集合习题讲解

合集下载

高中数学集合习题及详解

高中数学集合习题及详解

高中数学集合习题及详解一、单选题1.已知集合(){}ln 2A x y x ==-,集合1,32xB y y x ⎧⎫⎪⎪⎛⎫==>-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .∅B .()2,8C .()3,8D .()8,+∞2.设集合{}{lg 1},2A xx B x x =<=≤∣∣,则A B ⋃=( ) A .{02}xx <≤∣ B .{}2xx ≤∣ C .{10}x x <∣ D .R3.已知集合{}1A xy x ==-∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}4.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( ) A .{}6x e x << B .{}1,2,3e e e +++ C .{}3,4,5D .{}2,3,4,55.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( )A .{}0,1,2B .{}1,2C .{}0,2D .{}26.设R U =,1{|2}2x A x =<,{|1}B x x =>,则()U B A ⋂=( )A .{|0}x x <B .{}|1x x >C .{}|01x x <<D .{}|01x x <≤7.已知全集,集合{|(2)0}A x x x =+<,{|||1}B x x ,则如图所示的阴影部分表示的集合是( )A .(2,1)-B .[1,0)[1,2)-⋃C .(2,1)[0,1]--D .[0,1]8.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( ) A .16B .15C .8D .79.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3] 10.已知集合{|13,N}A x x x =-<<∈,则A 的子集共有( )A .3个B .4个C .8个D .16个11.若集合(){}ln 10A x x =-≤,{}2B x x =≥,则()RA B =( )A .(2,2)-B .(1,2)C .[)1,2D .(1,2] 12.已知集合{1,5,},{2,}A a B b ==,若{2,5}A B ⋂=,则a b +的值是( ) A .10B .9C .7D .413.设全集{}{}{}10,2,3,5,0,3,5,9U n N n A B =∈≤==,则()U A B =( ) A .{2,6}B .{0,9}C .{1,9}D .∅14.已知集合{}{}|14,|04U x x A x x =-<≤=≤≤,则UA =( )A .[-1,0)B .[-1,0]C .(-1,0)D .(-1,0]15.设集合{}2Z20A x x x =∈--≤∣,{0,1,2,3}B =,则A B =( ) A .{0,1}B .{0,1,2}C .{1,0,1,2,3}-D .{2,1,0,1,2,3}--二、填空题16.从集合{}123,,,,n U a a a a =⋅⋅⋅的子集中选出4个不同的子集,需同时满足以下两个条件:①∅、U 都要选出;②对选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇.则选法有___________种.17.集合{}{}23,12,1A B m m ==+,,且A B =,则实数m =________.18.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.19.已知T 是方程()22040x px q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.20.若“x a >”是“39x >”的必要条件,则a 的取值范围是________.21.已知集合{}4194,A x x n n *==-+∈N ,{}6206,B y y n n *==-+∈N ,将A B 中的所有元素按从大到小的顺序排列构成一个数列{}n a ,则数列{}n a 的前n 项和的最大值为___________.22.设集合(),5P =-∞,[),Q m =+∞,若P Q =∅,则实数m 的取值范围是______. 23.设集合21|,|32A x m x m B x n x n ⎧⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,且,A B 都是集合{}|01x x ≤≤的子集,如果把b a -叫作集合{}|≤≤x a x b 的“长度”,那么集合A B 的“长度”的最小值是___________.24.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.25.若集合M 满足{}1,2,3,4M,则这样的集合M 有______个.三、解答题26.函数()()sin 22sin cos 1a x f x a x x +=+-.(1)若1a =,,02x π⎡⎫∈-⎪⎢⎣⎭,求函数()f x 的值域;(2)当,02x ⎡⎤∈-⎢⎥⎣⎦π,且()f x 有意义时,①若(){}0y y f x ∈=,求正数a 的取值范围; ②当12a <<时,求()f x 的最小值N .27.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1. (1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.28.设全集U R =,已知集合{}1,2A =,{|03}B x x =≤≤,集合C 为不等式组10240x x +≥⎧⎨-≤⎩的解集.(1)写出集合A 的所有子集; (2)求UB 和BC ⋃.29.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B .30.已知集合A ={}123x m x m -≤≤+, . (1)当m =1时,求A B ,(RA )B ;(2)若A B =A ,求实数m 的取值范围.试从以下两个条件中任选一个补充在上面的问题中,并完成解答.① 函数()f x B ;② 不等式2x ≤的解集为B . 注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】一、单选题 1.B 【解析】 【分析】先求出集合,A B ,然后直接求A B 即可. 【详解】集合(){}{}ln 22A x y x x x ==-=>,集合{}1,3082xB y y x y y ⎧⎫⎪⎪⎛⎫==>-=<<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()2,8A B =,故选:B . 2.C 【解析】 【分析】先化简集合A ,再求A B 【详解】lg 1lg lg10010x x x <⇔<⇔<<,即{}010|A x x =<<,所以{}|10A B x x =< 故选:C 3.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解. 【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 4.C 【解析】【分析】先化简出结合,A B ,然后再求交集. 【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞ 所以{}3,4,5A B = 故选:C 5.C 【解析】 【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果. 【详解】因为集合{}24A x N x =∈≤化简可得{0,1,2}A =又{}1,B a =,B A ⊆, 所以0a =或2a =,故实数a 的取值集合为{0,2}, 故选:C. 6.B 【解析】 【分析】解不等式求得集合A 、B ,由此求得()U B A ⋂. 【详解】 11222x -<=,由于2x y =在R 上递增,所以1x <-, 即{}|1A x x =<-,{}|1UA x x =≥-,11x >⇒>,所以{}|1B x x =>,所以(){}|1UB A x x =>.故选:B 7.C【解析】 【分析】首先解一元二次不等式求出集合A ,再解绝对值不等式求出集合B ,阴影部分表示的集合为()A BAB ⋃,根据交集、并集、补集的定义计算可得;【详解】解:由(2)0x x +<,解得20x -<<,所以}{|(2)0{|20}A x x x x x <-=<<+=, 又{|||1}{|11}B x x x x =-≤≤=≤,所以(2,1]A B =-,[1,0)A B =-, 所以阴影部分表示的集合为()(2,1)[0,1]A BA B ⋃=--,故选:C.8.D 【解析】 【分析】求出集合M 中的元素,再由子集的定义求解. 【详解】由题意{|04}{1,2,3}M x Z x =∈<<=, 因此其真子集个数为3217-=. 故选:D . 9.D 【解析】 【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R,再根据交集运算即可求出结果. 【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R,所以()[]1,3R A B =. 故选:D. 10.C 【解析】 【分析】根据题意先求得集合{0,1,2}A =,再求子集的个数即可. 【详解】由{|13,N}A x x x =-<<∈,得集合{0,1,2}A = 所以集合A 的子集有32=8个, 故选: C 11.B 【解析】 【分析】分别解出集合A 和B ,再根据集合补集和交集计算方法计算即可. 【详解】(){}{}(]ln 10|0111,2A x x x x =-≤=<-≤=,{}(][)2,22,B xx ∞∞=≥=--⋃+,()2,2B =-R,∴()RAB =(1,2).故选:B. 12.C 【解析】利用交集的运算求解. 【详解】解:因为集合{1,5,},{2,}A a B b ==,且{2,5}A B ⋂=, 所以a =2,b =5, 所以a b +=7, 故选:C 13.B 【解析】 【分析】根据集合的交运算和补运算求解即可. 【详解】因为{}{}100,1,2,3,4,5,6,7,8,9,10U n N n =∈≤=,{2,3,5}A , 则{0,1,4,6,7,8,9,10},{0,3,5,9}UA B ==,故(){0,9}U A B =.故选:B .14.C 【解析】 【分析】根据已知集合,应用集合的补运算求UA 即可.【详解】因为{}{}|14,|04U x x A x x =-<≤=≤≤, 所以{|10.} UA x x =-<<故选:C 15.B 【解析】 【分析】解一元二次不等式,得到集合A ,根据集合的交集运算,求得答案. 【详解】解不等式220x x --≤得:12x -≤≤ ,故{}2Z20{1,0,1,2}A x x x =∈--≤=-∣, 故{0,1,2}A B ⋂=, 故选:B二、填空题16.3323n n -⋅+【解析】分析出当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;再进行求和即可. 【详解】因为∅、U 都要选出;故再选出两个不同的子集,即为M ,N , 因为选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇,故各个子集所包含的元素个数必须依次增加,且元素个数多的子集包含元素个数少的子集,当一个子集只含有1个元素时,另外一个子集可以包含2,3,4()1n -个元素,所以共有()()111221111C C C C C 22n n n n n n n -----⨯+++=⨯-种选法; 当一个子集只含有2个元素时,另外一个子集可以包含3,4,()1n -个元素,所以共有()()221232222C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;当一个子集只含有3个元素时,另外一个子集包含4,5,()1n -个元素,所以共有()()331243333C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;……当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;……当一个子集有()2n -个元素时,另外一个子集包含()1n -个元素,所以共有()22C 22n n -⨯-种选法;当一个子集有()1n -个元素时,另外一个子集包含有n 个元素,即为U ,不合题意,舍去;故共有()()()()122122C 22C 22C 22C 22n n n mm n n n n n ----⨯-+⨯-++⨯-++⨯-()1122122C 2C 22C C C n n n n n n n n ---=⋅++⋅-+++()()122212223323nn n n n n n =+------=-⋅+. 故答案为:3323n n -⋅+ 【点睛】对于集合与排列组合相结合的题目,要能通过分析,求出通项公式,再结合排列或组合的常用公式进行化简求解. 17.1或3-##3-或1 【解析】 【分析】由题意可得223m m +=,求出m ,因为{}{}23,12,1A B m m ==+,,且A B =,所以223m m +=,由223m m +=,得2230m m +-=,解得1m =或3- 故答案为:1或3-18.(){}0,0【解析】 【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果.【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩则(){}0,0MN =.故答案为:(){}0,0.19.26【解析】 【分析】由题知{}4,10T =,再结合韦达定理求解即可. 【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根,因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q = 所以26p q += 故答案为:2620.2a ≤【解析】 【分析】根据题意39x >解得:2x >,得出()()2,,a +∞⊆+∞,由此可得出实数a 的取值范围. 【详解】根据题意39x >解得:2x >,由于“x a >”是“39x >”的必要条件,则()()2,,a +∞⊆+∞,2a ∴≤. 因此,实数a 的取值范围是:2a ≤. 故答案为:2a ≤.21.1472【解析】 【分析】由题意设4194n b n =-+,6206m c m =-+,根据n m b c =可得326m n -=,从而312194n n a b n ==-+,即可得出答案.【详解】设4194n b n =-+,由41940n b n =-+>,得48n ≤ 6206m c m =-+,由62060m c m =-+>,得34m ≤A B 中的元素满足n m b c =,即41946206n m -+=-+,可得326m n -=所以223m n =+,由,*m n N ∈,所以3,*n k k N =∈ 所以312194n n a b n ==-+,要使得数列{}n a 的前n 项和的最大值,即求出数列{}n a 中所以满足0n a ≥的项的和即可. 即121940n a n =-+≥,得16n ≤,则116182,2a a == 所以数列{}n a 的前n 项和的最大值为121618221614722a a a ++++=⨯= 故答案为:147222.5m ≥【解析】 【分析】由交集和空集的定义解之即可. 【详解】(),5P =-∞,[),Q m =+∞ 由P Q =∅可知,5m ≥ 故答案为:5m ≥23.16【解析】 【分析】根据“长度”定义确定集合,A B 的“长度”,由A B “长度”最小时,两集合位于集合[]0,1左右两端即可确定结果. 【详解】由题可知,A 的长度为23,B 的长度为12, ,A B 都是集合{|01}x x ≤≤的子集, 当A B 的长度的最小值时,m 与n 应分别在区间[]0,1的左右两端,即0,1m n ==,则|0,213|12A x x B x x ⎧⎫⎧⎫=≤≤=≤≤⎨⎬⎨⎬⎩⎭⎩⎭, 故此时1223A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭的长度的最小值是:211326-=. 故答案为:1624.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >. 25.15 【解析】 【分析】结合真子集公式可直接求解. 【详解】 因为{}1,2,3,4M,故集合M 有42115-=个.故答案为:15三、解答题26.(1)(,2-∞-(2)①2a ≥;②)21N a=【解析】 【分析】(1)当1a =时,求得()sin 22sin cos 1x f x x x +=+-,令[)sin cos 1,1t x x =+∈-,令[)12,0m t =-∈-,()()22h m f x m m==++,利用双勾函数的单调性可得出函数()h m 在[)2,0-上的值域,即可得解;(2)①分析可知210a a --≤≤,可得出2a ≥,分1a =、1a ≠两种情况讨论,化简函数()221at ap t at +-=-的函数解析式或求出函数()f x 的最小值,综合可得出正实数a 的取值范围;②令[]11,1n at a a =-∈---,则1n t a +=,可得出()()21122a a p t n n a n ϕ⎡⎤+-=++=⎢⎥⎣⎦,分析可得出101a a --<<-<法可求得N . (1)解:当1a =时,()sin 22sin cos 1x f x x x +=+-,因为,02x π⎡⎫∈-⎪⎢⎣⎭,则,444x πππ⎡⎫+∈-⎪⎢⎣⎭,令[)sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,则212sin cos 1sin 2t x x x =+=+,可得2sin 21x t =-, 设()()211t g t f x t +==-,其中11t -≤<,令1m t =-,则()22111221m t m t m m+++==++-, 令()22h m m m=++,其中20m -≤<,下面证明函数()h m在2,⎡-⎣上单调递增,在()上单调递减,任取1m 、[)22,0m ∈-且12m m <,则()()1212122222h m h m m m m m ⎛⎫⎛⎫-=++-++ ⎪ ⎪⎝⎭⎝⎭()()()()12121212121222m m m m m m m m m m m m ---=--=,当122m m -≤<<122m m >,此时()()12h m h m <,当120m m <<,则1202m m <<,此时()()12h m h m >, 所以,函数()h m在2,⎡-⎣上单调递增,在()上单调递减,则()(max 2h m h ==-因此,函数()f x 在,02π⎡⎫-⎪⎢⎣⎭上的值域为(,2-∞-. (2)解:因为,02x ⎡⎤∈-⎢⎥⎣⎦π,则,444x πππ⎡⎤+∈-⎢⎥⎣⎦,令[]sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,设()()222211a a t at a a f x p t at at -⎛⎫+ ⎪+-⎝⎭===--, ①若(){}0y y f x ∈=,必有210aa--≤≤,因为0a >,则2a ≥,当1a =时,即当1a =()110p t t t a =+==,可得1t =,合乎题意;当1a ≠2a ≥且1a ≠()min 0p t =,合乎题意. 综上所述,2a ≥;②令[]11,1n at a a =-∈---,则1n t a+=, 则()()22121122n a a a a a a p t n n n a n ϕ⎡⎤+-⎛⎫+⎢⎥ ⎪⎝⎭⎡⎤+-⎢⎥⎣⎦==++=⎢⎥⎣⎦, 令()()20qs x x q x=++>,下面证明函数()s x在(上单调递减,在)+∞上为增函数,任取1x、(2x ∈且12x x <,则120x x -<,120x x q <<, 所以,()()()()()()121212121212121212220q x x x x x x q q qs x s x x x x x x x x x x x ---⎛⎫⎛⎫-=++-++=--=> ⎪ ⎪⎝⎭⎝⎭,所以,()()12s x s x >,故函数()s x在(上单调递减, 同理可证函数()s x在)+∞上为增函数,在(,-∞上为增函数,在()上为减函数,因为12a <<,则()()2212121,2a a a +-=--+∈,且()()22121220a a a a a +---=->10a >->, 又()22212120a a a a +----=-<,1a ∴--<,101a a ∴--<<-由双勾函数的单调性可知,函数()n ϕ在1,a ⎡--⎣上为增函数,在()上为减函数,在(]0,1a -上为减函数,当[)1,0x a ∈--时,()((max 120n aϕϕ==-<, ()2101a a ϕ-=>-,()((22111a a a ϕϕ⎡⎤---=+⎢⎥⎣⎦- (())())()21142214210111a a a a a a a a a a +------=≥=>---,由双勾函数性质可得()()min 21f x a ϕ=-=,综上所述())min 21f x N a==.【点睛】关键点点睛:在求解本题第二问第2小问中,要通过不断地换元,将问题转化为双勾函数的最值,结合比较法可得出结果.27.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4}; (2){a |1<a ≤2}, 【解析】 【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得. (1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4}; (2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2,因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B , 综上,a 的取值范围为{a |1<a ≤2}. 28.(1)∅,{1},{2},{1,2}; (2)UB {|0x x =<或3}x >,{|13}BC x x ⋃=-≤≤.【解析】 【分析】(1)直接写出集合A 的所有子集即可; (2)直接写出UB ,求得C ,再求B C ⋃即可.(1)因为{}1,2A =,故A 的所有子集为∅,{}{}{}1,2,1,2. (2)因为{}|12C x x =-≤≤,UB ={|0,x x <或3}x >,{|13}B C x x ⋃=-≤≤.29.B ={0,7,3,1}. 【解析】 【分析】解方程2427a a ++=即得解. 【详解】解:由题得2427a a ++=, 解得1a =或5a =-. 因为0a >,所以1a =. 当1a =时, B ={0,7,3,1}. 故集合B ={0,7,3,1}.30.(1){}|25=-≤≤A B x x ;(){}|20R A B x x =-≤< (2)1|4,12m m m ⎧⎫<--≤≤-⎨⎬⎩⎭或【解析】 【分析】(1)利用集合的运算求解即可.(2)通过A B =A 得出A B ⊆,计算时注意讨论A 为空集的情况. (1) 选条件①:(1)当1m =时,{}|05A x x =≤≤,{}2B x x =|-2≤≤{}|25A B x x ∴=-≤≤{}|0,5RA x x x =<>或(){}|20R A B x x ∴⋂=-≤<选条件②:此时集合{}2B x x =|-2≤≤与①相同,其余答案与①一致; (2)若A B A =,则A B ⊆当A =∅时,123m m ->+,解得4m <-当A ≠∅时,21123232m m m m -≤-⎧⎪-≤+⎨⎪+≤⎩,即1412m m m ⎧⎪≥-⎪≥-⎨⎪⎪≤-⎩,解得112m -≤≤-综上,实数m 的取值范围为1|412m m m ⎧⎫<--≤≤-⎨⎬⎩⎭或。

集合运算精选典型例题及练习题

集合运算精选典型例题及练习题

集合运算的典型例题与练习(一)集合的基本运算:说明:不等式的交、并、补集的运算,用数轴进行分析,注意端点。

例1:设U=R,A={x|-5<x<5},B={x|0≤x<7},求A∩B、A∪B、CU A 、CUB、(CU A)∩(CUB)、(CUA)∪(CUB)、CU(A∪B)、CU(A∩B)。

例2:全集U={x|x<10,x∈N+},A⊆U,B⊆U,且(CUB)∩A={1,9},A∩B={3},(CU A)∩(CUB)={4,6,7},求A、B。

说明:列举法表示的数集问题用Venn图示法、观察法(二)集合性质的运用:例3:A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}, 若A∪B=A,求实数a的值。

说明:注意B为空集可能性;一元二次方程已知根时,用代入法、韦达定理,要注意判别式。

例4:已知集合A={x|x>6或x<-3},B={x|a<x<a+3},若A∪B=A,求实数a的取值范围。

(三)巩固练习:1.P={0,1},M={x|x⊆P},则P与M的关系是。

2.已知50名同学参加跳远和铅球两项测验,分别与格人数为40、31人,两项均不与格的为4人,那么两项都与格的为人。

3.满足关系{1,2}⊆A⊆{1,2,3,4,5}的集合A共有个。

4.已知A={x|-2<x<-1或x>1},A∪B={x|x+2>0},A∩B={x|1<x≦3},求集合B=5.已知集合A∪B={x|x<8,x∈N},A={1,3,5,6},A∩B={1,5,6},则B的子集的集合一共有多少个元素?6.已知A={1,2,a},B={1,a2},A∪B={1,2,a},求所有可能的a值。

7.设A={x|x2-ax+6=0},B={x|x2-x+c=0},A∩B={2},求A∪B。

8. 集合A={x|x2+px-2=0},B={x|x2-x+q=0},若A B={-2,0,1},求p、q。

集合练习题及讲解高中必刷

集合练习题及讲解高中必刷

集合练习题及讲解高中必刷### 高中数学集合练习题及讲解练习题1:已知集合A={x|x<5},B={x|-3≤x<2},求A∩B。

解析:根据集合的交集定义,我们需要找出同时满足A和B条件的元素。

集合A包含所有小于5的实数,而集合B包含所有大于等于-3且小于2的实数。

因此,A∩B将包含所有大于等于-3且小于2的实数。

答案:A∩B={x|-3≤x<2}。

练习题2:集合P={x|x²-1=0},Q={x|x²-4=0},求P∪Q。

解析:首先解方程x²-1=0和x²-4=0。

对于x²-1=0,解得x=±1;对于x²-4=0,解得x=±2。

集合P包含所有解得x²-1=0的实数,即P={-1,1};集合Q包含所有解得x²-4=0的实数,即Q={-2,2}。

根据并集的定义,P∪Q包含P和Q中的所有元素。

答案:P∪Q={-2,-1,1,2}。

练习题3:集合M={x|-2<x<3},N={x|x>1},判断M⊆N。

解析:要判断M是否是N的子集,我们需要验证M中的所有元素是否也属于N。

集合M包含所有大于-2且小于3的实数,而集合N包含所有大于1的实数。

显然,M中的所有元素都大于1,因此M中的元素也属于N。

答案: M⊆N。

练习题4:集合S={x|0<x<10},T={x|x>0},求S∩T。

解析:根据交集的定义,我们需要找出同时满足S和T条件的元素。

集合S包含所有大于0且小于10的实数,而集合T包含所有大于0的实数。

因此,S∩T将包含所有大于0且小于10的实数。

答案:S∩T={x|0<x<10}。

练习题5:集合U={x|x>0},V={x|x<0},求U∩V。

解析:根据交集的定义,我们需要找出同时满足U和V条件的元素。

集合U包含所有大于0的实数,而集合V包含所有小于0的实数。

集合习题 附带答案,解析

集合习题  附带答案,解析

集合习题1.若集合M ={}a ,b ,c 中元素是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.定义集合运算:A *B ={} |z z =xy ,x ∈A ,y ∈B .设A ={}1,2,B ={}0,2,则集合A *B 的所有元素之和为 ( )A .0B .2C .3D .63.已知集合A ={2,3,4},B ={2,4,6,8},C ={(x ,y )| x ∈A ,y ∈B ,且log x y ∈N +},则C 中元素的个数是( )A .9B .8C .3D .44.满足{-1,0}M ⊆{-1,0,1,2,3}的集合M 的个数是( )A .4个B .6 个C .7个D .8个5.已知集合A ={-1,1},B {x |ax +1=0},若B ⊆A ,则实数a 的所有可能取值的集合为( )A .{-1}B .{1}C .{-1,1}D .{-1,0,1}6.已知全集U ={1,2,3,4,5,6},集合A ={1,2,5},∁U B ={4,5,6},则集合A ∩B =( )A .{1,2}B .{5}C .{1,2,3}D .{3,4,6}7.设全集U ={1,3,5,6,8},A ={1,6},B ={5,6,8},则(∁U A )∩B =( )A .{6}B .{5,8}C .{6,8}D .{3,5,6,8}8.若A ={}x ∈Z | 2≤22-x <8 ,B ={ x ∈ R | |log 2x |>1},则A ∩(∁R B )的元素个数为( )A .0B .1C .2D .39.设U =R, M ={x |x 2-x ≤0},函数f (x )=1x -1的定义域为N ,则M ∩(∁U N )( ) A .[0,1) B .(0,1) C .[0,1] D .{1}10.设U =R ,集合A ={y |y =x -1,x ≥1},B ={x ∈Z |x 2-4≤0},则下列结论正确的是( )A .A ∩B ={-2,-1} B .(∁U A )∪B =(-∞,0)C .A ∪B =[0,+∞)D .(∁U A )∩B ={-2,-1}11.非空集合G 关于运算⊕满足:①对于任意a 、b ∈G ,都有a ⊕b ∈G ;②存在e ∈G ,使得对一切a ∈G ,都有a ⊕e =e ⊕a =a ,则称G 关于运算⊕为融洽集,现有下列集合运算:(1)G ={非负整数},⊕为整数的加法;(2)G ={偶数},⊕为整数的乘法;(3)G ={平面向量},⊕为平面向量的加法;(4)G ={二次三项式},⊕为多项式的加法;其中G 关于运算⊕的融洽集有________.12.设集合A ={1,2,a },B ={1,a 2-a },若A ⊇B ,则实数a 的值为________.13.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________.14.已知集合A ={} |x x 2-5x +6=0,B ={} |x mx +1=0,且A ∪B =A ,求实数m 的值组成的集合.15.记关于x 的不等式x -a x +1<0的解集为P ,不等式||x -1≤1的解集为Q . (1)若a =3,求P ;(2)若Q ⊆P ,求正数a 的取值范围.16.已知由实数组成的集合A 满足:若x ∈A ,则11-x∈A . (1)设A 中含有3个元素,且2∈A ,求A ;(2)A 能否是仅含一个元素的单元素集,试说明理由.参考答案1.解析:根据集合中元素的互异性知a ≠b ≠c ,故选D.答案:D2.解析:依题意得A *B ={} |z z =xy ,x ∈A ,y ∈B ={}0,2,4,因此集合A *B 的所有元素之和为6,故选D.答案:D3.解析:C ={(x ,y )| x ∈A ,y ∈B ,且log x y ∈N +}={(2,2),(2,4),(2,8),(4,4)},故选D.答案:D4.解析:依题意知集合M 除含有元素-1,0之外,必须还含有1,2,3中的一个,或多个.因而问题转化为求含有3个元素的集合所含的非空子集的个数问题,故有23-1=7个.故选C.答案:C5.D 6.A7.解析:由于U ={1,3,5,6,8},A ={1,6} ∴∁U A ={3,5,8},∴(∁U A )∩B ={5,8}.答案:B8.解析:A ={}x ∈Z | 2≤22-x <8 ={0,1},B ={ x ∈ R | |log 2x |>1}={x |x >2或0<x <12},∴ A ∩(∁R B )={0,1},其中的元素个数为2,选C.答案:C9.C10.D11.(1)(3)12.解析:∵A ⊇B ,∴a 2-a =2或a 2-a =a .(1)若a 2-a =2,得a =2或a =-1,根据集合A 中元素的互异性,知:a ≠2,∴a =-1.(2)若a 2-a =a ,得a =0或a =2,经检验知,只有a =0符合要求.综上所述,a =-1或a =0.答案:-1或013.解析:∵3∈B ,∴a +2=3,∴a =1.答案:114.解析:∵A ={} |x x 2-5x +6=0={}2,3,A ∪B =A ,∴B ⊆A .①m =0时,B =∅,B ⊆A ;②m ≠0时,由mx +1=0,得x =-1m. ∵B ⊆A ,∴-1m ∈A ,∴-1m =2或-1m=3, 得m =-12或-13. 所以符合题意的m 的集合为⎩⎨⎧⎭⎬⎫0,-12,-13.15.解析:(1)由x -3x +1<0,得P ={}x | -1<x <3.(2)Q ={}x | ||x -1≤1={}x | 0≤x ≤2.由a >0,得P ={}x | -1<x <a,又Q ⊆P ,所以a >2, 即a 的取值范围是(2,+∞).16.解析:(1)∵2∈A ,∴11-2∈A ,即-1∈A , ∴11-(-1)∈A ,即12∈A ,∴A =⎩⎨⎧⎭⎬⎫2,-1,12. (2)假设A 中仅含一个元素,不妨设为a, 则a ∈A ,有11-a ∈A ,又A 中只有一个元素, ∴a =11-a, 即a 2-a +1=0,但此方程Δ<0,即方程无实数根. ∴不存在这样的实数a .故A 不可能是单元素集合.。

高中数学集合练习题及讲解

高中数学集合练习题及讲解

高中数学集合练习题及讲解## 高中数学集合练习题及讲解集合是数学中描述对象集合的一种基本工具,它在高中数学中占有重要地位。

以下是一些集合的练习题和相应的讲解,帮助学生更好地理解和应用集合的概念。

### 练习题一:集合的基本运算题目:已知集合 A = {1, 2, 3} 和 B = {2, 3, 4},求A ∪ B 和A ∩ B。

解答:- A ∪ B 表示 A 和 B 的并集,即 A 和 B 中所有的元素,不重复地放在一起。

因此,A ∪ B = {1, 2, 3, 4}。

- A ∩ B 表示 A 和 B 的交集,即同时属于 A 和 B 的元素。

因此,A ∩ B = {2, 3}。

### 练习题二:子集与真子集题目:若集合 C = {1, 2},判断 C 是否是 A 的子集。

解答:- 子集的定义是,如果集合 C 中的每一个元素都是集合 A 的元素,那么 C 是 A 的子集。

- 在这个例子中,C 中的所有元素 1 和 2 都在 A = {1, 2, 3} 中,所以 C 是 A 的子集。

### 练习题三:幂集题目:集合 D = {a, b},求 D 的幂集。

解答:- 幂集是包含所有可能子集的集合,包括空集和集合本身。

- 对于 D = {a, b},其幂集 P(D) 包括:- 空集:{}- 只包含 a 的集合:{a}- 只包含 b 的集合:{b}- 包含 a 和 b 的集合:{a, b}- 集合 D 本身:{a, b}### 练习题四:集合的补集题目:已知全集 U = {1, 2, 3, 4, 5},求 A 的补集。

解答:- 补集的定义是全集 U 中不属于集合 A 的所有元素组成的集合。

- 集合 A = {1, 2, 3},所以 A 的补集是 U 中不属于 A 的元素,即A' = {4, 5}。

### 练习题五:集合的笛卡尔积题目:集合 E = {1, 2} 和 F = {x, y},求E × F。

集合知识点+练习题

集合知识点+练习题

集合知识点+练习题第⼀章集合§ 1.1集合基础知识点:1.集合的定义: ⼀般地,我们把研究对象统称为兀素,⼀些兀素组成的总体叫集合,也简称集2.表⽰⽅法:集合通常⽤⼤括号{}或⼤写的拉丁字母A,B,C…表⽰,⽽元素⽤⼩写的拉丁字母a,b,c…表⽰。

3.集合相等: 构成两个集合的兀素完全⼀样。

4. 常⽤的数集及记法:⾮负整数集(或⾃然数集),记作N ;正整数集,记作N*或N + ;N内排除0的集.整数集,记作Z ;有理数集,记作Q;实数集,记作R ;5. 关于集合的元素的特征⑴确定性:给定⼀个集合,那么任何⼀个兀素在不在这个集合中就确定了。

⼥⼝:“地球上的四⼤洋”(太平洋,⼤西洋,印度洋,北冰洋)。

“中国古代四⼤发明”(造纸,印刷,⽕药,指南针)可以构成集合,其元素具有确定性;⽽“⽐较⼤的数”,“平⾯点P周围的点”⼀般不构成集合,因为组成它的兀素是不确定的.⑵互异性:⼀个集合中的兀素是互不相冋的,即集合中的兀素是不重复出现的。

如:⽅程(x-2)(x-1)2=0的解集表⽰为1,2 ,⽽不是1, 1,2⑶⽆序性:即集合中的元素⽆顺序,可以任意排列、调换。

练1:判断以下元素的全体是否组成集合,并说明理由:⑴⼤于3⼩于11的偶数;⑵我国的⼩河流;⑶⾮负奇数;⑷⽅程x2+仁0的解;⑸徐州艺校校2011级新⽣;⑹⾎压很⾼的⼈;⑺著名的数学家;⑻平⾯直⾓坐标系内所有第三象限的点6. 元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a_A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a A。

例如,(1)A表⽰“ 1~20以内的所有质数”组成的集合,则有 3 € A , 4 A,等等。

(2)A={2 , 4, 8, 16},贝U 4_A, 8_A, 32 A.典型例题例1⽤“ €”或“”符号填空:⑴ 8_ N ; ⑵ 0 ___ N; ⑶-3 ___ Z ; ⑷ 2_Q;⑸设A为所有亚洲国家组成的集合,则中国_A,美国_________ A,印度_____A,英国A。

集合知识点+基础习题(有答案)

集合知识点+基础习题(有答案)

B.{2}
C.{1,3,4}
D.{4}
32、设集合 , = A.[0,2] C. D.(0,2) 33、设全集 ,则 等于 B.
34、设全集U={1,3,5,7}则集合M满足 ={5,7},则集合M为 A. B. 或 C.{1,3,5,7} 或 或 35、已知集合 则 D.
36、若全集 ,集合 ,则 。 37、已知全集 , , ,那么 _______. 38、设U={1,2,3,4,5}, A={1,2,3}, B={2,4}, 则A∪
一般地一个集合元素若为1个特别地空集的子集个数为1真子集个数为kszl1已知集合2设全集集合3若关于x的方程xmx10有两个不相等的实数根则实数m的取值范围是a
集合练习题
知识点 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集 合(简称集). 1.集合中元素具的有几个特征 ⑴确定性-因集合是由一些元素组成的总体,当然,我们所说的“一 些元素”是确定的. ⑵互异性-即集合中的元素是互不相同的,如果出现了两个(或几个) 相同的元素就只能算一个,即集合中的元素是不重复出现的. ⑶无序性-即集合中的元素没有次序之分. 2.常用的数集及其记法 我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁 字母a,b,c,…表示集合中的元素. 常用数集及其记法 非负整数集(或自然数集),记作N 正整数集,记作N*或N+; 整数集,记作Z 有理数集,记作Q 实数集,记作R 3.元素与集合之间的关系
A. B.
C. D. 22、设集合 ( A. )
B. C. D. 23、设全集 则(CuA)∩B=( A. B. C. D. 24、设全集 ,集合 , ,则 A. B. C. D. 25、已知 )
为实数集, ,则 = ( A. )

高中数学集合习题及详解

高中数学集合习题及详解

高中数学集合习题及详解一、单选题1.已知全集{}2,1,0,1,2,3,4,5,6U =--,{}2,3,5,6M =,{}2,1,1,3,5N =--,如图Venn 中阴影部分表示的集合为( ).A .{}0,2,5,6B .{}1,2,3,5,6-C .{}0,2,3,4,5,6D .{}2,0,1,2,3,4-2.设集合(){}0.5log 10A x x =->,{}24xB x =<,则( )A .A =B B .A B ⊇C .A B B =D .A B B ⋃= 3.若集合{|ln(2)1}A x Z x =∈-≤,则集合A 的子集个数为( )A .3B .4C .7D .84.已知{}33U x x =-≤<,{}23A x x =-≤<,则图中阴影表示的集合是( )A .{}32x x -≤≤-B .][33,)-∞-⋃+∞(, C .{}0x x ≤D .{}32x x -≤<-5.已知集合{}1|32|22xA x xB x ⎧⎫⎪⎪⎛⎫=-<<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,,则A B =( )A .{}|22x x -<<B .{} |12x x -<<C .{}|32x x -<<-D .{} |31x x -<<-6.已知集合{}|21xA x =>,{}22B xy x x ==-∣,则A B =( ) A .()0,+∞ B .(]0,2 C .(]1,2 D .[)2,+∞7.设{}13A x x =-<≤,{}B x x a =>,若A B ⊆,则a 的取值范围是( ) A .{}3a a ≥B .{}1a a ≤-C .{}3a a >D .{}1a a <-8.设集合{}{}(,)|20(,)|35A x y x y B x y x y =-==+=,,则A B =( ) A .{1,2} B .{1,2}xyC .(1,2)D .{(1,2)}9.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()UA B =( ) A .{}1B .{}3C .{}2,4D .{}1,2,4,510.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( ) A .{}0,1,2,3 B .{}0,1,2 C .{}1,2,3 D .{}1,211.如图,已知集合A={-8,1},B={-8,-5,0,1,3},则Venn 图中阴影部分表示的集合为( )A .{-5,0,3}B .{-5,1,3}C .{0,3}D .{1,3} 12.已知集合2{60}A xx x =--<|,{|231}B x x =+>,则A B ⋃=( ) A .(1,3)-B .(2,)-+∞C .(2,1)--D .(,2)-∞-13.已知集合{}2,1,0,1,2,3U =--,{}1,0,1A =-,{}1,2,3B =,则()UB A =( )A .{}2-B .{}2,2-C .{}2,1,0,3--D .{}2,1,0,2,3--14.已知集合{}1e 1x M x -=>,{}220N x x x =-<,则MN =( )A .()1,+∞B .()2,+∞C .()0,1D .()1,215.已知集合{|13}A x x =-<<,1,{}1,2B =-,则A B =( )A .{}1,2B .{}1,1,2-C .{}0,1,2D .{}1,0,1,2,3-二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.设集合{}{}240,,20A xx x A x x a =-≤∈=+≤R ∣∣,且[]2,1A B =-,则=a ___________.18.集合{}33A x Z x =∈-<<的子集个数为______. 19.若{}31,2a ∈,则实数=a ____________.20.{}2|60A x x x =+-=,{}|10B x mx =+=,且A B A ⋃=,则m 的值是__________.21.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则AB =___________.22.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.23.若不等式x a <的一个充分条件为20x -<<,则实数a 的取值范围是___________.24.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______.25.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.三、解答题26.已知{}28200P x x x =--≤,非空集合{}11S x m x m =-≤≤+.若x P ∈是x S ∈的必要不充分条件,求实数m 的取值范围.27.立德中学高一年级共有200名学生,报名参加学校团委与学生会组织的社团组织,据统计,参加艺术社团组织的学生有103人,参加体育社团组织的学生有120人(并非每个学生必须参加某个社团).求在高一年级的报名学生中,同时参加这2个社团的最多有多少人?最少有有多少人?28.已知函数()22f x x x a =-+,()5g x ax a =+-(1)若函数()y f x =在区间[]1,0-上存在零点,求实数a 的取值范围;(2)若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,求实数a 的取值范围.29.已知函数()f x A ,不等式1()402x->的解集是集合 B ,求集合 A 和R ()B A ⋂ .30.已知函数()f x A ,关于x 的不等式2()(21)0x m x m --+≤的解集为B .(1)当m =2时,求()A B R ;(2)若x ∈A 是x ∈B 的充分条件,求实数m 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】明确图中阴影部分表示的是() UM N ⋃,根据集合的运算求得答案.【详解】 由题意得:{}0,2,4,6UN =,故图中阴影部分表示的集合为(){} U0,2,3,4,5,6M N ⋃=,故选:C . 2.D 【解析】 【分析】化简集合,A B ,再判断各选项的对错. 【详解】因为0.5{|log (1)0}{|12}A x x x x =->=<<,{}24={|2}xB x x x =<<,所以A B ⊆且A B ≠,所以A 错,B 错,{|12}A B x x A =<<=,C 错, {|2}A B x x B =<=,D 对, 故选:D. 3.B 【解析】【分析】根据对数的运算性质,求得集合{3,4}A =,进而求得集合A 的子集个数,得到答案. 【详解】由ln(2)1x -≤,可得202x x e ->⎧⎨-≤⎩,解得22x e <≤+,所以集合{|22}{3,4}A x Z x e =∈<≤+=,所以集合A 的子集个数为224=. 故选:B. 4.D 【解析】 【分析】根据韦恩图,写出相应集合即可 【详解】由图可知,阴影表示的集合为集合A 相对于全集U 的补集,即阴影表示的集合是UA ,所以{}32UA x x =-≤<-;故选:D 5.B 【解析】 【分析】先由指数函数的性质求得集合B ,再根据集合的交集运算可求得答案. 【详解】解:因为}{}1{|32,|()212x A x x B x x x ⎧⎫=-<<=<=-⎨⎬⎩⎭,所以A B ={}|12x x -<<, 故选:B. 6.B 【解析】 【分析】先求出集合A ,B ,再根据交集定义即可求出. 【详解】因为{}|0A x x =>,{}|02B x x =≤≤,所以(]0,2A B =. 故选:B. 7.B 【解析】 【分析】根据集合的包含关系,列不等关系,解不等式即可. 【详解】由题:(,)B a =+∞,A B ⊆,则1a ≤-. 故选:B8.D 【解析】 【分析】 联立方程求解即可. 【详解】集合A 表示在直线2x -y =0上所有的点,集合B 表示3x +y =5上所有的点,所以联立方程2035x y x y -=⎧⎨+=⎩ ,解得x =1,y =2, ()1,2A B ⋂= ,即A 与B 的交集是点(1,2);故选:D. 9.D 【解析】 【分析】利用交集和补集的定义可求得结果. 【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5UA B ⋂=.故选:D. 10.D 【解析】 【分析】先化简集合A ,继而求出A B . 【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2. 故选:D. 11.A 【解析】 【分析】由已知,结合给出的Venn 图可判断阴影部分为∁BA , 根据给到的集合A 和集合B ,可直接进行求解. 【详解】因为集合A={-8,1},B={-8,-5,0,1,3}, Venn 图中阴影部分表示的集合为∁BA={-5,0,3}. 故选:A. 12.B 【解析】 【分析】先计算出集合,A B ,再计算A B 即可. 【详解】因为{23}A xx =-<<∣,{1}B x x =>-∣,所以(2,)A B ⋃=-+∞. 故选:B. 13.A 【解析】 【分析】利用并集和补集的定义可求得结果. 【详解】由已知可得{}1,0,1,2,3A B ⋃=-,因此,(){}2UAB =-.故选:A. 14.D 【解析】 【分析】根据指数函数的性质解出集合M ,再由二次不等式的解法求出集合N ,最后求交集即可. 【详解】解:由1e 1x ->得10e e x ->,又函数e x y =在R 上单调递增,则10x ->,即{}1M x x =>, 又由220x x -<得02x <<,即{}02M x x =<<, 所以{}12M N x x ⋂=<<. 故选:D. 15.A 【解析】 【分析】根据交集运算求A B 【详解】{|13}A x x =-<<,1,{}1,2B =-, {1,2}AB ∴=,故选:A二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}1 17.-2 【解析】 【分析】由二次不等式和一次不等式的解法,求出集合A ,B ,再由交集的定义,可得a 的方程,解方程可得a . 【详解】集合2{|40}{|22}A x x x x =-=-,{|20}{|}2B x x a x x a =+=-, 由{|21}A B x x ⋂=-,可得12a-=,则2a =-. 故答案为:-2. 18.32 【解析】 【分析】由n 个元素组成的集合,集合的子集个数为2n 个. 【详解】解:由题意得{}2,1,0,1,2A =--,则A 的子集个数为5232=. 故答案为:32. 19.5##32【解析】 【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果. 【详解】 因为{}31,2a ∈, 所以23a =,解得32a =. 故答案为:32.20.11023-、、 【解析】 【分析】先求出集合A ,再由A B A ⋃=,可得B A ⊆,然后分B =∅和B ≠∅两种情况求解即可【详解】解:由260x x +-=,得2x =或3x =-,所以{}{}2|603,2A x x x =+-==-,因为A B A ⋃=,所以B A ⊆,当B =∅时,B A ⊆成立,此时方程10+=mx 无解,得0m =; 当B ≠∅时,得0m ≠,则集合{}1|10B x mx m ⎧⎫=+==-⎨⎬⎩⎭,因为B A ⊆,所以13m -=-或12m -=,解得13m =或12m =-, 综上,0m =,13m =或12m =-.故答案为:11023-、、 21.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭22.(){}0,0【解析】 【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果.【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩则(){}0,0MN =.故答案为:(){}0,0.23.2a ≥【解析】 【分析】根据含绝对值不等式的解法,求解不等式的解集,结合充分条件,列出关系式,即可求解. 【详解】 由不等式||x a <,当0a ≤时,不等式||x a <的解集为空集,显然不成立; 当0a >时,不等式||x a <,可得a x a -<<,要使得不等式||x a <的一个充分条件为20x -<<,则满足{|20}{|}x x x a x a -<<⊆-<<, 所以2a -≥-,即2a ≥ ∴实数a 的取值范围是2a ≥. 故答案为:2a ≥. 24.3 【解析】 【分析】根据题意21a a -+7=,结合7A =,即可求得a . 【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-. 当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去. 当3a =时,满足题意. 故答案为:3. 25.4 【解析】 【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可 【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素, ∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去). 故答案为:4三、解答题26.[]0,3. 【解析】 【分析】先解出集合P ,由x P ∈是x S ∈的必要不充分条件得出SP ,又S 为非空集合,解不等式求出m 的取值范围即可.【详解】由28200x x --≤,得210x -≤≤,∴{}210P x x =-≤≤.∵S 为非空集合,∴11m m -≤+,解得0m ≥. 又∵x P ∈是x S ∈的必要不充分条件,则S P ,∴12,110,m m -≥-⎧⎨+≤⎩且不能同时取等,解得3m ≤. 综上,m 的取值范围是[]0,3.27.103;23.【解析】【分析】由题可知当艺术社团组织的学生都参加体育社团组织时,同时参加这2个社团的人数最多,当每个学生都参加某个社团时,同时参加这2个社团的学生最少.【详解】由题意:当艺术社团组织的103名学生都参加体育社团组织时,同时参加这2个社团的学生最多,且有103人;当每个学生都参加某个社团时,同时参加这2个社团的学生最少,且有10312020023+-=人,所以同时参加这2个社团的最多有103名学生,最少有23名学生.28.(1)[3,0]-(2)][(),62,∞∞--⋃+【解析】【分析】(1)根据()y f x =在区间[]1,0-上的单调性,结合零点存在性定理可得;(2)将问题转化为两个函数值域的包含关系问题,然后可解.(1)()y f x =的图象开口向上,对称轴为1x =,所以函数()f x 在[]1,0-上单调递减.因为函数()y f x =在区间[]1,0-上存在零点,所以(1)30(0)0f a f a -=+≥⎧⎨=≤⎩,解得30a -≤≤,即实数a 的取值范围为[3,0]-.(2)记函数()22f x x x a =-+,[1,3]x ∈-的值域为集合A ,()5g x ax a =+-,[1,3]x ∈-的值域为集合B .则对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立⇔A B ⊆. 因为()y f x =的图象开口向上,对称轴为1x =,所以当[1,3]x ∈-,min max ()(1)1,()(3)3f x f a f x f a ==-==+,得{|13}A y a y a =-≤≤+.当0a =时,()g x 的值域为{5},显然不满足题意;当0a >时,()g x 的值域为{|5252}B y a y a =-≤≤+,因为A B ⊆,所以521523a a a a -≤-⎧⎨+≥+⎩,解得2a ≥;当0a <时,()g x 的值域为{|5252}B y a y a =+≤≤-,因为A B ⊆,所以521523a a a a +≤-⎧⎨-≥+⎩,解得6a ≤-.综上,实数a 的取值范围为][(),62,∞∞--⋃+29.(,1][4,)A =-∞-⋃+∞; ()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.【解析】【分析】先解出不等式2340x x --≥得到集合A ,再根据指数函数单调性解出集合B ,然后根据补集和交集的定义求得答案.【详解】由题意,()()2340140x x x x --≥⇒+-≥,则(,1][4,)A =-∞-⋃+∞, 又2111()40()222x x -⎛⎫->⇒> ⎪⎝⎭,则(),2B =-∞-,R [2,)B =-+∞, 于是()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.30.(1)1(,][3,)2-∞-⋃+∞; (2)(,2]-∞-.【解析】【分析】(1)求对数复合函数定义域、解一元二次不等式求出集合A 和B ,利用集合的并补运算求()A B R .(2)解含参一元二次不等式求集合B ,根据充分条件有A ⊆B ,列不等式求m 的范围即可.(1)由题设40210x x ->⎧⎨+>⎩得:142x -<<,即函数的定义域A =1(,4)2-,则R 1(,][4,)2A =-∞-⋃+∞, 当m =2时,不等式(4)(3)0x x --≤得:34x ≤≤,即B =[3,4],所以()A B R =1(,][3,)2-∞-⋃+∞. (2)由2()(21)0x m x m --+=得: x =m 2或x =21m -,又2221(1)0m m m -+=-≥,即221m m ≥-,综上,2()(21)0x m x m --+≤的解集为B =2[21,]m m -,若x∈A是x∈B的充分条件,则A⊆B,即241212mm⎧≥⎪⎨-≤-⎪⎩,得:2m≤-,所以实数m的取值范围是(,2]-∞-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.49 集合A={(x,y)|y=a|x|,x∈R},B={(x, y)|y=x+a,x∈R},已知集合A∩B中有且仅有一个 元素,则常数a的取值范围是 . 解析 由函数f(x)=a|x|的图象和函数g(x)=x+a的图 象的位置关系可知,使集合A∩B中有且仅有一个元素 的常数a的取值范围是-1≤a≤1.
2.1.72 集合A={x|-2≤x≤a},B={y|y=2x+ 3,x∈A},C={z|z=x2,x∈A},若C⊆B,试 求常数a的取值范围.
集合习题
1.1.7 用适当的方式写出下列集合: (1) 组成中国国旗的颜色名称的集合 ; (2) 不大于6的非负整数所组成的集合 ; (3) 所有正奇数组成的集合 ; (4) 方程x3+6=0的实数解构成的集 合 ; (5) 不等式x2-5x+4<0的解集 ; (6) 直角坐标平面中,第一象限内的所有点组 成的集合 ; (7) 直角坐标平面中,直线y=2x-1上的所有 点组成的集合 .
解析 (1) 组成中国国旗的颜色名称的集合是{红, 黄}. (2) 不大于6的非负整数所组成的集合是{0,1,2,3, 4,5,6}. (3) 所有正奇数组成的集合是{x|x=2k+1,k∈N}. (4) 方程x3+6=0的实数解构成的集合是{x|x3+6=0, x∈R}. (5) 不等式x2-5x+4<0的解集{x|x2-5x+4<0}或写 成{x|1<x<4}. (6) 直角坐标平面中,第一象限内的所有点组成的集 合是{(x,y)|x>0且y>0}. (7) 直角坐标平面中,直线y=2x-1上的所有点组成 的集合是{(x,y)|y=2x-1}.
相关文档
最新文档