别级数收敛与发散的方法。
其基本思想是通过计算相邻两项的比值,来判断级数的收敛性。
具体而言,当limn→∞|an+1/an|<1时,级数收敛;当limn→∞|an+1/an|>1时,级数发散;当limn→∞|an+1/an|=1时,无法判断级数的收敛性。
2.根值判别法。
根值判别法也是一种常用的判别级数收敛与发散的方法。
其基本思想是通过计算某一项的n次方根,来判断级数的收敛性。
具体而言,当limn→∞|an|1/n<1时,级数收敛;当limn→∞|an|1/n>1时,级数发散;当limn→∞|an|1/n=1时,无法判断级数的收敛性。
3.积分判别法。
积分判别法是一种常用的判别级数收敛与发散的方法。
其基本思想是通过将级数中的项与某一函数的积分进行比较,来判断级数的收敛性。
具体而言,当级数∑an和函数f(x)满足以下条件时,级数收敛:f(x)单调递减、非负、连续,并且∫f(x)dx收敛;当级数∑an和函数f(x)满足以下条件时,级数发散:f(x)单调递减、非负、连续,并且∫f(x)dx发散。
4.夹逼定理法。
夹逼定理法是一种常用的证明级数收敛的方法。
其基本思想是通过找到两个已知的级数,一个发散且下降趋势趋于0,另一个收敛且上升趋势趋于该级数,来证明该级数收敛。
具体而言,设级数∑an收敛,且对于所有n都有a(n)<=b(n)<=c(n)。
如果级数∑b(n)收敛,级数∑c(n)发散,则级数∑a(n)收敛。
数项级数敛散性的判别法毕业论文

数项级数敛散性的判别法毕业论文关于数项级数敛散性的判别法摘要:级数是数学分析中的主要内容之一.我们学习过的数项级数敛散性判别法有许多种,如柯西(Cauchy)判别法、达朗贝尔(D ’Alembert )判别法、拉阿贝(Raabe)判别法、高斯(Gauss)判别法、狄里克莱(Dirichlet)判别法、莱布尼兹(Leibniz)判别法、阿贝尔(Abel)判别法等.对数项级数敛散性判别法进行归纳,使之系统化. 关键词:数项级数; 正项级数 ; 变号级数; 敛散性; 判别法1引言 设数项级数++++=∑∞=n n na a a a211的n 项部分和为:12n S a a =+++1nni i a a ==∑若n 项部分和数列{}n S 收敛,即存在一个实数S,使lim n n S S →∞=.则称这个级数是收敛的,否则我们就说它是发散的.在收敛的情况下,我们称S 为级数的和.可见,无穷级数是否收敛,取决于lim n n S →∞是否存在.从而由数列的柯西(Cauchy )收敛准则,可得到级数的柯西(Cauchy )收敛准则[1]:数项级数1nn a ∞=∑收敛0,N N ε+⇔∀>∃∈,对,n N p N +∀>∀∈有12n n n p a a a ε++++++<.2 正项级数敛散性判别法设数项级数1nn a ∞=∑为正项级数(na ≥0).则级数的n 项部分和数列{}nS 单调递增,由数列的单调有界公理,有定理2.1[1]正项级数1n n u ∞=∑收敛⇔它的部分和数列{}n S 有上界.由定理2.1可推得 定理2.2[2]:设两个正项级数1n n u ∞=∑和1n n v ∞=∑,存在常数c 0>及正整数N ,当n >N 时有n u ≤c n v ,则(i )若级数1n n u ∞=∑收敛,则级数1n n v ∞=∑也收敛;(ii )若级数1n n u ∞=∑发散,则级数1n n v ∞=∑也发散.一般常及其极限形式:定理2.2’(比较判别法的极限形式)[2]:设1n n u ∞=∑和1n n v ∞=∑是两个正项级数且有limnn nu v →∞=λ, (i )若0<λ<+∞,则两个级数同时敛散;(ii )若 λ=0,级数1n n v ∞=∑收敛,则级数1n n u ∞=∑也收敛;(iii )若 λ=+∞,级数1n n v ∞=∑发散,则级数1n n u ∞=∑也发散.由比较判别法可推得:定理2.3(达朗贝尔判别法也称比值判别法,D ’Alembert )[3]:设1n n u ∞=∑是一个正项级数,则有(i )若存在0<q <1及自然数N ,使当n ≥N 时有1n n u u +≤q ,则级数1n n u ∞=∑收敛;(ii )若存在自然数N ,使当n ≥N 时有1n n u u +≥1,则级数1n n u ∞=∑发散.定理2.3’(达朗贝尔判别法也称比值判别法的极限形式)[3]:设1n n u ∞=∑是一个正项级数,(i )若lim n →∞1n n u u +=r <1,则级数1n n u ∞=∑收敛;(ii )若lim n →∞1n nu u +=r >1则级数1n n u ∞=∑发散.定理2.4(柯西判别法也称根式判别法)[4]:设1n n u ∞=∑是一个正项级数,则有(i )若存在0<q <1及自然数N ,使当n ≥N n n u ≤q ,则级数1n n u ∞=∑收敛;(ii )若存在自然数列的子列{}i n n n u ≥1,则级数1n n u ∞=∑发散.定理2.4’(根式判别法的极限形式)[5]:设1n n u ∞=∑是一个正项级数,(i )lim n →∞n n u =r <1,则级数1n n u ∞=∑收敛;(ii )lim n →∞n n u r >1,则级数1n n u ∞=∑发散.注意:在比值判别法和根式判别法的极限形式中,对r=1的情形都未论及.实际上,当lim n →∞1n nu u +=1或lim n →∞n n u 时,无法使用这两个判别法来判别敛散性.如级数11n n ∞=∑和211n n ∞=∑,都有11lim lim 111n n nn n n→∞→∞+==+, 2221(1)lim lim 111n n n n n n→∞→∞+⎛⎫== ⎪+⎝⎭, 1lim 1nn n =,211n n n=.但前者发散而后者收敛.此外,定理2.3和定理2.4中关于收敛的条件1n nu u +≤q n n u ≤q <1也不能放宽到1n n u u +n n u <1.例如,对调和级数11n n∞=∑,有 1n n u u +=1nn +n n u 1n n但级数却是发散的.对于严格正项级数,比较判别法、比式判别法及根式判别法用上(下)极限形式更为方便. 定理2.5[2]设∑∞=1n n a 为严格正项级数.10若∑∞=1n n b 是收敛的严格正项级数,使+∞<∞→nnn b a lim ,则级数∑∞=1n n a 收敛. 20若∑∞=1n n b 为发散的严格正项级数,使0lim >∞→nnn b a ,(可取)∞+,则级数∑∞=1n n a 发散. 定理2.6[2]设∑∞=1n n a 为严格正项级数.10若1lim1<=+∞→q a a nn n ,则级数∑∞=1n n a 收敛. 20若1lim1>=+∞→q a a nn n ,则级数∑∞=1n n a 发散.定理2.7[2]设∑∞=1n n a 为正项级数,且q a n n n =∞→lim ,则10当1<q 时,级数∑∞=1n n a 收敛.20当1>q 时,级数∑∞=1n n a 发散.我们知道,广义调和级数(p-级数)∑∞=11n pn当1>p 时收敛,而当1≤p 时发散.因此,取p-级数作为比较的标准,可得到较比式判别法更为精细而又应用方便的判别法,即定理2.8(拉阿贝判别法,Raabe )[3]:设∑∞=1n n u 是正项级数并记11,n n n u R n u +⎛⎫=- ⎪⎝⎭(i )若存在1q >及自然数N ,使当n ≥N 时有,n R q ≥则级数1n n u ∞=∑收敛;(ii )若存在自然数N ,使当n ≥N 时有1,n R ≤则级数1n n u ∞=∑发散.定理2.8’(拉阿贝判别法的极限形式)[8]:设1n n u ∞=∑是正项级数且有r u u n n n n =⎪⎪⎭⎫⎝⎛-+∞→1lim 1, 则 (1)当1>r 时,级数1n n u ∞=∑收敛;(2)当1<r 时,则级数1n n u ∞=∑发散.考虑到级数与无穷积分的关系,可得 定理2.9(积分判别法)[4]:设函数()f x 在区间),1[+∞上非负且递减,)(n f u n =,1,2,n =,则级数∑∞=1n n u 收敛的充分必要条件是极限⎰+∞→xx dt t f 1)(lim存在.证:由于0)(≥x f ,知⎰=xdt t f x F 1)()(单调递增.因此极限⎰+∞→+∞→=xx x dt t f x F 1)(lim)(lim 存在)(x F ⇔在),1[+∞有界.(充分性)设⎰+∞→xx dt t f 1)(lim存在,则存在0>M ,使M dt t f x x≤+∞∈∀⎰1)(),,1[级数∑∞=1n n u 的部分和)()2()1(21n f f f u u u S n n +++=+++=⎰⎰⎰-++++≤nn dt t f dt t f dt t f f 13221)()()()1(M f dt t f f n+≤+=⎰)1()()1(1.即部分和数列有上界.所以级数∑∞=1n n u 收敛.(必要性)设正项级数∑∞=1n n u 收敛,则它的部分和有上界,即存在+∈∀>N n M ,0有M S n ≤.从而对),1[+∞∈∀x ,令1][+=x n ,则 ⎰⎰⎰⎰⎰-+++=≤n n nxdt t f dt t f dt t f dt t f dt t f 1322111)()()()()(M S n f f f n ≤=-+++≤-1)1()2()1( . 故极限⎰+∞→xx dt t f 1)(lim存在.由此我们得到两个重要的结论[6]: (1)p 级数11p n n ∞=∑收敛⇔1;p > (2)级数21ln pn n n∞=∑收敛⇔ 1.p > 证:两个结论的证法是类似的,所以下面只证明结论(1) 在p 级数一般项中,把n 换为x ,得到函数()f x =1(1).p x x≥ 我们知道,这个函数的广义积分收敛⇔ 1.p >因此根据正项级数的广义积分判定法,结论(1)成立.还是以p-级数为比较标准,可得定理2.10(阶的估计法)[3]:设1n n u ∞=∑为正项级数⎪⎭⎫⎝⎛=p n n O u 1)(∞→n ,即n u 与p n 1当∞→n 是同阶无穷小.则(1)当1>p 时,级数1n n u ∞=∑收敛;(2)当1≤p 时,级数1n n u ∞=∑发散.把比较判别法和比式判别法结合,又可得定理2.11(比值比较判别法)[7]:设级数1n n u ∞=∑和1n n v ∞=∑都是正项级数且存在自然数N ,使当n≥N 时有11n n n nu v u v ++≤, 则有(i )若1n n v ∞=∑收敛,则1n n u ∞=∑也收敛;(ii ) 若1n n u ∞=∑发散,则1n n v ∞=∑也发散.证:当n ≥N 时,由已知有12121111n N N n N N n n N N N n N N n Nu u u u v vv v u u u u v v v v +++++-+-=≤=. 由此可得,.N N n n n n N Nu vu v u v v u ≤≤ 再由比较判别法即知定理结论成立. 较比式判别法更为精细的判别法是定理2.12[3](高斯判别法,Gauss ):设1n n u ∞=∑是正项级数且满足 11,ln ln n n u u v o u n n n n n λ+⎛⎫=+++ ⎪⎝⎭则有(i )若1λ>或者1λ=,1u >或者1,1u v λ==>,则级数1n n u ∞=∑收敛;(ii ) 若1λ<或者1λ=,1u <或者1,1u v λ==<,则级数1n n u ∞=∑发散.定理2.12’[9](高斯推论):设1n n u ∞=∑是正项级数且满足211,n n u uO u n n λ+⎛⎫=++ ⎪⎝⎭则有(i )若1λ>或1λ=,1u >,则级数1n n u ∞=∑收敛;(ii )若1λ<或1λ=,1u ≤,则级数1n n u ∞=∑`发散.3 一般项级数敛散性判别法我们经常遇到一些级数,它们并不是都为非负,如交错级数等,对于这一类的级数我们不能再套用上述的正项级数的判别法来判断它们的敛散性了.根据柯西收敛原理,级数1n n u ∞=∑收敛的充分必要条件是:对任给的0ε>,存在N ,只要n N >,对任意正整数p ,有12.n n n p u u u ε++++++<在研究一般项级数的判别法前我引进绝对收敛与条件收敛的概念. 定义[4]:若级数1n n u ∞=∑收敛,则称级数1n n u ∞=∑是绝对收敛的;若级数1n n u ∞=∑收敛,但级数1n n u ∞=∑发散,则称级数1n n u ∞=∑是条件收敛的.由柯西收敛准则,有 定理3.1[4]若级数∑∞=1||n n u 收敛,则级数∑∞=1n n u 收敛.要判别级数∑∞=1||n n u 敛散性,可用上述介绍的正项级数敛散性的判别方法去判断.定理3.2[6](分部求和判别法):对级数1,n n n u p ∞=∑用n A 表示级数1n n u ∞=∑的部分和,即 1nn k k A u ==∑.如果极限lim n n n A p →∞存在,那么下面两个级数有相同的收敛性:1,nn n up ∞=∑11().n n n n A p p ∞+=-∑这个判别法的特点是:把因子1,2,,,n u u u 分离出来,求出部分和n A ,再研究级数11()n n n n A pp ∞+=-∑的收敛性(前提是极限lim n n n A p →∞存在.)证明:先分析级数1n n n u p ∞=∑的部分和.为此分析乘积k k u p ;用增减项的办法,可以看出,11111()()k k k k k k k k k k k k u p A A p A p A p p A p -----=-=---.由此得到1111()()k k k k k k k k k u p A p A p A p p ----=---.让k 从1变到n,对等式的各项求和,110011()(0,0)nnkk n n k k k k k up A p A p p A p --===--==∑∑.这个等式可以改写为1111()nn kk n n k k k k k up A p A p p -+===--∑∑.(这叫做阿贝尔分部求和公式.)现在令n →∞,考察极限1lim nk k n k u p →∞=∑.由阿贝尔分部求和公式可以看出:因为极限lim n n n A p →∞存在,所以1lim n k k n k u p →∞=∑存在111lim ()n k k k n k A p p -+→∞=⇔-∑存在.这个结论的级数语言是:111()k k n n n n n up A p p ∞∞+==⇔-∑∑收敛收敛. 这样就证明完成了证明.对于最特殊的变号级数—交错级数,有定理 3.3[10](莱布尼兹判别法):对于交错级数,如果一般项的绝对值组成的数列单调递减趋向于0(当n →∞),那么交错级数收敛.对于一般项级数,则有定理3.4[10](狄利克雷判别法): 对级数1,n n n u p ∞=∑用n A 表示级数1n n u ∞=∑的部分和,即 1nn k k A u ==∑.如果{}n A 是有界数列,并且数列{}n p 单调递减趋向于0,那么级数1,n n n u p ∞=∑收敛.证明: 由条件可知, lim n n n A p →∞=0.因此根据分部求和判别法, 下面两个级数有相同的收敛性: 1,n n n up ∞=∑11().n n n n A p p ∞+=-∑ 以下只需验证:后一个级数是绝对收敛的.实际上,数列{}n A 是有界的,不妨设()n A A n ≤∀.这样一来,11()()n n n n n A p p A p p ++-≤-.另外,1111111()lim ()lim()nn n k k n n n n k pp p p p p p ∞+++→∞→∞==-=-=-=∑∑ 因此根据控制收敛判别法,级数11()n n n n A p p ∞+=-∑收敛.定理3.5(阿贝尔Aebel 判别法)[4]设数列}{n a 单调有界,级数∑∞=1n n b 收敛,则级数∑∞=1n n n b a 收敛.主要参考文献:[1]刘玉琏,傅沛仁等. 数学分析讲义(第三版). 北京: 高等教育出版社, 2003[2]罗仕乐 . 数学分析续论 . 韶关学院数学系选修课程. 2003.8[3]李成章,黄玉民. 数学分析(上册).北京: 科学出版社,1999.5[4]邓东皋, 尹小玲. 数学分析简明教程.北京: 高等教育出版社, 2000.6[5]张筑生. 数学分析新讲.北京: 北京大学出版社, 2002.2[6]丁晓庆. 工科数学分析(下册).北京: 科学出版社,2002.9[7]R.柯朗, F.约翰. 微积分和数学分析引论.北京: 科学出版社, 2002.5[8]朱时. 数学分析札记 .贵州: 贵州教育出版社, 1996.5[9][美] 约翰鲍逊等,邓永录译. 现在数学分析基础.广东:中山大学出版社, 1995.2[10] 王昆扬. 数学分析专题研究.北京: 高等教育出版社, 2001.6The law of differentiating about the fact that several items of progression disappear and dispersingLiu Xianyang(Department of Mathematics,Shaoguan University,00 mathematics and applied mathematics undergraduate course. ,Shaoguan 512005,GuangDong)Abstract:One of the main content while analyzing that progression is mathematics. That the several a item ofprogressions of study disappear and disperse to differentiate law have a lot of kinds we, If Cauchy differentiate law, D'Alembert differentiate law, Raabe differentiate , Gauss differentiate law, Dirichlet differentiate law, Leibniz differentiate law, Abel differentiate law, etc. law. That items of progression disappear and disperse to differentiate law sum up, systematize it logarithm.Keywords:Several items of progression ; A progression ; Turn into number progression ; Hold back the scattered quality ; Differentiate law ization.。
高数学习方法总结论文【精选4篇】

高数学习方法总结论文【精选4篇】高数学习方法总结论文【精选4篇】在日常学习、工作或生活中,需要学习的内容越来越多,想要高效的学习,就一定要掌握正确的学习方法!那么,大家知道要怎样正确高效的学习吗?以下是小编为大家整理的高数学习方法总结论文,供大家参考借鉴,希望可以帮助到有需要的朋友。
高数学习方法总结论文1大学生学习高等数学要掌握合适的学习方法,因人而异,这里我只是结合我自己的一些学习方法和经验供大家参考。
高等数学作为高等教育的一门基础学科,几乎对所有的专业的学习都有帮助,对于我们飞行器动力工程专业,高等数学是联系物理,力学,以及贯穿于专业基础课的一把刃剑和纽带,对于大一这一年的学习尤为重要,只有打下坚实的基础,对于之后学习其他的学科,包括选修课中的工程数学的分支(复变函数,数理方程等),都有很大的帮助。
首先了解高等数学的组织结构,大一上学期主要学习极限,函数,以及微分和积分,(空间几何在下学期学),在期末考试中大多数都集中在积分和微分这部分。
极限是积分和微分的基础,重要的概念和思想在学习极限这部分就会体现出来,有些问题运用基本定义就会迎刃而解,在掌握了基本概念和常用的解题方法后,学习起来就会很轻松;下学期比较重要,相对于上学期的内容也较丰富和复杂;对于偏导数和曲线积分、曲面积分,需要扎实的微积分思想,此外就是级数和微分方程;总之,高等数学可以说是积分,微分占据主要地位。
(一)做题的方法和技巧学习高等数学的过程中必不可少的就是学习方法的及时总结,理想的情况下就是保证每个人手中都有一本课外的教辅书(个人推荐吉米多维奇),在平时做作业和做课外题目的过程中,自己会做的题目也要做到自己的思想和答案的思想进行比较,互相补充,遇到好的解题方法要记下来,要记的内容是题目,方法和自己的感受;遇到不明白的题目时不要浮躁,也不要着急先看答案,首先进行冷静的思考,要知道考的内容是什么,要用到什么知识点,然后一步一步看答案,这里我的意思是先看答案的第一步求解的问题是什么,然后停止看答案,想一想答案的这一步对你是否有启示作用,接下来自己试一试能不能继续独立往下做,如果不行的话继续往下看答案,直到做出来为止,做完后一定做好笔记。
数项级数敛散性的判别法毕业论文

数项级数敛散性的判别法毕业论文关于数项级数敛散性的判别法摘要:级数是数学分析中的主要内容之一.我们学习过的数项级数敛散性判别法有许多种,如柯西(Cauchy)判别法、达朗贝尔(D ’Alembert )判别法、拉阿贝(Raabe)判别法、高斯(Gauss)判别法、狄里克莱(Dirichlet)判别法、莱布尼兹(Leibniz)判别法、阿贝尔(Abel)判别法等.对数项级数敛散性判别法进行归纳,使之系统化. 关键词:数项级数; 正项级数 ; 变号级数; 敛散性; 判别法1引言 设数项级数++++=∑∞=n n na a a a211的n 项部分和为:12n S a a =+++1nni i a a ==∑若n 项部分和数列{}n S 收敛,即存在一个实数S,使lim n n S S →∞=.则称这个级数是收敛的,否则我们就说它是发散的.在收敛的情况下,我们称S 为级数的和.可见,无穷级数是否收敛,取决于lim n n S →∞是否存在.从而由数列的柯西(Cauchy )收敛准则,可得到级数的柯西(Cauchy )收敛准则[1]:数项级数1nn a ∞=∑收敛0,N N ε+⇔∀>∃∈,对,n N p N +∀>∀∈有12n n n p a a a ε++++++<.2 正项级数敛散性判别法设数项级数1nn a ∞=∑为正项级数(na ≥0).则级数的n 项部分和数列{}nS 单调递增,由数列的单调有界公理,有定理2.1[1]正项级数1n n u ∞=∑收敛⇔它的部分和数列{}n S 有上界.由定理2.1可推得 定理2.2[2]:设两个正项级数1n n u ∞=∑和1n n v ∞=∑,存在常数c 0>及正整数N ,当n >N 时有n u ≤c n v ,则(i )若级数1n n u ∞=∑收敛,则级数1n n v ∞=∑也收敛;(ii )若级数1n n u ∞=∑发散,则级数1n n v ∞=∑也发散.一般常及其极限形式:定理2.2’(比较判别法的极限形式)[2]:设1n n u ∞=∑和1n n v ∞=∑是两个正项级数且有limnn nu v →∞=λ, (i )若0<λ<+∞,则两个级数同时敛散;(ii )若 λ=0,级数1n n v ∞=∑收敛,则级数1n n u ∞=∑也收敛;(iii )若 λ=+∞,级数1n n v ∞=∑发散,则级数1n n u ∞=∑也发散.由比较判别法可推得:定理2.3(达朗贝尔判别法也称比值判别法,D ’Alembert )[3]:设1n n u ∞=∑是一个正项级数,则有(i )若存在0<q <1及自然数N ,使当n ≥N 时有1n n u u +≤q ,则级数1n n u ∞=∑收敛;(ii )若存在自然数N ,使当n ≥N 时有1n n u u +≥1,则级数1n n u ∞=∑发散.定理2.3’(达朗贝尔判别法也称比值判别法的极限形式)[3]:设1n n u ∞=∑是一个正项级数,(i )若lim n →∞1n n u u +=r <1,则级数1n n u ∞=∑收敛;(ii )若lim n →∞1n nu u +=r >1则级数1n n u ∞=∑发散.定理2.4(柯西判别法也称根式判别法)[4]:设1n n u ∞=∑是一个正项级数,则有(i )若存在0<q <1及自然数N ,使当n ≥N n n u ≤q ,则级数1n n u ∞=∑收敛;(ii )若存在自然数列的子列{}i n n n u ≥1,则级数1n n u ∞=∑发散.定理2.4’(根式判别法的极限形式)[5]:设1n n u ∞=∑是一个正项级数,(i )lim n →∞n n u =r <1,则级数1n n u ∞=∑收敛;(ii )lim n →∞n n u r >1,则级数1n n u ∞=∑发散.注意:在比值判别法和根式判别法的极限形式中,对r=1的情形都未论及.实际上,当lim n →∞1n nu u +=1或lim n →∞n n u 时,无法使用这两个判别法来判别敛散性.如级数11n n ∞=∑和211n n ∞=∑,都有11lim lim 111n n nn n n→∞→∞+==+, 2221(1)lim lim 111n n n n n n→∞→∞+⎛⎫== ⎪+⎝⎭, 1lim 1nn n =,211n n n=.但前者发散而后者收敛.此外,定理2.3和定理2.4中关于收敛的条件1n nu u +≤q n n u ≤q <1也不能放宽到1n n u u +n n u <1.例如,对调和级数11n n∞=∑,有 1n n u u +=1nn +n n u 1n n但级数却是发散的.对于严格正项级数,比较判别法、比式判别法及根式判别法用上(下)极限形式更为方便. 定理2.5[2]设∑∞=1n n a 为严格正项级数.10若∑∞=1n n b 是收敛的严格正项级数,使+∞<∞→nnn b a lim ,则级数∑∞=1n n a 收敛. 20若∑∞=1n n b 为发散的严格正项级数,使0lim >∞→nnn b a ,(可取)∞+,则级数∑∞=1n n a 发散. 定理2.6[2]设∑∞=1n n a 为严格正项级数.10若1lim1<=+∞→q a a nn n ,则级数∑∞=1n n a 收敛. 20若1lim1>=+∞→q a a nn n ,则级数∑∞=1n n a 发散.定理2.7[2]设∑∞=1n n a 为正项级数,且q a n n n =∞→lim ,则10当1<q 时,级数∑∞=1n n a 收敛.20当1>q 时,级数∑∞=1n n a 发散.我们知道,广义调和级数(p-级数)∑∞=11n pn当1>p 时收敛,而当1≤p 时发散.因此,取p-级数作为比较的标准,可得到较比式判别法更为精细而又应用方便的判别法,即定理2.8(拉阿贝判别法,Raabe )[3]:设∑∞=1n n u 是正项级数并记11,n n n u R n u +⎛⎫=- ⎪⎝⎭(i )若存在1q >及自然数N ,使当n ≥N 时有,n R q ≥则级数1n n u ∞=∑收敛;(ii )若存在自然数N ,使当n ≥N 时有1,n R ≤则级数1n n u ∞=∑发散.定理2.8’(拉阿贝判别法的极限形式)[8]:设1n n u ∞=∑是正项级数且有r u u n n n n =⎪⎪⎭⎫⎝⎛-+∞→1lim 1, 则 (1)当1>r 时,级数1n n u ∞=∑收敛;(2)当1<r 时,则级数1n n u ∞=∑发散.考虑到级数与无穷积分的关系,可得 定理2.9(积分判别法)[4]:设函数()f x 在区间),1[+∞上非负且递减,)(n f u n =,1,2,n =,则级数∑∞=1n n u 收敛的充分必要条件是极限⎰+∞→xx dt t f 1)(lim存在.证:由于0)(≥x f ,知⎰=xdt t f x F 1)()(单调递增.因此极限⎰+∞→+∞→=xx x dt t f x F 1)(lim)(lim 存在)(x F ⇔在),1[+∞有界.(充分性)设⎰+∞→xx dt t f 1)(lim存在,则存在0>M ,使M dt t f x x≤+∞∈∀⎰1)(),,1[级数∑∞=1n n u 的部分和)()2()1(21n f f f u u u S n n +++=+++=⎰⎰⎰-++++≤nn dt t f dt t f dt t f f 13221)()()()1(M f dt t f f n+≤+=⎰)1()()1(1.即部分和数列有上界.所以级数∑∞=1n n u 收敛.(必要性)设正项级数∑∞=1n n u 收敛,则它的部分和有上界,即存在+∈∀>N n M ,0有M S n ≤.从而对),1[+∞∈∀x ,令1][+=x n ,则 ⎰⎰⎰⎰⎰-+++=≤n n nxdt t f dt t f dt t f dt t f dt t f 1322111)()()()()(M S n f f f n ≤=-+++≤-1)1()2()1( . 故极限⎰+∞→xx dt t f 1)(lim存在.由此我们得到两个重要的结论[6]: (1)p 级数11p n n ∞=∑收敛⇔1;p > (2)级数21ln pn n n∞=∑收敛⇔ 1.p > 证:两个结论的证法是类似的,所以下面只证明结论(1) 在p 级数一般项中,把n 换为x ,得到函数()f x =1(1).p x x≥ 我们知道,这个函数的广义积分收敛⇔ 1.p >因此根据正项级数的广义积分判定法,结论(1)成立.还是以p-级数为比较标准,可得定理2.10(阶的估计法)[3]:设1n n u ∞=∑为正项级数⎪⎭⎫⎝⎛=p n n O u 1)(∞→n ,即n u 与p n 1当∞→n 是同阶无穷小.则(1)当1>p 时,级数1n n u ∞=∑收敛;(2)当1≤p 时,级数1n n u ∞=∑发散.把比较判别法和比式判别法结合,又可得定理2.11(比值比较判别法)[7]:设级数1n n u ∞=∑和1n n v ∞=∑都是正项级数且存在自然数N ,使当n≥N 时有11n n n nu v u v ++≤, 则有(i )若1n n v ∞=∑收敛,则1n n u ∞=∑也收敛;(ii ) 若1n n u ∞=∑发散,则1n n v ∞=∑也发散.证:当n ≥N 时,由已知有12121111n N N n N N n n N N N n N N n Nu u u u v vv v u u u u v v v v +++++-+-=≤=. 由此可得,.N N n n n n N Nu vu v u v v u ≤≤ 再由比较判别法即知定理结论成立. 较比式判别法更为精细的判别法是定理2.12[3](高斯判别法,Gauss ):设1n n u ∞=∑是正项级数且满足 11,ln ln n n u u v o u n n n n n λ+⎛⎫=+++ ⎪⎝⎭则有(i )若1λ>或者1λ=,1u >或者1,1u v λ==>,则级数1n n u ∞=∑收敛;(ii ) 若1λ<或者1λ=,1u <或者1,1u v λ==<,则级数1n n u ∞=∑发散.定理2.12’[9](高斯推论):设1n n u ∞=∑是正项级数且满足211,n n u uO u n n λ+⎛⎫=++ ⎪⎝⎭则有(i )若1λ>或1λ=,1u >,则级数1n n u ∞=∑收敛;(ii )若1λ<或1λ=,1u ≤,则级数1n n u ∞=∑`发散.3 一般项级数敛散性判别法我们经常遇到一些级数,它们并不是都为非负,如交错级数等,对于这一类的级数我们不能再套用上述的正项级数的判别法来判断它们的敛散性了.根据柯西收敛原理,级数1n n u ∞=∑收敛的充分必要条件是:对任给的0ε>,存在N ,只要n N >,对任意正整数p ,有12.n n n p u u u ε++++++<在研究一般项级数的判别法前我引进绝对收敛与条件收敛的概念. 定义[4]:若级数1n n u ∞=∑收敛,则称级数1n n u ∞=∑是绝对收敛的;若级数1n n u ∞=∑收敛,但级数1n n u ∞=∑发散,则称级数1n n u ∞=∑是条件收敛的.由柯西收敛准则,有 定理3.1[4]若级数∑∞=1||n n u 收敛,则级数∑∞=1n n u 收敛.要判别级数∑∞=1||n n u 敛散性,可用上述介绍的正项级数敛散性的判别方法去判断.定理3.2[6](分部求和判别法):对级数1,n n n u p ∞=∑用n A 表示级数1n n u ∞=∑的部分和,即 1nn k k A u ==∑.如果极限lim n n n A p →∞存在,那么下面两个级数有相同的收敛性:1,nn n up ∞=∑11().n n n n A p p ∞+=-∑这个判别法的特点是:把因子1,2,,,n u u u 分离出来,求出部分和n A ,再研究级数11()n n n n A pp ∞+=-∑的收敛性(前提是极限lim n n n A p →∞存在.)证明:先分析级数1n n n u p ∞=∑的部分和.为此分析乘积k k u p ;用增减项的办法,可以看出,11111()()k k k k k k k k k k k k u p A A p A p A p p A p -----=-=---.由此得到1111()()k k k k k k k k k u p A p A p A p p ----=---.让k 从1变到n,对等式的各项求和,110011()(0,0)nnkk n n k k k k k up A p A p p A p --===--==∑∑.这个等式可以改写为1111()nn kk n n k k k k k up A p A p p -+===--∑∑.(这叫做阿贝尔分部求和公式.)现在令n →∞,考察极限1lim nk k n k u p →∞=∑.由阿贝尔分部求和公式可以看出:因为极限lim n n n A p →∞存在,所以1lim n k k n k u p →∞=∑存在111lim ()n k k k n k A p p -+→∞=⇔-∑存在.这个结论的级数语言是:111()k k n n n n n up A p p ∞∞+==⇔-∑∑收敛收敛. 这样就证明完成了证明.对于最特殊的变号级数—交错级数,有定理 3.3[10](莱布尼兹判别法):对于交错级数,如果一般项的绝对值组成的数列单调递减趋向于0(当n →∞),那么交错级数收敛.对于一般项级数,则有定理3.4[10](狄利克雷判别法): 对级数1,n n n u p ∞=∑用n A 表示级数1n n u ∞=∑的部分和,即 1nn k k A u ==∑.如果{}n A 是有界数列,并且数列{}n p 单调递减趋向于0,那么级数1,n n n u p ∞=∑收敛.证明: 由条件可知, lim n n n A p →∞=0.因此根据分部求和判别法, 下面两个级数有相同的收敛性: 1,n n n up ∞=∑11().n n n n A p p ∞+=-∑ 以下只需验证:后一个级数是绝对收敛的.实际上,数列{}n A 是有界的,不妨设()n A A n ≤∀.这样一来,11()()n n n n n A p p A p p ++-≤-.另外,1111111()lim ()lim()nn n k k n n n n k pp p p p p p ∞+++→∞→∞==-=-=-=∑∑ 因此根据控制收敛判别法,级数11()n n n n A p p ∞+=-∑收敛.定理3.5(阿贝尔Aebel 判别法)[4]设数列}{n a 单调有界,级数∑∞=1n n b 收敛,则级数∑∞=1n n n b a 收敛.主要参考文献:[1]刘玉琏,傅沛仁等. 数学分析讲义(第三版). 北京: 高等教育出版社, 2003[2]罗仕乐 . 数学分析续论 . 韶关学院数学系选修课程. 2003.8[3]李成章,黄玉民. 数学分析(上册).北京: 科学出版社,1999.5[4]邓东皋, 尹小玲. 数学分析简明教程.北京: 高等教育出版社, 2000.6[5]张筑生. 数学分析新讲.北京: 北京大学出版社, 2002.2[6]丁晓庆. 工科数学分析(下册).北京: 科学出版社,2002.9[7]R.柯朗, F.约翰. 微积分和数学分析引论.北京: 科学出版社, 2002.5[8]朱时. 数学分析札记 .贵州: 贵州教育出版社, 1996.5[9][美] 约翰鲍逊等,邓永录译. 现在数学分析基础.广东:中山大学出版社, 1995.2[10] 王昆扬. 数学分析专题研究.北京: 高等教育出版社, 2001.6The law of differentiating about the fact that several items of progression disappear and dispersingLiu Xianyang(Department of Mathematics,Shaoguan University,00 mathematics and applied mathematics undergraduate course. ,Shaoguan 512005,GuangDong)Abstract:One of the main content while analyzing that progression is mathematics. That the several a item ofprogressions of study disappear and disperse to differentiate law have a lot of kinds we, If Cauchy differentiate law, D'Alembert differentiate law, Raabe differentiate , Gauss differentiate law, Dirichlet differentiate law, Leibniz differentiate law, Abel differentiate law, etc. law. That items of progression disappear and disperse to differentiate law sum up, systematize it logarithm.Keywords:Several items of progression ; A progression ; Turn into number progression ; Hold back the scattered quality ; Differentiate law ization.。
级数收敛的判别方法

级数收敛的判别方法级数是数列之和的概念的推广,是数学中一个重要的概念。
在分析数列的性质时,常常会遇到级数的问题,特别是判断一个级数的和是否存在、是否有限。
级数的收敛性是很多数学问题的基础,因此研究级数收敛的判别方法是非常重要的。
在研究级数的收敛性时,我们通常会使用以下几个重要的判别方法:1.正项级数收敛判别法2.比较判别法3.比值判别法4.根值判别法5.积分判别法6.达朗贝尔判别法(柯西判别法)7.绝对收敛与条件收敛接下来,我们将逐一介绍这些判别法。
1.正项级数收敛判别法:对于一个数列{a_n},如果对于任意的n,都有a_n≥0成立,那么级数∑(n=1)^∞a_n称为正项级数。
正项级数的收敛性可直接根据其前n项和序列的有界性来判断。
如果前n项和序列有界,则正项级数收敛;如果无界,则正项级数发散。
2.比较判别法:比较判别法指的是通过将级数与一个已知的收敛级数或发散级数进行比较,来判断级数的收敛性。
(1)比较于已知的收敛级数:如果已知级数∑b_n收敛,且对于n≥1,都有0≤a_n≤b_n成立,则级数∑a_n也收敛。
(2)比较于已知的发散级数:如果已知级数∑b_n发散,且对于n≥1,都有0≤b_n≤a_n成立,则级数∑a_n也发散。
在使用比较判别法时,选择一个合适的用来比较的级数非常关键。
通常我们会选取一些常见的收敛级数或发散级数作为参照。
3.比值判别法:比值判别法是通过计算级数相邻两项的比值的极限来判断级数的收敛性。
设级数为∑a_n,如果存在正数M,使得当n足够大时,有:a_(n+1)/a_n,≤M,(比值≤M)则级数∑a_n收敛;如果对于所有的n,有,a_(n+1)/a_n,≥M(比值≥M),则级数∑a_n发散。
通过比值判别法,我们可以判断出级数的发散和收敛,并得到级数的估计和级数之间的关系。
4.根值判别法:根值判别法与比值判别法类似,也是通过计算级数相邻项的比值的极限来判断级数的收敛性。
如果存在正数M,使得当n足够大时,有:lim(n→∞)∛,a_n,/∛n ≤ M,(根值≤M)则级数∑a_n收敛;如果对于所有的n,有lim(n→∞)∛,a_n,/∛n≥M (根值≥M),则级数∑a_n发散。
函数项级数一致收敛的几种判定及相应推广毕业论文

函数项级数一致收敛的几种判定及相应推广摘要函数项级数一致收敛的判别法是数学中的一个重点也是一个难点,一个函数项级数是收敛还是发散,数学上建立了一系列的判别法可以来进行判别.我们比较熟悉的判别法有:柯西(Cauchy)一致收敛准则、魏尔斯特拉斯判别法(M 判别法)、阿贝耳(Abel)判别法、狄利克雷(Dirichlet)判别法、积分判别法、还有更为精细的狄尼(Dini)定理、确界判别法、数列判别法等等.这些判别法虽然对我们研究函数项级数一致收敛的问题上带来了很大的方便,但是对于更深层次的研究函数项级数一致收敛仍然是不够的,因此函数项级数判别法推广的研究也是研究函数可微性至关重要的一部分.本文将分为三个部分研究:第一个部分主要介绍函数项级数一致收敛的相关概念;第二个部分介绍柯西(Cauchy)一致收敛准则、魏尔斯特拉斯判别法(M判别法)、阿贝耳(Abel)判别法、狄利克雷(Dirichlet)判别法、积分判别法的定理及相应的详细证明,最后给出典型例题对这几种判别法的简单应用,又简单介绍了狄尼(Dini)定理、确界判别法的定理;第三个部分就是简单介绍以上几种判别法的相应的推广,主要包括判别法推广的定理、定理的证明及在解题中的应用.其中定理3.4的结论与课本内容相符,但条件有所减弱,通过引入有界变差的定义从而得到了与课本内容相一致的结论.关键词:函数项级数;一致收敛;判别及推广AbstractJudging method of uniform convergence of the series of functional is a key point as well as a difficult point in mathematics .A series criterion is established in mathematics to judge whether a series of a function is convergent or divergent. We are more familiar with criterions such as Cauchy (Cauchy) uniform convergence criterion ,Weierstrass Criterion (M Criterion), Abel (Abel) Criterion, Dirichlet (Dirichlet) Criterion, points Criterion, and more subtle Dini(Dini)theorem, Supremum Criterion, Criterion Series and so on .Although these methods to study about the approximate convergence of series of functions is a big issue of convenience for us , it is still not enough for a deeper study of the function of approximate convergence. So the research about the promotion of discriminant function series is a critical part for exploring differentiability of function.Therefore ,this paper will focus on three parts to research: the first part focuses on related concepts of the approximate convergence of series of functions; the second part introduces the Cauchy (Cauchy) uniform convergence criterion、Weierstrass Criterion (M Criterion), Abel (Abel) Criterion, Dirichlet (Dirichlet) Criterion, theorem of integration criterion and the corresponding detailed proof ;the third part simply introduces the corresponding expansion of above-mentioned criterions, including theorem of the promotion criterion as well as its proof and the application in the title. The conclusions in 3.4 correspond with the textbook’s contents, but the conditions become a little weaker. By introducing the definition of bounded variables, we get the same conclusions with contents of the textbook.Keywords: Series of functions; Uniform convergence;Discrimination and promote目录摘要 (I)Abstract (II)1引言 (1)1.1 研究现状 (1)1.2 本文决所要解的问题 (1)1.3 本文结构及所做的工作 (1)2 函数项级数一致收敛的判别法 (2)2.1 预备知识 (2)2.2 函数项级数的柯西判别法 (2)2.3 函数项级数的M判别法 (3)2.4 函数项级数的阿贝耳判别法 (3)2.5 函数项级数狄利克雷判别法 (4)2.6 函数项级数的柯西积分判别法 (5)2.7函数项级数其他判别法 (8)3 函数项级数判别法的推广 (11)3.1 函数项级数柯西判别法的推广 (11)3.2 函数项级数M判别定理的推广 (16)3.3 函数项级数阿贝尔判别法的推广 (18)3.4 函数项级数柯西积分判别法的推广 (19)3.5 函数项级数优级数判别法的推广 (21)4总结与展望 (23)参考文献 (24)致谢...............................................................................................错误!未定义书签。
关于数项级数收敛的判别法的进一步研究

摘要:正项级数是级数内容中的最基本的一类级数。
它敛散性的判定是级数中的核心问题。
正项级数的敛散性的判别方法有很多,常用的和一些新的判别法,如比较判别法、柯西判别法、达朗贝尔判别法和拉贝尔判别法等,但运用起来还是需要一定的技巧,需要根据对不同级数通项的特点进行分析,选择合适的方法进行判定。
而为了进一步研究这些判别法,本文着重从Abel-Dini定理和对数判别法入手,对这两种方法进行进一步的推广。
关键词:级数;收敛;发散;Abel-Dini定理;对数判别法。
Abstract:Positive terms series is a series content in the most basic class series. It determine the Convergence and Divergence of the core issue in the series. Is the series convergence and divergence of discrimination in a lot of commonly used and some new criterion France, such as the Comparison Tests, the Cauchy discrimination law, D'Alembert, discrimination law and Rabel discrimination law, but the use of or need certain skills you need, select the appropriate method to determine according to the analysis of different series pass characteristics. In order to further study these discriminant France, this article focuses on start by Abel-Dini, theorem and the logarithmic discriminant of these two approaches to further promotion.Key words: series; convergence; divergence; Abel-Dini theorem; logarithmic method.目录一引言………………………………………………………………二数项级数概述及其常见判别法总结……………………………三正项级数Abel-Dini定理……………………………………四对数判别法………………………………………………………参考文献……………………………………………………………关于正项级数收敛的判别法的进一步研究重庆工商大学 数学与应用数学 2008级数学一班 马开友指导老师 安军一 引言在数学分析中,数项级数是全部级数理论的基础,主要包括正项级数和交错级数,而正项级数在数项级数中是最基本的,同时也是十分重要的一类级数,具有很强的实用价值和广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华北水利水电学院高等数学(下)课程名称:_数项级数敛散性判别法总结__专业班级:____2 0 1 1 0 0 7____成员:__张吉 201100713____联系方式:__150****5241__2012年5月23日数项级数敛散性判别法总结摘要:级数是数学分析中的主要内容之一,我们学习过的数项级数收敛性判别法有很多,如:等比级数、调和级数的收敛性、比值辨别法、极值辨别法。
比较判别法的极限的形成,比较判别法和交错判别法等。
关键词:数项级数 收敛性 判别法 一、数项级数的收敛性定义2(高等数学 航空工业出版社 p227)。
如果 1U n n ∞=∑的部分和数列 []n S 的极限存在,即:lim n →∞n S =S则称级数 1U n n ∞=∑ 收敛 ,S 为级数 1U n n ∞=∑ 的和。
记为:1231U ......= S nn n U U UU ∞==++++∑如果 lim n →∞n S 不存在,则称级数 1U n n ∞=∑ 发散。
二、等比级数的收敛性,总结如下:等比级数(几何级数) n 0naq∞=∑(0)a ≠当 1q < 时,级数收敛,且和 S = n 0naq∞=∑1a q=- 当1q ≥ 时,级数发散。
讨论如下:等比级数 2+na aq a a q qaq =++n...+ (0)a ≠ 的收敛性:当q ≠1时,部分和 2+11a a aq a a qq qq --++==-=n1n...+()nS因此,当1q <时,lim n →∞n S 1aq=- 此时,级数收敛。
当 1q > 时, lim n →∞n S ∞= 此时级数发散。
当q 1=- 时,n 为奇数时,n a S = ,n 为偶数时,0n S =。
故lim n →∞n S 不存在。
此时发散。
当q=1时,...()na a a na n S =++=→∞→∞ ,故发散。
总结:常用的判别方法,只是用等比级数。
三、证明调和级数的敛散性。
(反证法)例如:证明 11n n∞=∑ 是发散的。
证:假设调和级数 11n n∞=∑ 收敛,其和为S ,则2lim ()0n n n S S →∞=-=然而,211111...=123222n n n n n n n n S S -=+++>+++由上可知,n →∞时,有 02≥矛盾出现,因而假设不成立,所以调和级数时发散的。
四、性质1. 如果级数1n Un∞=∑ 收敛于和S ,则它的各项乘以一个常数K 所得的级数 1n KUn∞=∑ 也收敛,且和尾 KS 。
性质2. 如果级数 1n Un ∞=∑ 1n n θ∞=∑ ,分别收敛于 1S 2S 则级数 1(n)n Un θ∞=+∑ 也收敛,和为 12S S + 。
性质3. (两边夹定理)如果Un n Wn θ≤≤,且1n Un ∞=∑ 和 1n Wn ∞=∑都收敛,则 1n n θ∞=∑ 也收敛 性质4. 在一个级数中任意去掉,增加或者改变有限项后,级数的收敛性不会改变,但对于收敛级数,其和将会受到影响。
性质5. 如果级数1n Un∞=∑收敛,则对于级数的项任意加括号后所得到得级数121(...)(1...)n nk nk u u u u u -+++++++仍收敛,且其和不变。
注意!:如果加括号后所得的级数收敛,则不能断定去括号后原来的级数也收敛。
例如:(11)(11)...-+-+ 收敛于零,但级数却是发散的。
根据性质5可以推论出:如果加括号所得的级数发散,则原来的级数也发散,若原来的级数收敛,则加括号的级数仍收敛。
定理1. (级数收敛的必要条件) 如果级数1n Un∞=∑收敛,则它的一般项Un 趋近于零,即n lim 0Un →∞= 推论 :如果n lim 0Un →∞≠(包括极限不存在),则级数 1n Un∞=∑ 发1111...-+-+散。
总结 : 此定理应用广泛。
五、积分判别法对于P 级数 11n np ∞=∑ 有P 为实数,总结如下:当 1P > 时,级数发散。
当1P ≤ 时,级数收敛。
总结:积分判别法时一种最普遍的方法。
定理[2.1] [高等数学:第三版 科学出版社]六、比值判别法 已知级数 1n n a ∞=∑ (1)若 1lim1n n n l a a +→∞=< ,则级数绝对收敛,从而收敛(2)若 1lim 1n n nl a a +→∞=> ,或 1limn n na a +→∞=+∞ 则级数发散(3)若 1lim1n n nl a a+→∞== , 则级数可能收敛,可能发散,需用其他方法判别其收敛性。
例如:判别 1313nn n ∞=-∑ 的收敛性解: 由于1n 13(1)13U n n +++-=,3n 1=3nn U - ,1n 1n3(1)11lim lim1313U 3U3n n n nn n ++→∞→∞+-==<-所以级数收敛。
总结:此判别法又称为 达朗贝尔(DAlembert 判别法) 是应用最广泛的判别法。
七、定理12.12(极值判别法),已知级数 1n n a ∞=∑ (1)若L n =<1,则级数绝对收敛,从而收敛。
(2)若L n =>1或n =∞+ ,则级数发散。
(3)若L n ==1,则级数可能收敛也可能发散。
需要用其他判别法判断其收敛性。
例如:判定级数 1(1)11111(1+++++...)8432102nn n ∞+=-=∑ 的收敛性 解: 11(1)111lim lim lim122(1)(1)211()()222nnnn n n nnn nn→∞→∞→∞-===<+--+由极限判别法可知,级数收敛。
总结:例题为正项级数,极值判别法可用于判别正项级数 1n n a ∞=∑ 的敛散性,形式类似于比值判别法,应用也比较广泛。
八、定理 12.7 比较判别法的极限形式 【高等数学 科学出版社】设1n n a ∞=∑ 1n n b ∞=∑ 是两个正项级数 (1)若 n lim n nca b→∞= ,且0c ≠ ,则两个级数有相同的敛散性。
(2)若 n lim n na b →∞=∞ , 则由级数 1nn b∞=∑ 发散可推出1n n a ∞=∑ 发散 。
(3)若 n lim 0nna b →∞= ,则 1nn b∞=∑ 收敛 ,可推出 1n n a ∞=∑ 收敛。
例如:判别级数 1131n n ∞=+∑ 的敛散性 解: 选择 11n n ∞=∑ 作为参考级数,由于 3111lim 031n n n→∞+=>而级数 11n n ∞=∑ 发散,根据定理,则此级数发散。
九、定理 12.6 比较盘被罚 [高等数学 科学出版社]设 1n n a ∞=∑ ,1n n b ∞=∑ 是两个正项级数 (1)若级数 1n n b ∞=∑ 收敛,且 n n a b ≤ (=1,2,3....)n ,则级数 1n n a ∞=∑ 也收敛(2)若 1n n b ∞=∑ 收敛,且n n a b ≥ (=1,2,3....)n ,则 1n n a ∞=∑ 也发散 例如:判别级数 311nnn ∞=∑ 的收敛性解: 因为 311Un n3nnnθ=≤=而级数113nn ∞=∑ 为113q =< 等比级数 ,是收敛的,所以311nnn ∞=∑ 是收敛的。
定理八九总结:使用比较判别法及其极限形式时,常常以等比级数和P 级数作为比较标准。
十、交错级数敛散性的判别法 [高等数学 科学出版社] 定理12.8 [高等数学 科学出版社]【莱布尼茨定理】设交错级数 11(1)n n n a ∞-=-∑ 0()n a > ,如果 n a 满足条件:(1) {n a } 是单调减少数列,即 1(=12,3...)n n n a a +≤,(2) n limna →∞= 则该交错级数收敛,否则发散。
例如: 判别级数 n 11111......(1)234n-+-++- 的收敛性。
解:该级数为交错级数,1n nU=111n n U+=+ 且满足(1) 1111n n n n U U +=>=+ (=123...)n ,,(2) n n 1limlim0n n U→∞→∞== 所以级数收敛。