高三物理二轮复习 专题4 曲线运动练习

合集下载

高三物理二轮专题复习 专题四 曲线运动

高三物理二轮专题复习 专题四 曲线运动

甲 乙专题四 曲线运动1、如图所示,在高h 处有个小球A ,以速度v 1水平抛出,与此同时,地面上有个小球B ,以速度v 2竖直向上抛出,两小球在空中相遇,则( )A. 从抛出到相遇所需的时间为h/v 1B. 从抛出到相遇所需的时间为h/v 2C. 两球抛出时的水平距离为hv 1/v 2D. 从抛出到相遇所需的时间为h/g2、从同一高度以相同的速率分别抛出的三个小球,一个竖直上抛,一个竖直下抛,另一个平抛,则它们从抛出到落地,以下说法正确的是 ( )A .运行的时间相等B .加速度相同C .落地时的速度方向相同D .落地时的速度大小相等3、将一物体以初速度v 0水平抛出,从抛出某时刻物体的水平分运动的位移大小与竖直分运动的位移大小相等,下列说法中正确的是( )AB gv 02D 4A 5A D 6巧在B()A .ABCD .A 、B 7 A .45° 8、这两个分运动的中正确的是(A .图线2表示竖直分运动的v -t 图线B .t 1时刻的速度方向与初速度方向夹角为30°C .t 1时间内的竖直位移与水平位移之比为1:2D .2t 1时刻的速度方向与初速度方向的夹角为60°9、船在静水中的速度与时间的关系如图甲所示,河水的流速与船离河岸的距离的变化关系如图乙所示,则( ) A .船渡河的最短时间60sB .要使船以最短时间渡河,船在行驶过程中,船头必须始终与河岸垂直C .船在河水中航行的轨迹是一条直线D .船在河水中的最大速度是5m/s10、如图所示小球沿水平面通过O 点进入半径为R 的半圆弧轨道后恰能通过最高点P ,然后落回水平面.不计一切阻力.下列说法不正确...的是 ( ) A.小球落地点离O 点的水平距离为2R .B.小球落地点时的动能为5mgR/2.C.小球运动到半圆弧最高点P 时向心力恰好为零.D.若将半圆弧轨道上部的1/4圆弧截去,其他条件不变,则小球能达到的最大高度比P 点高0.5R . 11、铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h 的设计不仅与r 有关,还与火车在弯道上的行驶速率v 有关.下列说法正确的是( )A .v 一定时,r 越小则要求h 越大B .v 一定时,r 越大则要求h 越大C .r 一定时,v 越小则要求h 越大D .r 一定时,v 越大则要求h 越大 12、如图所示,质量为m 的物体被细绳牵引着在光滑水平面上做匀速圆周运动,O 为一光滑孔,当拉力为F 时,转动半径为R ;当拉力为8F 时,物体仍做匀速圆周运动,其转动半径为R/2,在此过程中,外力对物体做的功为A.7FR /213( )A .周期 C .向心力 14、一质量为m (重力加速度为A .mg μ 15、如图所示,圆形轨道的半径为R 。

高考物理专项练习04曲线运动(付解析)

高考物理专项练习04曲线运动(付解析)

专项练习04曲线运动(共三节)练习一1、北京冬奥会跳台滑雪空中技巧比赛场地边,有一根系有飘带的风力指示杆,教练员根据飘带的形态提示运动员现场风力的情况。

若飘带可视为粗细一致的匀质长绳,其所处范围内风速水平向右、大小恒定且不随高度改变。

当飘带稳定时,飘带实际形态最接近的是( )A. B. C. D.2、如图5所示,在竖直平面内,截面为三角形的小积木悬挂在离地足够高处,一玩具枪的枪口与小积木上P 点等高且相距为L 。

当玩具子弹以水平速度v 从枪口向P 点射出时,小积木恰好由静止释放,子弹从射出至击中积木所用时间为t 。

不计空气阻力。

下列关于子弹的说法正确的是( )A. 将击中P 点,t 大于L vB. 将击中P 点,t 等于L vC. 将击中P 点上方,t 大于L vD. 将击中P 点下方,t 等于L v3、图是滑雪道的示意图。

可视为质点的运动员从斜坡上的M 点由静止自由滑下,经过水平NP 段后飞入空中,在Q 点落地。

不计运动员经过N 点的机械能损失,不计摩擦力和空气阻力。

下列能表示该过程运动员速度大小v 或加速度大小a 随时间t 变化的图像是( )A. B. C. D.4、如图所示,某同学将离地1.25m 的网球以13m /s 的速度斜向上击出,击球点到竖直墙壁的距离4.8m 。

当网球竖直分速度为零时,击中墙壁上离地高度为8.45m 的P 点。

网球与墙壁碰撞后,垂直墙面速度分量大小变为碰前的0.75倍。

平行墙面的速度分量不变。

重力加速度g 取210m /s ,网球碰墙后的速度大小v 和着地点到墙壁的距离d 分别为( )A 5m /s v =B. /s v =C. 3.6m =dD.3.9m=d5、无人配送小车某次性能测试路径如图所示,半径为3m 的半圆弧B C 与长8m 的直线路径A B相切于B 点,与半径为4m 的半圆弧C D 相切于C 点。

小车以最大速度从A 点驶入路径,到适当位置调整速率运动到B 点,然后保持速率不变依次经过B C 和C D 。

高三物理二轮复习 专题4 曲线运动练习-人教版高三全册物理试题

高三物理二轮复习 专题4 曲线运动练习-人教版高三全册物理试题

专题四 曲线运动1.将铅球斜向上推出后,铅球沿曲线运动,这是因为( ) A .铅球的惯性不够大 B .铅球所受的重力太大C .铅球被推出时的速度较小D .铅球所受重力与速度方向不在同一直线上2.如下列图,小铁球在光滑水平桌面上以某一速度做直线运动,当它经过磁铁附近后的运动轨迹可能是 ( ) A .Oa B .Ob C .Oc D .Od3.一物体做平抛运动的轨迹如下列图,如此物体在轨迹上P 点时的速度方向为 ( ) A .P →a B .P →b C .P →c D .P →d4.一水平固定的水管,水从管口以不变的速度源源不断地喷出。

水管距地面高h =1.8m ,水落地的位置到管口的水平距离x =1.2m 。

不计空气阻力和摩擦阻力,水从管口喷出的初速度大小为 ( )A .1.2m/sB .2.0m/sC .3.0m/sD .4.0m/s5.两物体在同一高度处被水平抛出后,落在同一水平面上,不计空气阻力,如此 ( ) A .速度大的物体运动时间较长 B .速度小的物体运动时间较长 C .质量小的物体运动时间较长 D .两物体运动的时间一样长6.某卡车在公路上与路旁障碍物相撞。

处理事故的警察在泥地中发现了一个小的金属物体,经判断,知识内容考试要求 困惑 必考 加试 曲线运动b b运动的合成与分解 b c 平抛运动d d 圆周运动、向心加速度和向心力 d d 生活中的圆周运动c它是相撞瞬间车顶上一个松脱的零件被抛出而陷在泥里的。

为了判断卡车是否超速,需要测量的量是 ( ) A .车的长度,车的重量 B .车的高度,车的重量C .车的长度,零件脱落点与陷落点的水平距离D .车的高度,零件脱落点与陷落点的水平距离7.如下列图为足球球门,球门宽度为L 。

一个球员在球门中心正前方距离球门s 处高高跃起,将足球顶入球门的左下方死角〔图中P 点〕。

球员顶球点的高度为h ,足球做平抛运动〔足球可看成质点,忽略空气阻力〕,如此 ( )A .足球位移的大小x =224s L + B .足球初速度的大小v 0 =)4(222s L h g + C .足球末速度的大小v =gh s L h g 4)4(222++ D .足球初速度的方向与球门线夹角的正切值tan θ=sL 2 8.关于平抛运动和匀速圆周运动,如下说法正确的答案是 ( ) A .平抛运动是变加速曲线运动 B .平抛运动是匀变速曲线运动 C .匀速圆周运动是匀变速曲线运动 D .做匀速圆周运动的物体处于平衡状态9.做匀速圆周运动的物体,在运动过程中保持不变的物理量是 ( ) A .线速度 B .角速度 C .加速度 D .合力10.两个物体做半径不同的匀速圆周运动,如下说法正确的答案是 ( ) A .假设周期相等,如此角速度相等B .假设周期相等,如此线速度大小相等 C .假设线速度相等,如此向心加速度相等D .假设角速度相等,如此向心加速度相等 11.如图为某中国运动员在短道速滑比赛中勇夺金牌的精彩瞬间。

2020届高考物理二轮复习刷题首选卷专题四曲线运动精练(含解析)

2020届高考物理二轮复习刷题首选卷专题四曲线运动精练(含解析)

专题四曲线运动『经典特训题组』1.(多选)如图甲所示,在杂技表演中,猴子沿竖直杆向上运动,其v­t图象如图乙所示,同时人顶杆沿水平地面运动的x­t图象如图丙所示。

若以地面为参考系,下列说法中正确的是( )A.猴子的运动轨迹为直线B.猴子在2 s内做匀变速曲线运动C.t=0时猴子的速度大小为8 m/sD.t=2 s时猴子的加速度大小为4 m/s2答案BD解析由题图乙知,猴子竖直方向上向上做匀减速直线运动,加速度竖直向下,由题图丙知,猴子水平方向上做匀速直线运动,则猴子的加速度竖直向下且加速度的大小、方向均不变,与初速度方向不在同一直线上,故猴子在2 s内做匀变速曲线运动,A错误,B正确;x­t图象的斜率等于速度,则知t=0时猴子水平方向的速度大小为v x=4 m/s,又竖直方向初速度大小v y=8 m/s,则t=0时猴子的速度大小为:v=v2x+v2y=4 5 m/s,故C错误;v­t图象的斜率等于加速度,则知猴子的加速度为:a=ΔvΔt=0-82m/s2=-4 m/s2,即加速度大小为4 m/s2,故D正确。

2.(多选) 如图所示,轰炸机沿水平方向匀速飞行,到达山坡底端正上方时释放一颗炸弹,炸弹垂直击中山坡上的目标A。

已知A点高度为h=360 m,山坡倾角θ为37°,sin37°=0.6,cos37°=0.8,g取10 m/s2,由此可算出( )A.炸弹的飞行时间为0.8 sB.炸弹飞行的水平位移为480 mC.轰炸机的飞行高度为680 mD.炸弹的落地速度为80 m/s答案BC解析 如图所示,已知A 点高度为h =360 m ,山坡倾角为37°,可算出炸弹飞行的水平位移为x =h tan37°=480 m ,故B 正确;炸弹垂直击中目标A ,可知炸弹的速度偏转角满足φ=π2-θ=53°,由平抛运动的速度与水平方向夹角的正切值是位移与水平方向夹角正切值的2倍可知tan φ=gt v 0=2H x,解得H =320 m ,所以轰炸机的飞行高度H 总=H +h =680 m ,故C 正确;炸弹的飞行时间t = 2H g=8 s ,故A 错误;炸弹的初速度为v 0=x t =60 m/s ,落地速度v =v 0cos φ=100 m/s ,故D 错误。

高考物理二轮复习 专项训练 物理曲线运动含解析

高考物理二轮复习 专项训练 物理曲线运动含解析

高考物理二轮复习专项训练物理曲线运动含解析一、高中物理精讲专题测试曲线运动1.如图所示,在平面直角坐标系xOy内,第Ⅰ象限的等腰直角三角形MNP区域内存在垂直于坐标平面向外的匀强磁场,y<0的区域内存在着沿y轴正方向的匀强电场22mvEqh=.一质量为m、电荷量为q的带电粒子从电场中Q点以速度v0水平向右射出,经坐标原点O射入第Ⅰ象限.已知粒子在第Ⅲ象限运动的水平方向位移为竖直方向位移的2倍,且恰好不从PN边射出磁场.已知MN平行于x轴,N点的坐标为(2h,2h),不计粒子的重力,求:⑴入射点Q的坐标;⑵磁感应强度的大小B;⑶粒子第三次经过x轴的位置坐标.【答案】(1)()2,h h--(2))221mvqh(3)(20262,0v ghg⎡⎤--⎢⎥-⎢⎥⎣⎦【解析】【分析】带电粒子从电场中Q点以速度v0水平向右射出,在第Ⅲ象限做的是类平抛运动,在第I象限,先是匀速直线运动,后是圆周运动,最后又在电场中做类斜抛运动.【详解】(1)带电粒子在第Ⅲ象限做的是类平抛运动,带电粒子受的电场力为1F运动时间为1t,有1F qE=22mvh=由题意得11F qEam m==101x v t=21112y at=解得21mvxEq=2012mv y Eq=202mv E qh=Q 的坐标()2,h h --(2) 带电粒子经坐标原点O 射入第Ⅰ象限时的速度大小为1v0x v v =1y v at =1mv t Eq=联立解得0y v v =102v v =由带电粒子在通过坐标原点O 时,x 轴和y 轴方向速度大小相等可知,带电粒子在第I 象限以02v 速度大小,垂直MP 射入磁场,并在洛伦兹力作用下做匀速圆周运动,且恰好不从PN 边射出磁场.如下图所示,设圆周的半径为R ,由牛顿第二定律则有20022mv q v B R= 02R qB=由图知EC 是中位线,O 1是圆心,D 点是圆周与PN 的切点,由几何知识可得,圆周半径R =解得)021B mv qh=(3)0,且抛 射角是045,如下图所示,根据斜抛运动的规律,有20x v =cos45020y v =sin450带电粒子在电场中飞行时间为2t 则有10222y v v t gg==带电粒子在电场中水平方向飞行距离为2x 有202222x v x v t g==带电粒子在2p 点的坐标 由几何知识可知2p 点的坐标是,0)带电粒子在1p 点的坐标是(2026,0v gh g ⎡⎤--⎢⎥-⎢⎥⎣⎦【点睛】带电粒子在不同场中运动用不同的物理公式以及利用几何知识来计算.2.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B 点。

统考版2021高考物理二轮复习专题强化练4电场和磁场中的曲线运动含解析

统考版2021高考物理二轮复习专题强化练4电场和磁场中的曲线运动含解析

电场和磁场中的曲线运动一、选择题(1~5题为单项选择题,6~9题为多项选择题)1.如图所示,正方形区域内存在垂直纸面向里的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b点射出.下列说法正确的是( )A.粒子带正电B.粒子在b点的速率大于在a点的速率C.若仅减小磁感应强度,则粒子可能从b点右侧射出D.若仅减小入射速率,则粒子在磁场中运动时间变短2.如图所示,两极板与电源相连接,电子从负极板边缘沿垂直电场方向射入匀强电场,电子恰好从正极板边缘飞出,现保持负极板不动,正极板在竖直方向移动,并使电子入射速度变为原来的2倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板间距离变为原来的( )A.2倍B.4倍C.12D.143.如图所示,两个水平平行放置的带电极板之间存在匀强电场,两个相同的带电粒子从两侧同一高度同时水平射入电场,经过时间t在电场中某点相遇.以下说法中正确的是( )A.若两粒子入射速度都变为原来的两倍,则两粒子从射入到相遇经过的时间为1 2 tB .若两粒子入射速度都变为原来的两倍,则两粒子从射入到相遇经过的时间为14tC .若匀强电场的电场强度大小变为原来的两倍,则两粒子从射入到相遇经过的时间为12tD .若匀强电场的电场强度大小变为原来的两倍,则两粒子从射入到相遇经过的时间为14t4.[2020·武汉武昌区5月调研]如图所示,真空中,垂直于纸面向里的匀强磁场只在两个同心圆所夹的环状区域存在(含边界),两圆的半径分别为R 、3R ,圆心为O .一重力不计的带正电粒子从大圆边缘的P 点沿PO 方向以速率v 1射入磁场,其运动轨迹如图所示,轨迹所对的圆心角为120°.若将该带电粒子从P 点射入的速率变为v 2时,不论其入射方向如何,都不可能进入小圆内部区域,则v 1v 2至少为( )A.233B. 3C.433D .2 3 5.三个质量相等的带电微粒(重力不计)以相同的水平速度沿两极板的中心线方向从O 点射入,已知上极板带正电,下极板接地,三微粒的运动轨迹如图所示,其中微粒2恰好沿下极板边缘飞出电场,则( )A .三微粒在电场中的运动时间有t 3>t 2>t 1B .三微粒所带电荷量有q 1>q 2=q 3C .三微粒所受电场力有F 1=F 2>F 3D .飞出电场时微粒2的动能大于微粒3的动能 6.如图所示,14圆形区域AOB 内存在垂直纸面向内的匀强磁场,AO 和BO 是圆的两条相互垂直的半径,一带电粒子从A 点沿AO 方向进入磁场,从B 点离开,若该粒子以同样的速度从C 点平行于AO 方向进入磁场,则( )A .粒子带负电B .只要粒子入射点在AB 弧之间,粒子仍然从B 点离开磁场C .入射点越靠近B 点,粒子偏转角度越大D .入射点越靠近B 点,粒子运动时间越短 7.如图所示,竖直平面内有水平向左的匀强电场E ,M 点与N 点在同一电场线上,两个质量相等的带正电荷的粒子,以相同的速度v 0分别从M 点和N 点同时垂直进入电场,不计两粒子的重力和粒子间的库仑力.已知两粒子都能经过P 点,在此过程中,下列说法正确的是( )A .从N 点进入的粒子先到达P 点B .从M 点进入的粒子先到达P 点C .粒子在到达P 点的过程中电势能都减小D .从M 点进入的粒子的电荷量小于从N 点进入的粒子的电荷量 8.如图,S 为一离子源,MN 为长荧光屏,S 到MN 的距离为L ,整个装置处在范围足够大的匀强磁场中,磁场方向垂直纸面向里,磁感应强度大小为B .某时刻离子源S 一次性沿平行纸面的各个方向均匀地射出大量的正离子,各离子的质量m ,电荷量q ,速率v 均相同,不计离子的重力及离子间的相互作用力,则( )A .当v <qBL2m时,所有离子都打不到荧光屏上B .当v <qBLm时,所有离子都打不到荧光屏上 C .当v =qBL m 时,打到荧光屏MN 的离子数与发射的离子总数比值为512 D .当v =qBL m 时,打到荧光屏MN 的离子数与发射的离子总数比值为129.[2020·西南名校联盟5月模拟]如图所示,直角三角形ABC 内存在垂直于纸面向外的匀强磁场,磁感应强度为B 0,AC 边长为2L ,AB 边长为L .从AC 边的中点D 连续发射不同速率的相同粒子,方向与AC 边垂直,粒子带正电,电荷量为q ,质量为m ,不计粒子重力与粒子间的相互作用,下列判断正确的是( )A .以不同速率入射的粒子在磁场中运动的时间一定不等B .BC 边上有粒子射出的区域长度不超过33L C .AB 边上有粒子射出的区域长度为(3-1)L D .从AB 边射出的粒子在磁场中运动的时间最短为πm6qB 0二、非选择题 10.如图所示的空间分为Ⅰ、Ⅱ两个区域,边界AD 与边界AC 的夹角为30°,边界AC 与MN 平行,Ⅰ、Ⅱ区域均存在磁感应强度为B 的匀强磁场,磁场的方向分别为垂直纸面向外和垂直纸面向里,Ⅱ区域宽度为d ,边界AD 上的P 点与A 点间距离为2d .一质量为m 、电荷量为+q 的粒子以速度v =2Bqdm,沿纸面与边界AD 成60°角的方向从左边进入Ⅰ区域磁场(粒子的重力可忽略不计).(1)若粒子从P 点进入磁场,从边界MN 飞出磁场,求粒子经过两磁场区域的时间; (2)粒子从距A 点多远处进入磁场时,在Ⅱ区域运动时间最短?11.[2020·全国卷Ⅱ,24] 如图,在0≤x≤h,-∞<y<+∞区域中存在方向垂直于纸面的匀强磁场,磁感应强度B的大小可调,方向不变.一质量为m、电荷量为q(q>0)的粒子以速度v0从磁场区域左侧沿x轴进入磁场,不计重力.(1)若粒子经磁场偏转后穿过y轴正半轴离开磁场,分析说明磁场的方向,并求在这种情况下磁感应强度的最小值B m;(2)如果磁感应强度大小为B m2,粒子将通过虚线所示边界上的一点离开磁场.求粒子在该点的运动方向与x轴正方向的夹角及该点到x轴的距离.12.[2020·浙江7月,22]某种离子诊断测量简化装置如图所示.竖直平面内存在边界为矩形EFGH、方向垂直纸面向外、磁感应强度大小为B的匀强磁场,探测板CD平行于HG水平放置,能沿竖直方向缓慢移动且接地.a、b、c三束宽度不计、间距相等的离子束中的离子均以相同速度持续从边界EH水平射入磁场,b束中的离子在磁场中沿半径为R的四分之一圆弧运动后从下边界HG竖直向下射出,并打在探测板的右边缘D点.已知每束每秒射入磁场的离子数均为N,离子束间的距离均为0.6R,探测板CD的宽度为0.5R,离子质量均为m、电荷量均为q,不计重力及离子间的相互作用.(1)求离子速度v 的大小及c 束中的离子射出磁场边界HG 时与H 点的距离s ; (2)求探测到三束离子时探测板与边界HG 的最大距离L max ;(3)若打到探测板上的离子被全部吸收,求离子束对探测板的平均作用力的竖直分量F 与板到HG 距离L 的关系.13.[2020·江苏卷,16]空间存在两个垂直于Oxy 平面的匀强磁场,y 轴为两磁场的边界,磁感应强度分别为2B 0、3B 0.甲、乙两种比荷不同的粒子同时从原点O 沿x 轴正向射入磁场,速度均为v .甲第1次、第2次经过y 轴的位置分别为P 、Q ,其轨迹如图所示.甲经过Q 时,乙也恰好同时经过该点.已知甲的质量为m ,电荷量为q .不考虑粒子间的相互作用和重力影响.求:(1)Q 到O 的距离d ;(2)甲两次经过P 点的时间间隔Δt ; (3)乙的比荷q ′m ′可能的最小值.供向心力有qv 1B =m v 21r 1,解得v 1=3qBRm .当粒子竖直向上射入磁场时,如果粒子不能进入小圆区域,则粒子从其他所有方向射入磁场都不可能进入小圆区域,粒子恰好不能进入小圆区域时轨道半径r 2=R ,由洛伦兹力提供向心力有qv 2B =m v 22r 2,解得v 2=qBR m ,则有v 1v 2=3,B 正确,A 、C 、D 错误.答案:B5.解析:粒子在电场中运动的时间t =xv ,水平速度相等而位移x 1<x 2=x 3,所以t 1<t 2=t 3,故A 错误;竖直方向y =12at 2=12·qE m t 2,对粒子1与2,两者竖直位移相等,在y 、E 、m 相同的情况下,粒子2的时间长,则电荷量小,即q 1>q 2,而对粒子2和3,在E 、m 、t 相同的情况下,粒子2的竖直位移大,则q 2>q 3,故B 错误;由F =qE ,q 1>q 2可知,F 1>F 2,故C 错误;由q 2>q 3,且y 2>y 3,则q 2Ey 2>q 3Ey 3,电场力做功多,增加的动能大,故D 正确.答案:D 6.解析:粒子从A 点正对圆心射入,恰从B 点射出,根据洛伦兹力方向可判断粒子带正电,故选项A 错误;粒子从A 点射入时,在磁场中运动的圆心角为θ1=90°,粒子运动的轨迹半径等于BO ,当粒子从C 点沿AO 方向射入磁场时,粒子的运动轨迹如图所示,设对应的圆心角为θ2,运动的轨迹半径也为BO ,粒子做圆周运动的轨迹半径等于磁场圆的半径,磁场区域圆的圆心O 、轨迹圆的圆心O 1以及粒子进出磁场的两点构成一个菱形,由于O 1C 和OB 平行,所以粒子一定从B 点离开磁场,故选项B 正确;由图可得此时粒子偏转角等于∠BOC,即入射点越靠近B 点对应的偏转角度越小,运动时间越短,故选项C 错误,D 正确.答案:BD7.解析:两粒子进入电场后做类平抛运动,因为重力不计,竖直方向匀速,水平方向向左匀加速,又因为两粒子在竖直方向的位移相同、速度相同,所以到达P 点的时间相同,故A 、B 错误;电场力对两粒子都做正功,电势能都减小,故C 正确;水平方向上,由于x =12at 2,又因为加速度a =qE m 、两粒子质量相等及到达P 点的时间相等,所以从M 点进入的粒子的加速度小、电荷量小,从N 点进入的粒子的加速度大、电荷量大,故D 正确.答案:CD8.解析:根据半径公式R=mvqB,当v<qBL2m时,R<L2,直径2R<L,所有离子都打不到荧光屏上,A项正确;根据半径公式R=mvqB,当v<qBLm时,R<L,当L2≤R<L,有离子打到荧光屏上,B项错误;当v=qBLm时,根据半径公式R=mvqB=L,离子运动轨迹如图所示,离子能打到荧光屏的范围是N′M′,由几何知识得:PN′=3r=3L,PM′=r=L,打到N′点的离子离开S时的初速度方向和打到M′的离子离开S时的初速度方向夹角为θ=56π,能打到荧光屏上的离子数与发射的离子总数之比k=θ2π=56π2π=512,C项正确,D项错误.答案:AC9.解析:若以不同速率入射的粒子在磁场中运动时都从AC边射出,则运动的时间相等,A错误;如图甲所示,当粒子的速率无穷大时,可认为粒子不发生偏转从E点射出,BC边上有粒子射出的区域为BE部分,长度不超过L tan30°=33L,B正确;如图乙所示,粒子从AB边射出的运动轨迹与AB边相切时,轨迹半径最小,则AB边上有粒子射出的区域在BF之间,由几何关系可知r3L=L-r2L,解得r=3L2+3,则L BF=L-rtan60°=(3-1)L,C正确;从AB边上射出的粒子中,从B点射出的粒子运动时间最短,粒子在磁场中运动所对的圆心角为60°,则粒子在磁场中运动的时间最短为t=T6=πm3qB0,D错误.答案:BC10.解析:(1)设粒子在磁场中做圆周运动的半径为r,则qvB=mv2r,解得r=2d粒子在磁场中做圆周运动的周期为T =2πmqB设粒子在Ⅰ区域转过的角度为θ,则 粒子在Ⅰ区域运动时间t 1=θ360°T设粒子在Ⅱ区域运动时间为t 2,由对称关系可知粒子经过两磁场区域的时间t =t 1+t 2=2t 1解得t =πm3qB.(2)在Ⅱ区域运动时间最短时,圆弧对应的弦长应为d ,由几何关系可知,粒子入射点Q 到边界AC 的距离应为d2,则入射点Q 与A 点的距离为d.答案:(1)πm3qB(2)d11.命题意图:本题考查了带电粒子在磁场中的运动,意在考查考生综合物理规律处理问题的能力.解析:(1)由题意,粒子刚进入磁场时应受到方向向上的洛伦兹力,因此磁场方向垂直于纸面向里.设粒子进入磁场中做圆周运动的半径为R ,根据洛伦兹力公式和圆周运动规律,有qv 0B =m v 2R ①由此可得 R =mv 0qB②粒子穿过y 轴正半轴离开磁场,其在磁场中做圆周运动的圆心在y 轴正半轴上,半径应满足R≤h③由题意,当磁感应强度大小为B m 时,粒子的运动半径最大,由此得 B m =mv 0qh④(2)若磁感应强度大小为B m 2,粒子做圆周运动的圆心仍在y 轴正半轴上,由②④式可得,此时圆弧半径为R′=2h⑤粒子会穿过图中P 点离开磁场,运动轨迹如图所示.设粒子在P 点的运动方向与x 轴正方向的夹角为α,由几何关系sin α=h 2h =12⑥则α=π6⑦ 由几何关系可得,P 点与x 轴的距离为y =2h(1-cos α)⑧联立⑦⑧式得y =(2-3)h⑨答案:见解析12.命题意图:本题考查洛伦兹力和牛顿运动定律、动量及其相关知识点,考查的核心素养是物理观念和科学思维.解析:(1)qvB =mv 2R 得v =qBR m几何关系OO′=0.6Rs =R 2-0.6R 2=0.8R(2)a 、c 束中的离子从同一点Q 射出,α=βtan α=R -s L max。

高考物理二轮复习专题04曲线运动练含解析26物理

高考物理二轮复习专题04曲线运动练含解析26物理

曲线运动1.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的()A. 时刻相同,地点相同B. 时刻相同,地点不同C. 时刻不同,地点相同D. 时刻不同,地点不同【来源】2018年全国普通高等学校招生统一考试物理(江苏卷)【答案】 B点睛:本题以平抛运动为背景考查合运动与分运动的关系及时刻和位置的概念,解题时要注意弹射管沿光滑竖直轨道向下做自由落体运动,小球弹出时在竖直方向始终具有跟弹射管相同的速度。

2.【2017·江苏卷】如图所示,A、B两小球从相同高度同时水平抛出,经过时间t在空中相遇,若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为:()(A)t(B)2t(C)2t(D)4t【答案】C【解析】设第一次抛出时A球的速度为v1,B球的速度为v2,则A、B间的水平距离x=(v1+v2)t,第二次两球的速度为第一次的2倍,但两球间的水平距离不变,则x=2(v1+v2)T,联立得T=t∕2,所以C正确;ABD 错误.【考点定位】平抛运动【名师点睛】本题的关键信息是两球运动时间相同,水平位移之和不变.3.【2016·全国新课标Ⅲ卷】(多选)如图,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P。

它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W。

重力加速度大小为g。

设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,则:()A.B.C.D.【答案】AC【考点定位】考查了动能定理、圆周运动【方法技巧】应用动能定理应注意的几个问题:(1)明确研究对象和研究过程,找出始末状态的速度;(2)要对物体正确地进行受力分析,明确各力做功的大小及正负情况(待求的功除外);(3)有些力在物体运动过程中不是始终存在的,若物体运动过程中包括几个阶段,物体在不同阶段内的受力情况不同,在考虑外力做功时需根据情况区分对待。

高三高考物理复习专题练习:曲线运动

高三高考物理复习专题练习:曲线运动

曲线运动1.[多选]如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示.则()A.小球的质量为B.当地的重力加速度大小为C.v2=c时,小球对杆的弹力方向向上D.v2=2b时,小球受到的弹力与重力大小相等2. [多选]如图所示为赛车场的一个水平“U”形弯道,转弯处为圆心在O点的半圆,内、外半径分别为r和2r.一辆质量为m的赛车通过AB线经弯道到达A'B'线,有如图所示的①②③三条路线,其中路线③是以O'点为圆心的半圆,OO'=r.赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F m,选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则()A.选择路线①,赛车所用时间最短B.选择路线②,赛车的速率最小C.选择路线③,赛车所用时间最短D.在①②③三条路线的圆弧上,赛车的向心加速度大小相等3.在实验操作前应该对实验进行适当的分析.研究平抛运动的实验装置示意图如图所示.小球每次都从斜槽的同一位置无初速释放,并从斜槽末端水平飞出.改变水平板的高度,就改变了小球在板上落点的位置,从而可描绘出小球的运动轨迹.某同学设想小球先后3次做平抛,将水平板依次放在如图1、2、3的位置,且1与2的间距等于2与3的间距.若3次实验中小球从抛出点到落点的水平位移依次为x1、x2、x3,机械能的变化量依次为ΔE1、ΔE2、ΔE3,忽略空气阻力的影响,下面分析正确的是()A.x2-x1=x3-x2,ΔE1=ΔE2=ΔE3B.x2-x1>x3-x2,ΔE1=ΔE2=ΔE3C.x2-x1>x3-x2,ΔE1<ΔE2<ΔE3D.x2-x1<x3-x2,ΔE1<ΔE2<ΔE34.[多选]如图所示,半径为r的光滑水平转盘到水平地面的高度为H,质量为m的小物块被一个电子锁定装置锁定在转盘边缘,转盘绕过转盘中心的竖直轴以ω=kt(k>0且是恒量)的角速度转动.从t=0开始,在不同的时刻t将小物块解锁,小物块经过一段时间后落到地面上.假设在t 时刻解锁的物块落到地面上时重力的瞬时功率为P,落地点到转盘中心的水平距离为d,则下图中P-t图象、d2-t2图象分别正确的是()5.[多选]如图所示,A、B两球分别套在两光滑的水平直杆上,两球通过一轻绳绕过一定滑轮相连,现在使A球以速度v向左匀速移动,某时刻连接两球的轻绳与水平方向的夹角为α、β,下列说法正确的是()A.此时B球的速度为vB.此时B球的速度为vC.在β增大到90°的过程中,B球做匀速运动D.在β增大到90°的过程中,B球做加速运动6.[多选]如图,AB为竖直面内半圆的水平直径.从A点水平抛出两个小球,小球1的抛出速度为v1、小球2的抛出速度为v2.小球1落在C点、小球2落在最低点D点,C点距水平直径的距离为圆半径的0.8.小球1的飞行时间为t1,小球2的飞行时间为t2,g取10 m/s2.则()A.t1=t2B.t1<t2 C .v1∶v2=4∶ D.v1∶v2=3∶7.[多选]如图所示,b是长方形acfd对角线的交点,e是底边df的中点,a、b、c处的三个小球分别沿图示方向做平抛运动,落地后不反弹,下列表述正确的是()A.若a、b、c处三球同时抛出,三球可能在d、e之间的区域相遇B.只要b、c处两球同时开始做平抛运动,二者不可能在空中相遇C.若a、b处两球能在地面相遇,则a、b在空中运动的时间之比为2∶1D.若a、c处两球在e点相遇,则一定满足速率v a=v c8.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N 点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点的时间相等.下列说法正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,方向相同D.质点在MN间的运动是加速运动9.[8分]假如在一个未知星球上用如图甲所示装置研究平抛运动的规律.悬点O正下方P点处有水平放置的炽热电热丝,当悬线摆至电热丝处时能轻易被烧断,小球由于惯性向前飞出做平抛运动.现对小球采用频闪数码照相机连续拍摄.在有坐标纸的背景屏前,拍下了小球在做平抛运动过程中的多张照片,经合成后,照片如图乙所示.a、b、c、d为连续四次拍下的小球位置,已知照相机连续拍照的时间间隔是0.10 s,照片大小如图乙中坐标所示,又知该照片的长度与实际背景屏的长度之比为1:4,则:(1)a点(选填“是”或“不是”)小球的抛出点;(2)该星球表面的重力加速度为m/s2;(3)小球平抛的初速度是m/s;(4)小球在b点时的速度是m/s.10.[13分]如图所示,质量m=2 kg的木块静止在高h=1.8 m的水平台上,木块距平台右边缘7 m,木块与平台间的动摩擦因数μ=0.4.用F=20 N的水平恒力拉动木块,木块向右运动s1=3 m时撤去F.不计空气阻力,g取10 m/s2,求:(1)F作用于木块的时间t;(2)木块离开平台时的速度大小;(3)木块落地时距平台边缘的水平距离.11.[14分]在一次抗洪救灾工作中,一架直升机A用长H=50 m的悬索(重力可忽略不计)系住一质量m=50 kg的被困人员B,直升机A和被困人员B以v0=10 m/s的速度一起沿水平方向匀速运动,如图甲所示.某时刻开始收悬索将人吊起,在 5 s时间内,A、B之间的竖直距离以l=50-t2(单位:m)的规律变化,取g=10 m/s2.(1)求这段时间内悬索对被困人员B的拉力大小;(2)求在5 s末被困人员B的速度大小及位移大小;(3)直升机在t=5 s时停止收悬索,但发现仍然未脱离洪水围困区,为将被困人员B尽快运送到安全处,飞机在空中旋转后静止在空中寻找最近的安全目标,致使被困人员B在空中做圆周运动,如图乙所示.此时悬索与竖直方向成37°角,不计空气阻力,求被困人员B做圆周运动的线速度以及悬索对被困人员B的拉力.(sin 37°=0.6,cos 37°=0.8)12.[14分]如图所示为某科技示范田自动灌溉的喷射装置的截面图,它主要由水泵、竖直的细输水管道和喷头组成,喷头的喷嘴离地面的高度为h,喷嘴的长度为r.水泵启动后,水从水池通过输水管道压到喷嘴并沿水平方向喷出,在地面上的落点与输水管道中心的水平距离为R,此时喷嘴每秒钟喷出的水的质量为m0,忽略水池中水泵与地面的高度差,不计水进入水泵时的速度以及空气阻力,重力加速度为g.(1)求水从喷嘴喷出时的速率v和水泵的输出功率P;(2)若要浇灌离输水管道中心2R处的蔬菜,求喷嘴每秒钟喷出的水的质量m1.13.[18分]如图所示,MN为固定的竖直光滑四分之一圆弧轨道,N端与水平面相切,轨道半径R=0.9 m.粗糙水平段NP长L=1 m,P点右侧有一与水平方向成θ=30°角的足够长的传送带与水平面在P点平滑连接,传送带逆时针转动的速率恒为3 m/s.一质量为1 kg且可视为质点的物块A从圆弧轨道最高点M由静止开始沿轨道滑下,物块A与NP段间的动摩擦因数μ1=0.1.静止在P点的另一个物块B与A完全相同,B与传送带间的动摩擦因数μ2=.A与B碰撞后A、B交换速度,碰撞时间不计,重力加速度g取10 m/s2,求:(1)物块A滑下后首次到达最低点N时对轨道的压力;(2)从A、B第一次碰撞后到第二次碰撞前,B与传送带之间由于摩擦而产生的热量.参考答案1.ACD2.CD3.B4.BC5.AD6.BC7.BD8.B9.(1)是(2)8(3)0.8(4)1.1310.(1)1 s (2)2 m/s (3)1.2 m11.(1)600 N(2)10m/s25m(3)m/s625 N12.(1)(R-r)(2)m013.(1)30 N竖直向下(2)12.25 J。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题四 曲线运动1.将铅球斜向上推出后,铅球沿曲线运动,这是因为 ( ) A .铅球的惯性不够大 B .铅球所受的重力太大C .铅球被推出时的速度较小D .铅球所受重力与速度方向不在同一直线上2.如图所示,小铁球在光滑水平桌面上以某一速度做直线运动,当它经过磁铁附近后的运动轨迹可能是 ( ) A .Oa B .Ob C .Oc D .Od3.一物体做平抛运动的轨迹如图所示,则物体在轨迹上P 点时的速度方向为 ( ) A .P →a B .P →b C .P →c D .P →d4.一水平固定的水管,水从管口以不变的速度源源不断地喷出。

水管距地面高h =1.8m ,水落地的位置到管口的水平距离x =1.2m 。

不计空气阻力和摩擦阻力,水从管口喷出的初速度大小为 ( )A .1.2m/sB .2.0m/sC .3.0m/sD .4.0m/s5.两物体在同一高度处被水平抛出后,落在同一水平面上,不计空气阻力,则 ( ) A .速度大的物体运动时间较长 B .速度小的物体运动时间较长 C .质量小的物体运动时间较长 D .两物体运动的时间一样长6.某卡车在公路上与路旁障碍物相撞。

处理事故的警察在泥地中发现了一个小的金属物体,经判断,它是相撞瞬间车顶上一个松脱的零件被抛出而陷在泥里的。

为了判断卡车是否超速,需要测量的量是 ( )知识内容考试要求 困惑 必考 加试 曲线运动b b运动的合成与分解 b c 平抛运动d d 圆周运动、向心加速度和向心力 d d 生活中的圆周运动cA .车的长度,车的重量B .车的高度,车的重量C .车的长度,零件脱落点与陷落点的水平距离D .车的高度,零件脱落点与陷落点的水平距离7.如图所示为足球球门,球门宽度为L 。

一个球员在球门中心正前方距离球门s 处高高跃起,将足球顶入球门的左下方死角(图中P 点)。

球员顶球点的高度为h ,足球做平抛运动(足球可看成质点,忽略空气阻力),则 ( )A .足球位移的大小x =224s L +B .足球初速度的大小v 0 =)4(222s L h g + C .足球末速度的大小v =gh s L h g 4)4(222++ D .足球初速度的方向与球门线夹角的正切值tan θ =sL 2 8.关于平抛运动和匀速圆周运动,下列说法正确的是 ( ) A .平抛运动是变加速曲线运动 B .平抛运动是匀变速曲线运动 C .匀速圆周运动是匀变速曲线运动 D .做匀速圆周运动的物体处于平衡状态9.做匀速圆周运动的物体,在运动过程中保持不变的物理量是 ( ) A .线速度 B .角速度 C .加速度 D .合力10.两个物体做半径不同的匀速圆周运动,下列说法正确的是 ( ) A .若周期相等,则角速度相等 B .若周期相等,则线速度大小相等 C .若线速度相等,则向心加速度相等 D .若角速度相等,则向心加速度相等11.如图为某中国运动员在短道速滑比赛中勇夺金牌的精彩瞬间。

假定此时他正沿圆弧形弯道匀速率滑行,则他 ( ) A .所受的合力为零,做匀速运动 B .所受的合力恒定,做匀加速运动 C .所受的合力恒定,做变加速运动 D .所受的合力变化,做变加速运动12.在G20峰会“最忆是杭州”的文艺演出中,芭蕾舞演员保持如图所示姿式原地旋转,此时手臂上A 、B 两点角速度大小分别为ωA 、ωB ,线速度大小分别为v A 、v B ,则 ( ) A .ωA <ωB B .ωA >ωB C .v A <v B D .v A >v B13.如图所示,在风力发电机的叶片上有A 、B 、C 三点,其中A 、C 在叶片的端点,B 在叶片的中点。

当叶片转动时,这三点 ( ) A .线速度大小都相等 B .线速度方向都相同 C .角速度大小都相等D .向心加速度大小都相等14.根据你的观察,下列物体正常绕轴转动时,角速度最大的是 ( )A .摩天轮上的游客B .钟表分针上的某一点C .钟表时针上的某一点D .电风扇转叶上的某一点 15.如图所示,把地球看成大“拱形桥”,当一辆“汽车”速度达到一定值时,“汽车”对地面压力恰好为零,此时“汽车” ( ) A .受到的重力消失了B .仍受到重力,其值比原来的小C .仍受到重力,其值与原来相等D .仍受到重力,其值比原来的大16.如图所示,一个用细绳系着的橡皮塞在水平面内做匀速圆周运动,此橡皮塞 ( ) A .只受到重力 B .只受到绳的拉力 C .受到重力和绳的拉力 D .受到重力、绳的拉力和向心力17.如图所示,在“冲关我最棒”节目中,某选手正准备从平台竖直跳向匀速转动的圆盘,他选择的a 、b 、c 、d 四个落点中,最不容易被圆盘甩出的是 ( ) A .a 点 B .b 点ABCC .c 点D .d 点18.如图所示为洗衣机脱水筒的示意图,当脱水筒从静止开始到完成脱水的过程中( ) A .衣服始终做离心运动 B .衣服始终做匀速圆周运动 C .衣服上有水做离心运动 D .衣服上的水始终做匀速圆周运动19.质量为30kg 的小孩坐在秋千板上,秋千板离系绳子的横梁的距离为2.5m 。

小孩的父亲将秋千板从最低点拉起1.25m 高度后由静止释放,小孩沿圆弧运动至最低点时,她对秋千板的压力大小约为 ( ) A .0 B .200N C .600N D .1000N20.如图所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r 。

一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r 。

赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max 。

选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则下列说法错误的是( ) A .选择路线①,赛车经过的路程最短B .选择路线②,赛车的速率最小C .选择路线③,赛车所用时间最短D .①、②、③三条路线的圆弧上,赛车的向心加速度大小相等21.如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90m 的大圆弧和r =40m 的小圆弧,直道与弯道相切。

大、小圆弧圆心O 、O ′距离L =100m 。

赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍。

假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动。

要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,π=3.14),则赛车 ( ) A .在绕过小圆弧弯道后减速 B .在大圆弧弯道上的速度为30m/s C .在直道上的加速度大小为6.50m/s 2D .通过小圆弧弯道的时间为5.58s22.如图所示,一质量为m 的汽车保持恒定的速率运动,若通过凸形路面最高处时对路面的压力为OO ′ ①② ③AB B ′A ′r2rF1,通过凹形路面最低处时对路面的压力为F2,则( )A.F1 >mgB.F1=mgC.F2>mgD.F2=mg23.如图所示,过山车的轨道可视为竖直平面内半径为R的圆轨道。

质量为m的游客随过山车一起运动,当游客以速度v经过圆轨道的最高点时( )A.速度v的大小一定为gRB.向心加速度方向竖直向下mv2C.座位对游客的作用力为RD.座位对游客的作用力一定大于mg24.如图所示,在水平桌面上用书本做成一个斜面,让小钢球从斜面上某一位置滚下,离开桌面后做平抛运动。

若要粗测小钢球做平抛运动初速度的大小,下列器材最合适的是( )A.米尺B.学生三角尺C.秒表D.打点计时器25.在真空环境内探测微粒在重力场中能量的简化装置如图所示。

P是一个微粒源,能持续水平向右发射质量相同、初速度不同的微粒。

高度为h的探测屏AB竖直放置,离P点的水平距离为L,上端A与P点的高度差也为h,重力加速度为g。

(1)若微粒打在探测屏AB的中点,求微粒在空中飞行的时间;(2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A、B两点的微粒的动能相等,求L与h的关系。

26.质量为60kg的探险者在丛林探险时,看见一头狮子正走向一头幼小的羚羊。

探险者立即把绳子的一端绕在一根粗壮的树枝上,另一端系在自己的身上,拉紧绳子从静止开始荡向低处,并在最低点抓住质量为20kg的羚羊,随后刚好荡到另一根树枝上,脱离了危险。

已知悬挂点与人之间的绳长为24m,起荡点与最低点的高度差为12.8m,探险者抓住羚羊后瞬间的速度是抓住羚羊前瞬间速度的0.75倍。

运动过程中探险者和羚羊均可看作质点,不计空气阻力。

求:(1)探险者抓住羚羊前瞬间的速度大小;(2)探险者抓住羚羊后到达的最高点与最低点的高度差;(3)绳子能承受的拉力大小。

27.如图所示,长l=1m的水平板右端竖直固定由光滑细圆管做成的半径R=0.2m的半圆形环,板面与细圆管平滑相接。

质量m=10g的小球从板面左端正对圆管下端以一定的初速度向右运动。

已知小球与水平板间的动摩擦因数μ=0.1倍。

(1)为使小球能到达圆管顶端,小球的初动能至少多大?(2)为了使小球能从上端管口飞出后不与板面相碰,小球的初动能应满足什么条件?28.如图所示,装置由一理想弹簧发射器及两个轨道组成。

其中轨道I由光滑轨道AB与粗糙直轨道BC平滑连接,高度差分别是h1=0.20m、h2=0.10m,BC水平距离L=1.00m。

轨道Ⅱ由AE、螺旋圆形EFG和GB三段光滑轨道平滑连接而成,且A点与F点等高。

当弹簧压缩量为d时,恰能使质量m=0.05kg的滑块沿轨道I上升到B点;当弹簧压缩量为2d时,恰能使滑块沿轨道I上升到C 点。

(已知弹簧弹性势能与压缩量的平方成正比)(1)当弹簧压缩量为d时,求弹簧的弹性势能及滑块离开弹簧瞬间的速度大小;(2)求滑块与轨道BC间的动摩擦因数;(3)当弹簧压缩量为d时,若沿轨道Ⅱ运动,滑块能否上升到B点?请通过计算说明理由。

29.运动员驾驶摩托车做腾跃表演。

如图所示,AB是平直路面,BCE为上坡路,其中BC段可视为半径R=20m的圆弧且与AB、CE平滑连接。

运动员驾驶摩托车在AB段加速,到B点时速度v B=20m/s,再经t=2s的时间通过坡面到达E点后水平飞出。

已知人和车的总质量m=200kg,坡顶高度h=5m,落地点F与E点的水平距离s=16m。

若摩托车的功率始终为P=15kW,求:(1)人和车从E点飞出时的速度大小;(2)人和车过B点刚进入圆轨道时受到的支持力大小;(3)人和车从B点运动到点E的过程中重力所做的功和阻力所做的功。

30.“猴子荡秋千”是某马戏团的经典表演项目。

如图所示,离地高H=5.4m的O点固定一根长L=3.6m、不可伸长的轻绳,绳的左侧有一平台,绳子拉直时其末端正好位于平台边缘A点,此时绳与竖直方向成θ=60°角。

相关文档
最新文档