集合论习题解析
高中集合试题及答案解析

高中集合试题及答案解析一、选择题1. 集合A={1, 2, 3},集合B={3, 4, 5},求A∩B的值。
A. {1, 2}B. {3}C. {4, 5}D. 空集答案:B解析:根据集合交集的定义,A∩B是指既属于集合A又属于集合B的所有元素组成的集合。
在本题中,只有3同时属于集合A和集合B,因此A∩B={3}。
2. 如果集合A={x|x<5},集合B={x|x>3},求A∪B的值。
A. {x|x<3}B. {x|x<5}C. {x|x>=3}D. {x|x>=5}答案:C解析:集合并集的定义是将两个集合中所有的元素合并在一起,不重复计算。
在本题中,集合A包含所有小于5的数,集合B包含所有大于3的数。
因此,A∪B包含所有大于等于3的数,即{x|x>=3}。
二、填空题3. 若集合M={x|x²-5x+6=0},请写出集合M的所有元素。
答案:{2, 3}解析:首先解方程x²-5x+6=0,通过因式分解得到(x-2)(x-3)=0,因此x=2或x=3。
所以集合M的元素为2和3。
4. 已知集合N={x|-2≤x≤2},求集合N的补集。
答案:{x|x<-2或x>2}解析:集合N的补集是指所有不属于N的元素组成的集合。
根据N的定义,它的补集是所有小于-2或大于2的实数。
三、解答题5. 集合P={x|0<x<10},集合Q={x|x是偶数},求P∩Q,并说明其性质。
答案:P∩Q={2, 4, 6, 8}解析:集合P包含所有0到10之间的实数,而集合Q包含所有偶数。
因此,P∩Q包含所有既是0到10之间又是偶数的实数,即{2, 4, 6, 8}。
这个集合是有限集,且每个元素都是正偶数。
6. 已知集合R={x|x²-4=0},求R的子集个数。
答案:4解析:集合R的元素可以通过解方程x²-4=0得到,即x=±2。
高一数学必修一集合题目及解析

高一数学必修一集合题目及解析一、集合概念题1、集合定义:集合是不同物体的集合,是把相关的成员物体收集在一起,以方便处理某些问题的数学概念。
集合中的成员称为元素,用来表示一组物体,这些物体可以是数字、图形、代数式等,且元素无序。
2、不同集合的性质:(1)空集:它是集合的一种,表示没有元素的集合,也称为空集,它的符号用∅。
(2)有限集:也叫非空有限集,指的是集合中有有限多个元素的集合,即当集合中元素的数目有限时,称为有限集。
(3)无限集:指集合中元素的数目是无穷多时,称为无穷集。
二、集合运算题1、并集运算并集运算,又称合并运算,是把两个集合中所有元素汇总在一起,组成新的一个集合。
它是由两个集合所共有的元素和分别属于两个集合的元素组成的集合,其结果集合符号表示为 A∪B。
2、交集运算交集运算也叫交运算,是把两个集合A和B中相同的元素挑出来形成新的集合,把不同元素排除掉。
它是两个集合共有的元素组成的集合,其结果集合符号表示为:A∩B。
三、集合的性质1、可结合性可结合性是一种集合性质,用来描述两个集合运算的结果的性质。
具有可结合性的集合表示满足对任意的三个集合都有:(A∪B)∪C=A∪(B∪C),其中A、B、C为任意两个集合。
2、交换性交换性是一种集合的性质,它用来描述两个集合运算的结果的性质。
具有交换性的集合表示满足对任意的两个集合都有A∪B=B∪A,其中A、B为任意两个集合。
3、分配性分配性是一种集合性质,它用来描述两个集合运算的结果的性质。
具有分配性的集合表示满足对任意的三个集合都有:A∩(B∪C)=(A∩B)∪(A∩C),其中A、B、C为任意两个集合。
集合讲义及例题解析1

专题01 集合4题型分类1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法.2.集合间的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集,记作A⊆B(或B⊇A.(2)真子集:如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B 的真子集,记作A⊂B(或B⊃A).(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集:不含任何元素的集合叫做空集,记为∅.空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算(一)集合的含义与表示1.元素与集合关系的判断(1)元素与集合的关系:①一般地,我们把研究对象称为元素,把一些元素组成的总体称为集合,简称集.①元素一般用小写字母a,b,c表示,集合一般用大写字母A,B,C表示,两者之间的关系是属于与不属于关系,符号表示如:a①A或a①A.(2)集合中元素的特征:确定性、互异性、无序性2.解决集合含义问题的关键有三点.(1)确定构成集合的元素.(2)确定元素的限制条件.(3)根据元素的特征(满足的条件)构造关系式解决相应问题.3M -∈当21-m 当3m -=所以m =(二)集合间的基本关系1.集合的相等(1)若集合A 与集合B 的元素相同,则称集合A 等于集合B .(2)对集合A 和集合B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任N【分析】分别分析两个集合中的元素所代表的意思即可判断选项若M N ⊆,则0a ≤. 故答案为:0a ≤2-3.(2024高一下·重庆万州·开学考试)已知集合{}1,3,21A m =-,集合{}23,B m =.若B A ⊆,则实数m = . 【答案】1-【分析】利用B A ⊆列方程求出m ,注意到集合中元素的互异性,得到正确答案.【详解】集合{}1,3,21A m =-,集合{}23,B m =B A ⊆.①若21m =,解得:1m =或1m =-.当1m =时,{}1,3,1A =与元素的互异性相矛盾,舍去. 当1m =-时,{}1,3,3A =-符合题意. ②若221m m =-,解得:1m =.舍去. 故1m =-. 故答案为:-1.2-4.(2023-2024学年山东省济宁市兖州区高一上学期期中考试数学试卷(带解析))已知集合2|1},{|}{1A x x B x ax ====,若B A ⊆,则实数a 的值为 . 【答案】0,±1 【详解】试题分析:当时,集合B φ=,满足B A ⊆;当时,,又,所以若B A ⊆,则有,综上实数a 的值为0,±1.考点:利用子集关系求参数.2-5.(2024高一上·江苏宿迁·阶段练习)已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围为 . 【答案】(,3]-∞【分析】根据B A ⊆,分B =∅和B ≠∅,两种情况讨论求解.【详解】因为集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,且B A ⊆, 当B =∅时,则121m m +>-,解得2m <,。
集合练习题及解析答案

集合练习题及解析答案精品文档集合练习题及解析答案1.若集合M,{a,b,c}中元素是?ABC的三边长,则?ABC一定不是A(锐角三角形 B(直角三角形C(钝角三角形 D(等腰三角形2(定义集合运算:A*B,{ z|z,xy,x?A,y?B}.设A,{1,2},B,{0,2},则集合A*B 的所有元素之和为A(0 B( C( D(63(已知集合A,{2,3,4},B,{2,4,6,8},C,{| x?A,y?B,且logxy?N,},则C 中元素的个数是A(9B(8C( D(44(满足{,1,0} M?{,1,0,1,2,3}的集合M的个数是A(4个 B(个 C(7个D(8个5(已知集合A,{,1,1},B{x|ax,1,0},若B?A,则实数a的所有可能取值的集合为A({,1} B({1} C({,1,1}D({,1,0,1}6.已知全集U,{1,2,3,4,5,6},集合A,{1,2,5},?UB,{4,5,6},则集合A?B,A({1,2} B({5} C({1,2,3} D({3,4,6}7(设全集U,{1,3,5,6,8},A,{1,6},B,{5,6,8},则?B,1 / 21精品文档A({6}B({5,8}C({6,8} D({3,5,6,8}2,x8(若A,{x?Z|2?1},则A?的元素个数为A(0 B(1 C(2D(319(设U,R, M,{x|x2,x?0},函数f的定义域为N,则M? x,1A([0,1)B( C([0,1] D({1}10(设U,R,集合A,{y|y,x,1,x?1},B,{x?Z|x2,4?0},则下列结论正确的是A(A?B,{,2,,1} B(?B,C(A?B,[0,,?)D(?B,{,2,,1}11(非空集合G关于运算?满足:?对于任意a、b?G,都有a?b?G;?存在e?G,使得对一切a?G,都有a?e,e?a,a,则称G关于运算?为融洽集,现有下列集合运算: G,{非负整数},?为整数的加法;G,{偶数},?为整数的乘法;G,{平面向量},?为平面向量的加法;G,{二次三项式},?为多项式的加法;其中G关于运算?的融洽集有________(12(设集合A,{1,2,a},B,{1,a2,a},若A?B,则实数a的值为________( 13(设集合A,{,1,1,3},B,{a,2,a2,4},A?B2 / 21精品文档,{3},则实数a,________.214(已知集合A,{ x|x,5x,6,0},B,{ x|mx,1,0},且A?B,A,求实数m的值组成的集合(x,a15(记关于x的不等式若a,3,求P;若Q?P,求正数a的取值范围(116(已知由实数组成的集合A满足:若x?AA. 1,x设A中含有3个元素,且2?A,求A;A能否是仅含一个元素的单元素集,试说明理由(1(解析:根据集合中元素的互异性知a?b?c,故选D.2(解析:依题意得A*B,{ z|z,xy,x?A,y?B},{0,2,4},因此集合A*B 的所有元素之和为6,故选D.3(解析:C,{| x?A,y?B,且logxy?N,},{,,,},故选D.4(解析:依题意知集合M除含有元素,1,0之外,必须还含有1,2,3中的一个,或多个(因3而问题转化为求含有3个元素的集合所含的非空子集的个数问题,故有2,1,7个(故选C.5(D(A3 / 21精品文档7(解析:由于U,{1,3,5,6,8},A,{1,6} ??UA,{3,5,8},??B,{5,8}(答案:B12,x8(解析:A,{x?Z|2?1},{x|x>2或0 ? A?,{0,1},其中的元素个数为2,选C.9(C10.D11.12(解析:?A?B,?a2,a,2或a2,a,a.若a2,a,2,得a,2或a,,1,根据集合A中元素的互异性,知:a?2,?a,,1.若a2,a,a,得a,0或a,2,经检验知,只有a,0符合要求(综上所述,a,,1或a,0.答案:,1或013(解析:?3?B,?a,2,3,?a,1.答案:1214(解析:?A,{ x|x,5x,6,0},{2,3},A?B,A,?B?A.?m,0时,B,?,B?A;1?m?0时,由mx,1,0,得x. m4 / 21精品文档111?B?A,?,A,?,2,3, mmm11?11?得m,,或,.所以符合题意的m的集合为?0,,23.3??x,315(解析:由 Q,{x||x,1|?1 },{x|0?x?}.由a>0,得P,{x|,12,即a的取值范围是(116(解析:?2?A,?A,即,1?A, 1,21?11???AA,?A,?2,,1,2.??1,?,1?1假设A中仅含一个元素,不妨设为a, 则a?A,有A,又A中只有一个元素,1,a1?a,即a2,a,1,0,但此方程Δ ?不存在这样的实数a.故A不可能是单元素集合(1(已知A,{x|3,3x>0},则下列各式正确的是A(3?AB(1?AC(0?A D(,1?A集合A表示不等式3,3x>0的解集(显然3,1不满足不等式,而0,,1满足不等式,故选C.C2(下列四个集合中,不同于另外三个的是A({y|y,2} B({x,2}C({2} D({x|x2,4x,4,0}{x,2}表示的是由一个等式组成的集合(故选B.5 / 21精品文档B3(下列关系中,正确的个数为________(1?2R?Q;?|,3|?N*;?|,?Q.1 本题考查常用数集及元素与集合的关系(显然2?R,?正确;2?Q,?正确;|,3|,3?N*,|3|,3?Q,?、?不正确(4(已知集合A,{1,x,x2,x},B,{1,2,x},若集合A与集合B相等,求x的值(因为集合A与集合B相等,所以x2,x,2.?x,2或x,,1.当x,2时,与集合元素的互异性矛盾(当x,,1时,符合题意(?x,,1.一、选择题1(下列命题中正确的?0与{0}表示同一个集合;?由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};?方程2,0的所有解的集合可表示为{1,1,2};?集合{x|4 示(A(只有?和? B(只有?和?C(只有? D(以上语句都不对6 / 21精品文档{0}表示元素为0的集合,而0只表示一个元素,故?错误;?符合集合中元素的无序性,正确;?不符合集合中元素的互异性,错误;?中元素有无穷多个,不能一一列举,故不能用列举法表示(故选C.C2(用列举法表示集合{x|x2,2x,1,0}为A({1,1} B({1}C({x,1} D({x2,2x,1,0}集合{x|x2,2x,1,0}实质是方程x2,2x,1,0的解集,此方程有两相等实根,为1,故可表示为{1}(故选B.B3(已知集合A,{x?N*|,5?x5},则必有A(,1?A B(0?A?A D(1?A?x?N*5?x5,?x,1,2,即A,{1,2},?1?A.故选D.D4(定义集合运算:A*B,{z|z,xy,x?A,y?B}(设A,{1,2},B,{0,2},则集合A*B 的所有元素之和为A(0 B(2C( D(67 / 21精品文档依题意,A*B,{0,2,4},其所有元素之和为6,故选D.D二、填空题5(已知集合A,{1,a2},实数a不能取的值的集合是________(由互异性知a2?1,即a??1,故实数a不能取的值的集合是{1,,1}({1,,1}6(已知P,{x|2,x,a,x?N},已知集合P中恰有3个元素,则整数a,________.用数轴分析可知a,6时,集合P中恰有3个元素3,4,5.三、解答题7(选择适当的方法表示下列集合集(由方程x,0的所有实数根组成的集合;大于2且小于6的有理数;由直线y,,x,4上的横坐标和纵坐标都是自然数的点组成的集合(方程的实数根为,1,0,3,故可以用列举法表示为{,1,0,3},当然也可以用描述法表示为{x|x,0},有限集(由于大于2且小于6的有理数有无数个,故不能用列8 / 21精品文档举法表示该集合,但可以用描述法表示该集合为{x?Q|2 用描述法表示该集合为M,{|y,,x,4,x?N,y?N}或用列举法表示该集合为{,,,,}(8(设A表示集合{a2,2a,3,2,3},B表示集合{2,|a,3|},已知5?A且5?B,求a的值(因为5?A,所以a2,2a,3,5,解得a,2或a,,4.当a,2时,|a,3|,5,不符合题意,应舍去(当a,,4时,|a,3|,1,符合题意,所以a,,4.9(已知集合A,{x|ax2,3x,4,0,x?R}(若A中有两个元素,求实数a的取值范围;若A中至多有一个元素,求实数a的取值范围(?A中有两个元素,?方程ax2,3x,4,0有两个不等的实数根,?a?0,99??即a,,16.?a,,16a?0. ?Δ,9,16a,0,4当a,0时,A,{,3};当a?0时,若关于x的方程ax2,3x,4,0有两个相等的实数根,Δ,9,16a,0,9 / 21精品文档9即a,,16若关于x的方程无实数根,则Δ,9,16a,0,9即a16;9故所求的a的取值范围是a?,16a,0.1(设集合A,{x|2?x,4},B,{x|3x,7?8,2x},则A?B等于A({x|x?3} B({x|x?2}C({x|2?x,3} D({x|x?4}B,{x|x?3}(画数轴可知选B.B2(已知集合A,{1,3,5,7,9},B,{0,3,6,9,12},则A?B,A({3,5} B({3,6}C({3,7} D({3,9}A,{1,3,5,7,9},B,{0,3,6,9,12},A和B中有相同的元素3,9,?A?B,{3,9}(故选D.D3(50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________(10 / 21精品文档设两项都参加的有x人,则只参加甲项的有人,只参加乙项的有人(+x+=50,?x=5.?只参加甲项的有25人,只参加乙项的有20人,?仅参加一项的有45人(54(已知集合A,{,4,2a,1,a2},B,{a,5,1,a,9},若A?B,{9},求a的值(?A?B,{9},?9?A,?2a,1,9或a2,9,?a,5或a,?3.当a,5时,A,{,4,9,25},B,{0,,4,9}(此时A?B,{,4,9}?{9}(故a,5舍去(当a,3时,B,{,2,,2,9},不符合要求,舍去(经检验可知a,,3符合题意(一、选择题1(集合A,{0,2,a},B,{1,a2}(若A?B,{0,1,2,4,16},则a的值为A(0 B(1C( D(4?A?B,{0,1,2,a,a2},又A?B,{0,1,2,4,16},?{a,a2},{4,16},?a,4,故选D.D2(设S,{x|2x,1>0},T,{x|3x,5 1A(?11 / 21精品文档B({x|x 515C(} D({x|,}23151 S,{x|2x,1>0},{x|x>,,T,{x|3x,5 5D3(已知集合A,{x|x>0},B,{x|,1?x?2},则A?B,A({x|x?,1} B({x|x?2}C({x|0 集合A、B用数轴表示如图,A?B,{x|x?,1}(故选A.A4(满足M?{a1,a2,a3,a4},且M?{a1,a2,a3},{a1,a2}的集合M的个数是A(1 B(2高一数学集合的练习题及答案一、、知识点:本周主要学习集合的初步知识,包括集合的有关概念、集合的表示、集合之间的关系及集合的运算等。
高中数学集合习题及详解

高中数学集合习题及详解一、单选题1.设S 是整数集Z 的非空子集,如果任意的,a b S ∈,有ab S ∈,则称S 关于数的乘法是封闭的.若T 、V 是Z 的两个没有公共元素的非空子集,T V ⋃=Z .若任意的,,a b c T ∈,有abc T ∈,同时,任意的,,x y z V ∈,有xyz V ∈,则下列结论恒成立的是( ) A .T 、V 中至少有一个关于乘法是封闭的B .T 、V 中至多有一个关于乘法是封闭的C .T 、V 中有且只有一个关于乘法是封闭的D .T 、V 中每一个关于乘法都是封闭的2.设R U =,1{|2}2x A x =<,{1}B x =,则()U B A ⋂=( ) A .{|0}x x <B .{}|1x x >C .{}|01x x <<D .{}|01x x <≤3.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个 B .2个 C .3个 D .4个 4.已知集合{}{}1,(2)0A x x B x x x =<=-<,则A B ⋃=( )A .(0,1)B .(1,2)C .(,2)-∞D .(0,)+∞5.已知集合{}lg 0A x x =≤,{}22320B x x x =+-≤,则A B ⋃=( ) A .122x x ⎧⎫-≤≤⎨⎬⎩⎭B .{}21x x -≤≤C .102x x ⎧⎫-≤≤⎨⎬⎩⎭D .102x x ⎧⎫<≤⎨⎬⎩⎭ 6.已知集合{|10}M x x =->,集合{|(4)0}N x x x =-<,则集合M N =( )A .{|0}x x >B .{|14}x x <<C .{|0x x <或1}x >D .{|0x x <或4}x > 7.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤<B .{}|15x x ≤<C .{}|15x x -≤<D .{}|13x x ≤≤8.设集合{}A x x a =>,{}2320B x x x =-+>,若A B ⊆,则实数a 的取值范围是( ).A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞9.设集合(){}ln 2A x y x ==-,{}13B x x =≤≤,则A B ⋃=( )A .(]2,3B .[)1,+∞C .()2,+∞D .(],3-∞ 10.已知集合()(){}{}1460,7524||A x x x B x x =+--≤=-≤-≤,则A B ⋃=( )A .1|12x x ⎧⎫⎨⎬⎩⎭≤≤B .{}|26x x -≤≤C .1|52x x ⎧≤≤⎫⎨⎬⎩⎭D .{}|14x x ≤≤ 11.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( )A .AB .BC .(5,1]-D .[4,0)- 12.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,413.已知集合{}2230A x x x =--≤,{}22B x x =-≤<,则A B ⋃=( ) A .{}12x x -≤< B .{}12x x -≤≤ C .{}22x x -<< D .{}23x x -≤≤14.设集合{}{21,2,3|50}A B x x bx =---=++=,.若{}1A B ⋂=-,则B =( ) A .(-1,-3} B .{-1,3} C .{}1,5-- D .{}1,5-15.已知集合{}2|20,A x x x x R =--≤∈,{}|14,B x x x Z =-<<∈,则A B =( ) A .(1,2]-B .(1,2)-C .{}0,2D .{}0,1,2二、填空题16.如图,设集合,A B 为全集U 的两个子集,则A B =____________.17.已知集合{}2,1,2A =-,{}1,B a a =,且B A ⊆,则实数a 的值是___________. 18.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},则a =_______;已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},U B ={-1, 0, 2},则B =_____.19.已知[]x 表示不超过x 的最大整数.例如[2.1]2=,[ 1.3]2-=-,[0]0=,若{[]}A y y x x ==-∣,{0}∣=≤≤B y y m ,y A 是y B ∈的充分不必要条件,则m 的取值范围是______.20.已知集合{}22A x x =-≤≤,若集合{}B x x a =≤满足A B ⊆,则实数a 的取值范围____________.21.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个.22.已知集合{}0,1,2A =,则集合{}3,B b b a a A ==∈=______.(用列举法表示)23.设集合21|,|32A x m x m B x n x n ⎧⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,且,A B 都是集合{}|01x x ≤≤的子集,如果把b a -叫作集合{}|≤≤x a x b 的“长度”,那么集合A B 的“长度”的最小值是___________.24.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 25.若a 、b 、R x ∈且a 、0b ≠,集合b a B x x a b ⎧⎫⎪⎪==+⎨⎬⎪⎪⎩⎭,则用列举法可表示为______. 三、解答题26.已知集合______,集合{}22,B x m x m m R =<<∈.从下列三个条件中任选一个,补充在上面横线中.①301x A x x ⎧⎫-=<⎨⎬+⎩⎭;②{}12A x x =-<;③{}2230A x x x =--<. (1)当1m =-时,求()R A B ⋂;(2)若A B A ⋃=,求实数m 的取值范围.27.在①{}{}21,22,1,0a a a a ⊆-+-;②关于x 的不等式13ax b <+≤的解集是{}34x x <≤这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分.(1)已知______,求关于x 的不等式230ax x a -->的解集A ;(2)在(1)的条件下,若非空集合{}22B x k x k =<≤+,A B A ⋃=,求实数k 的取值范围.28.(1)已知U =R ,且{}|44A x x =-<<,{|1B x x =≤或}3x ≥,求A B ; (2)设{}Z|66A x x =∈-≤≤,{}1,2,3B =,{}3,4,5,6C =,求()()A A B C .29.用描述法写出下面这些区间的含义:[]2,7-;[),a b ;()123,+∞;(],9-∞-.30.把区间[)1,+∞看成全集,写出它的下列子集的补集:()1,A =+∞;{}1B =;{}15C x x =≤<;[)3,D =+∞.【参考答案】一、单选题1.A【解析】【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z 拆分成两个互不相交的非空子集T 、V 的并集,如T 为奇数集,V 为偶数集,或T 为负整数集,V 为非负整数集进行分析排除即可.【详解】若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ; 若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D ;从而可得T 、V 中至少有一个关于乘法是封闭的,A 正确.故选:A .2.B【解析】【分析】解不等式求得集合A 、B ,由此求得()U B A ⋂.【详解】11222x -<=,由于2x y =在R 上递增,所以1x <-, 即{}|1A x x =<-,{}|1U A x x =≥-,11x >⇒>,所以{}|1B x x =>,所以(){}|1U BA x x =>. 故选:B3.C 【解析】【分析】根据题意,列举出符合题意的集合.【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/,所以{}1,2,3A =或{}1,2A =或{}1,3A =.故选:C4.C【解析】【分析】求出集合B ,由并集的定义即可求出答案.【详解】 因为{}{}(2)002B x x x x x =-<=<<,则}{2A B x x ⋃=<.故选:C.5.B【解析】【分析】解对数不等式以及一元二次不等式,求出集合A,B ,根据集合的并集运算求得答案.【详解】解22320x x +-≤ 可得122x -≤≤ , 故{}{}lg 001A x x x x =≤=<≤,122B x x ⎧⎫=-≤≤⎨⎬⎩⎭, 所以{}21A B x x ⋃=-≤≤,故选:B .6.B【解析】【分析】根据题意分别求出集合M 和N 的解集,求交集运算即可.【详解】根据题意得,{|1}M x x =>,{|04}N x x =<<,所以{|14}MN x x =<<.故选:B.7.D【解析】【分析】求解分式不等式的解集,再由补集的定义求解出A R ,再由交集的定义去求解得答案.【详解】 1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R .故选:D8.D【解析】【分析】先求出集合B ,再由A B ⊆求出实数a 的范围.【详解】{}{23202B x x x x x =-+>=>或}1x <. 因为集合{}A x x a =>,A B ⊆,所以2a ≥.故选:D9.B【解析】【分析】根据对数型函数的性质,结合集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,{}13B x x =≤≤,所以A B ⋃=[)1,+∞,故选:B10.B【解析】【分析】 化简集合A 和B ,根据集合并集定义,即可求得答案.【详解】()(){}140|6A x x x =+--≤{}{}2=|310=|(5)(02)0x x x x x x ---+≤≤∴{}|25A x x =-≤≤{}{}|=75241221|B x x x x =-≤-≤-≤-≤-∴1|62x x B ⎧⎫=≤⎨⎩≤⎬⎭∴{}{}1|25|6=|262A B x x x x x x ⎧⎫-≤⎨⎬⋃=≤≤⋃≤-≤⎩≤⎭故选:B.11.C【解析】【分析】根据集合并集的概念及运算,正确运算,即可求解.【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-.故选:C.12.C【解析】【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可.【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==. 故选:C.13.D【解析】【分析】先解一元二次不等式求出集合A ,再按集合的并集运算即可.【详解】 由题意得{}13A x x =-≤≤,因为{}22B x x =-≤<,所以{}23A B x x ⋃=-≤≤. 故选:D.14.C【解析】【分析】根据交集结果得到1B -∈,所以150b -+=,解出6b =,从而解方程,求出B ={}1,5--.【详解】因为{1}A B ⋂=-,所以150b -+=,解得6b =,则2650x x ++=的解为1x =-或5x =-,故B ={}1,5--故选:C15.D【解析】【分析】解不等式后求解【详解】220x x --≤,解得[1,2]A =-,{0,1,2}A B ⋂=故选:D二、填空题16.{}1,2,3,4,5【解析】【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可.【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==,所以{}1,2,3,4,5A B =.故答案为:{}1,2,3,4,517.1【解析】【分析】由子集定义分类讨论即可.【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意.综上,实数a 的值1.故答案为:118. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1【解析】【分析】利用补集的定义,依次分析即得解【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8};若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},故{1,3,4}U U A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},故{1,0,1,2,4}U U A A =⋃=-,U B ={-1, 0, 2},故B ={1, 4} 故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4}19.[)1,+∞【解析】【分析】由题可得{[]}[0,1)A yy x x ==-=∣,然后利用充分不必要条件的定义及集合的包含关系即求.【详解】∵[]x 表示不超过x 的最大整数,∴[]x x ≤,[]01x x ≤-<,即{[]}[0,1)A yy x x ==-=∣, 又y A 是y B ∈的充分不必要条件,{0}∣=≤≤B y y m ,∴A B ,故m 1≥,即m 的取值范围是[)1,+∞.故答案为:[)1,+∞.20.[2,+∞)【解析】【分析】根据A B ⊆结合数轴即可求解.【详解】 ∵{}22A x x =-≤≤≠∅,A B ⊆,∴A 与B 的关系如图:∴a ≥2.故答案为:[2,+∞).21.4【解析】【分析】由题意列举出集合M ,可得集合的个数.【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:422.{0,3,6}【解析】【分析】根据给定条件直接计算作答.【详解】因{}0,1,2A =,而{}3,B b b a a A ==∈,所以{0,3,6}B =.故答案为:{0,3,6}23.16【解析】【分析】根据“长度”定义确定集合,A B 的“长度”,由A B “长度”最小时,两集合位于集合[]0,1左右两端即可确定结果.【详解】由题可知,A 的长度为23 ,B 的长度为12, ,A B 都是集合{|01}x x ≤≤的子集, 当A B 的长度的最小值时,m 与n 应分别在区间[]0,1的左右两端,即0,1m n ==,则|0,213|12A x x B x x ⎧⎫⎧⎫=≤≤=≤≤⎨⎬⎨⎬⎩⎭⎩⎭, 故此时1223A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭的长度的最小值是:211326-=. 故答案为:16 24.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】 集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.25.2,0,2【解析】【分析】分别讨论,a b 正负即可求出.【详解】当0,0a b <<时,112b a x a b =+=--=-, 当0,0a b <>时,110b a x a b =+=-+=, 当0,0a b ><时,110b a x a b =+=-=, 当0,0a b >>时,112b a x a b=+=+=, 所以用列举法可表示为2,0,2.故答案为:2,0,2.三、解答题26.(1)(){}1,1R A B x x x ⋂=≤-≥ (2)122m -≤≤ 【解析】【分析】(1)首先分别求两个集合,再求集合的运算;(2)由条件可知B A ⊆,分B =∅和B ≠∅两种情况,求实数m 的取值范围.(1)若选①301x x -<+,则13x ,所以{}13A x x =-<<, 若选②12212x x -<⇔-<-<,得13x ,若选③()()2230130x x x x --<⇔+-<,得13x ,1m =-时,{}21B x x =-<<,{}11A B x x ⋂=-<<(){}1,1R A B x x x ⋂=≤-≥; (2)B A ⊆当B =∅,22m m ≥,得02m ≤≤当B ≠∅,22221,3m m m m ⎧<⎪≥-⎨⎪≤⎩得102m -≤< ∴122m -≤≤. 27.(1)条件选择见解析,12A x x ⎧=<-⎨⎩或}2x > (2)[)5,1,22∞⎛⎫--⋃ ⎪⎝⎭ 【解析】【分析】(1)若选①,分2122a a =-+和11a =-,求得a ,再利用一元二次不等式的解法求解; 若选②,根据不等式13ax b <+≤的解集为{}34x x <≤,求得a ,b ,再利用一元二次不等式的解法求解;(2)由A B A ⋃=,得到B A ⊆求解;(1)解:若选①,若2122a a =-+,解得1a =,不符合条件.若11a =-,解得2a =,则2222a a -+=符合条件.将2a =代入不等式230ax x a -->并整理得()()2210x x -+>,解得2x >或12x <-,故12A x x ⎧=<-⎨⎩或}2x >. 若选②,因为不等式13ax b <+≤的解集为{}34x x <≤,所以3143a b a b +=⎧⎨+=⎩,解得25a b =⎧⎨=-⎩. 将2a =代入不等式整理得()()2210x x -+>,解得2x >或12x <-. 故12A x x ⎧=<-⎨⎩或}2x >. (2)∵A B A ⋃=,∴B A ⊆,又∵B ≠∅, ∴22122k k k +>⎧⎪⎨+<-⎪⎩或2222k k k +>⎧⎨≥⎩, ∴52k <-或12k ≤<, ∴[)5,1,22k ⎛⎫∈-∞-⋃ ⎪⎝⎭. 28.(1){|41A B x x ⋂=-<≤或}34x ≤<;(2)()(){}6,5,4,3,2,1,0A A B C =------.【解析】【分析】(1)利用集合的交运算即可求解A B ;(2)根据已知集合的描述,应用集合的交并补混合运算求()()A AB C . 【详解】(1){}{|44|1A B x x x x ⋂=-<<⋂≤或}3{|41x x x ≥=-<≤或}34x ≤<.(2)由题意,}{6,5,4,3,2,1,0,1,2,3,4,5,6A =------,且{}1,2,3B =,{}3,4,5,6C =, 所以{}1,2,3,4,5,6B C ⋃=,则(){}6,5,4,3,2,1,0A B C =------. 所以()(){}6,5,4,3,2,1,0A A B C =------.29.{}27x x -≤≤;{}x a x b ≤<;{}123x x >;{}9x x ≤-.【解析】【分析】将区间转化为集合,用描述法写出答案.【详解】[]2,7-用描述法表示为:{}27x x -≤≤;[),a b 用描述法表示为:{}x a x b ≤<;()123,+∞用描述法表示为:{}123x x >;(],9-∞-用描述法表示为:{}9x x ≤-. 30.{}U 1A =,()U 1,B =+∞,[)U 5,C =+∞,[)U 1,3D =【解析】【分析】根据补集的定义计算可得;【详解】解:因为[)1,U =+∞,所以{}U 1A =,()U 1,B =+∞,[)U 5,C =+∞,[)U 1,3D =。
集合复习题带答案解析

集合复习题带答案解析1. 集合A={1,2,3},集合B={2,3,4},求A∩B。
答案:A∩B={2,3}。
解析:集合A与集合B的交集是指同时属于A和B 的元素组成的集合。
2. 集合A={1,2,3},集合B={2,3,4},求A∪B。
答案:A∪B={1,2,3,4}。
解析:集合A与集合B的并集是指属于A或B 的所有元素组成的集合。
3. 集合A={1,2,3},求A的补集。
答案:若全集U={1,2,3,4,5},则A的补集为{4,5}。
解析:集合A的补集是指全集中不属于A的元素组成的集合。
4. 集合A={1,2,3},集合B={2,3,4},判断A是否是B的子集。
答案:否。
解析:若集合A的所有元素都属于集合B,则A是B的子集。
在本例中,元素1属于A但不属于B,因此A不是B的子集。
5. 集合A={1,2,3},集合B={3,4,5},求A∆B。
答案:A∆B={1,2,4,5}。
解析:集合A与集合B的对称差是指属于A或B但不属于A∩B的元素组成的集合。
6. 集合A={1,2,3},集合B={2,3,4},求A-B。
答案:A-B={1}。
解析:集合A与集合B的差集是指属于A但不属于B的元素组成的集合。
7. 集合A={1,2,3},集合B={2,3,4},求B-A。
答案:B-A={4}。
解析:集合B与集合A的差集是指属于B但不属于A的元素组成的集合。
8. 集合A={1,2,3},集合B={3,4,5},判断A和B是否不相交。
答案:否。
解析:若集合A与集合B没有共同元素,则称A和B不相交。
在本例中,元素3同时属于A和B,因此A和B相交。
9. 集合A={1,2,3},求A的幂集。
答案:A的幂集为{∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}。
解析:集合A的幂集是指由A的所有子集构成的集合,包括空集和A本身。
10. 集合A={1,2,3},集合B={2,3,4},求A∩(B∪{5})。
集合练习题讲解

集合练习题讲解本文将为读者提供有关集合练习题的详细讲解。
小节之间将按照题目的不同类型进行分隔,并给出解题步骤和答案,以帮助读者更好地理解和应用集合概念。
请注意,下文并不会再次提及标题或其他任何内容。
一、集合的基本概念在集合论中,集合是由一组特定对象组成的无序的整体。
它可以包含具有相同属性或关系的元素。
例如,对于集合A = {1, 2, 3, 4},其中的元素1,2,3和4具有相同的特征,即它们都是自然数。
二、集合的表示方式1. 列举法:利用大括号{}将元素逐个列出来。
例如,集合A = {1, 2, 3, 4}。
2. 描述法:利用条件描述元素的特征。
例如,集合B = {x | x是自然数,且1 ≤ x ≤ 10}表示由自然数1到10组成的集合。
三、集合间的关系1. 相等关系:若两个集合A和B的元素一一对应,并且集合A包含的元素都在集合B中,且集合B包含的元素都在集合A中,则称集合A和集合B相等,记作A = B。
2. 包含关系:若集合A的所有元素都在集合B中,则称集合A为集合B的子集,记作A ⊆ B。
若同时满足A ⊆ B和B ⊆ A,则称集合A和集合B相等,记作A = B。
3. 交集:两个集合A和B的交集,表示为A ∩ B,是包含同时属于A和B的所有元素的集合。
4. 并集:两个集合A和B的并集,表示为A ∪ B,是包含属于A 或B的所有元素的集合。
五、集合的运算1. 交集运算:若A和B是两个集合,则A ∩ B = {x | x ∈ A且x ∈B}。
2. 并集运算:若A和B是两个集合,则A ∪ B = {x | x ∈ A或x ∈B}。
3. 差集运算:若A和B是两个集合,则A - B = {x | x ∈ A且x ∉B}。
4. 补集运算:若U是全集,A是U的子集,则A的补集(或称余集),表示为A'或A^c,是所有不属于A的U中元素的集合。
五、练习题1. 已知集合A = {x | x是偶数,且1 ≤ x ≤ 10},集合B = {2, 4, 6},求A ∩ B。
集合难题讲解

集合难题讲解
集合难题是指一些涉及集合论的复杂问题,这些问题往往涉及到多个概念和技巧的运用,需要深入的思考和分析才能解决。
以下是一些常见的集合难题讲解:
1. 子集与超集问题:给定两个集合A和B,判断A是否是B的子集或超集。
如果是子集,则A中的所有元素也一定在B中,但B中的元素不一定在A 中;如果是超集,则A中的元素一定在B中,但B中的所有元素不一定在
A中。
这个问题的关键在于理解子集和超集的定义和性质,并能够正确地应用它们。
2. 集合的交、并、差运算问题:给定两个集合A和B,要求计算它们的交集、并集和差集。
交集是指同时属于A和B的元素组成的集合;并集是指属于
A或属于B(或两者都属于)的元素组成的集合;差集是指属于A但不属于B的元素组成的集合。
这个问题的关键在于理解交、并、差运算的定义和性质,并能够正确地应用它们。
3. 集合的等价关系问题:给定两个集合A和B,判断它们是否等价。
如果两个集合等价,则它们的元素完全相同,即A中的每个元素都属于B,且B中的每个元素都属于A。
这个问题的关键在于理解等价关系的定义和性质,并能够正确地应用它们。
4. 集合的基数问题:给定一个集合A,要求计算它的基数(即元素个数)。
这个问题的关键在于理解集合基数的定义和性质,并能够正确地应用它们。
5. 集合的证明问题:给定一个集合A和B,要求证明A中的所有元素都属
于B或者不属于B。
这个问题通常涉及到对集合的元素的性质进行深入分析,以及正确地应用集合的性质和定理。
以上是几个常见的集合难题讲解,对于这些问题的解决需要深入理解集合论的基本概念和性质,并且需要具备一定的逻辑思维和分析能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• • • •
1), A=B时不成立
/* 与不同*/
分析: I) ABAB=B: 因为BAB;对于任意xAB,如果 xA, 因为AB, 所以xB, 则对任意的 xAB, xB成立。所以AB=B。 • II) A=B AB=B,但AB不成立。
• • • • •
• 可能 • A={1}, B={{1}, 1}.
• 3 设A, B, C是集合,判断下列命题真假, 如果为真,给出证明;如果为假,给出反 例: • 1) AB, BC AC; • 2) AB, BC AC; • 3) AB, BC AC; • 4) AB, BC AC; • 5) aA, AB aB.
1.1 与
• 1 设A, B, C是任意3个集合,如果AB, B C, 则AC可能吗? AC常真吗?举例说 明。
• AC可能 A={1}, B={{1}}, C={{1}, {{1}}} • AC不常真 A={1}, B={{1}}, C={{{1}}}
• 2 设A, B是任意2个集合, A B与 AB同 时成立,这可能吗?
• 1)假 A={1}, B={2}, C={{2}} • 2)假 A={1}, B={2}, C={{1}} • 3)假 A={1}, B= {{1}}, C={{1}, 1}
• 4)假 A={1}, B={{1}, 1},C={{1}, 2} • 5)真 子集定义
• 4 设A, B, C是U的子集,判断下列命题真假,如 果为真,给出证明;如果为假,给出反例: • 1) ABAB=B; • 2) ABAB=A; • 3) ABAB=A; • 4) ABAB=B; • 5) ABA(B-A)=B; • 6) BA(A-B)B=A;
x B或x C x B C x B C 所以,A B C .
• 2):设ABC=,对任意的x,xA, 则xB或xC,则有
x A B或x A C x A B或x A C x ( A B) ( A C ) 所以,A ( A B) ( A C ).
函数
• 12 设f: XY是函数,A, B是X的子集,证 明: • (1)f(AB) f(A)f(B) • (2)f(AB)=f(A)f(B) • (3)f(A) - f(B) f(A-B)
• /*基本法证明*/ • 证明:(1)对任意的yf(AB),存在x,x AB,使得y=f(x)。因为xA,所以yf(A); 因为x B,所以yf(B)。所以yf(A)f(B)。 则f(AB) f(A)f(B)。
2)假, A={1},B={1,2},不成立; 3)假, A=B时不成立; 4)假, A={1},B={1,2},不成立; 5)假, A=B时不成立 6)假, A={1,2},B={1},不成立;
1.2 集合运算
• • • • 5 设A, B, C是任意3个集合, (1)AB=AC,则B=C吗? (2)AB=AC,则B=C吗? (3) AB=AC且AB=AC,则B=C吗?
集合论习题解析 ——经典习题与考研习题
• 经典习题 一、集合基础 二、二元关系 三、函数 四、概念综合练习 • 考研习题 北京大学、中科院计算所、中科院软件所、中 科院自动化所、北京师范大学、中科院成都计算 所、上海交通大学、西安交通大学、西南交通大 学、北京航空航天大学、复旦大学等
一、集合基础
• 1.1 与 • 1.2 集合运算 • 1.3 幂集
• 自反不成立 • 传递成立
特殊关系
• 3 设S={1, 2, 3, 4},并设A=SS,在A上定义 关系R为:(a, b)R(c, d)当且仅当 a+b=c+d。 • (1)证明R是等价关系; • (2)计算出A/R。
• (1)证明:/*根据等价关系的定义证明*/ • 1) /*证明R是自反的;*/ • 对于任意的(a, b)SS,因为a+b=a+b,所 以(a, b) R (a, b),即R是自反的。 • 2) /*证明R是对称的;*/ • 如果(a, b) R (c, d),则a+b=c+d,那么有 c+d=a+b; 所以(c, d) R (a, b),即R是对称的。 • 3) /*证明R是传递的;*/ • 如果(a, b) R (c, d), (c, d) R (e, f),则 a+b=c+d,c+d= e+f;所以a+b= e+f,得(a, b) R (e, f),即R是传递的。
二、二元关系
• • • • 1 设R是集合A上的关系 (1)R是自反的,则RR是自反的; (2)R是对称的,则RR是对称的; (3)R是反自反和传递的,则R是反对称的;
/*证明思想:根据定义给出的性质证明*/ 证明: (1)证明思想与(2)和(3)相同 (2)设(a, b)RR, 则存在c, (a, c)R, (c, b)R; 因为R是对称的,所以(b, c)R, (c, a)R; 所以(b, a)RR。则RR是对称的。 • (3)假设(a, b)R, (b, a)R。因为R是传递 的,所以(a, a)R,(b, b)R;因为R是反自 反的,所以导致矛盾。 • • • •
• (4) (A-B)(A-C)= ((A-B)-(A-C)) ((A-C)-(A-B)) = (A-B)(A-C) 并且 (A-C)(A-B) (A-B)=(A-C)
1.3 幂集
• • • • 7 设A, B是任意2个集合,证明: (1) ABP(A)P(B) (2) P(A)P(B) A B (3) P(A)=P(B) A=B
对任意的x,x(A-B)(A-C),则xA-B或 xA-C,则有
x A B或x A C x A. 所以, ( A B ) ( A C ) A. 从而, ( A B) ( A C ) A A B C .
• (2) • (A-B)(A-C)= (A-B)=或(A-C)= AB并且AC ABC 所以,充要条件为ABC。
• 2 A、B是集合,P(A)、P(B)为其幂集,且 AB=,则P(A)P(B)=( ) • A) • B) { } • C) { { } } • D) { , {}}
• 3 A、B是集合,以下各式除( 均与AB等价。 • A) ABB • B) AB=B • C) AB=A • D) ABB2
• 2) RS=SR RS是A上的等价关系: • /*证明RS是自反的、对称的比较容易*/
• 传递性证明: • 对任意a, b, cA,如果(a, b)RS, (b, c)RS,因为 RS=SR,则有(b, c)SR,即存在e, fA,使(a, e)R, (e, b)S,(b, f)S,(f, c)R。 • 因为S是传递的,(e, b)S,(b, f)S,所以(e, f)S;因 为(a, e)R,所以(a, f)RS;RS是对称的,则(f, a)RS;因为R是对称的,(f, c)R,则(c, f)R。 • 因为(f, a)RS,则存在gA,使得(f, g)R,(g, a)S; 因为R是传递的,由(c, f)R,(f, g)R,则(c, g)R; 因为(c, g)R,(g, a)S,所以(c, a)RS。因为已经证 明,RS是对称的,所以(a, c)RS。
• (2)如果(a, b) R (c, d),则a+b=c+d,所以 根据和的数来划分。
• 4 设R, S是A上的等价关系,证明:RS是A 上的等价关系RS=SR。
• 证明思想: • 1)RS是A上的等价关系RS=SR; 证明(i)RSSR; (ii)SR RS; • 2) RS=SR RS是A上的等价关系; 证明RS是(i)自反的;(ii)对称的;(iii)传递的;
• 13 设R是A上的一个二元关系,S={(a, b) | a,bA并且对于某个cA,有(a, c)R且(c, b)R}。证明:若R是A上的等价关系, 则S 是A上的等价关系。
• /*证明是S自反、对称和传递*/
四、概念综合练习
• • • • • • 一、选择题(北京理工大学2000考研) 1 下列集合运算中( )对满足分配律。 A) B) C) ¯ D)
• (2)由A-B=B-A,可导出A=B。
• (3) A=B
• (4) B=
• • • • •
7 给出下列命题成立的充分必要条件 (1)(A-B)(A-C)=A (2)(A-B)(A-C)= (3)(A-B)(A-C)= (4)(A-B)(A-C)=
• /*等式推导*/
• 解:(1) • 1) :设(A-B)(A-C)=A,对任意的x, xA,则xA-B 或 xA-C;则有 x A B或x A C
• (3) 1) 设(A-B)(A-C)=,对任意的x,xA, x(A-B)并且x(A-C);所以xB-A或xC-A; 则有xB或xC;得xBC。 所以ABC。 2) ABC AB或AC;所以A-B= 或A-C=。得(A-B)(A-C)=。 从而, (A-B)(A-C)= ABC。
• (1)假 A={1, 2}, B={1}, C={2} • (2)假 A={1}, B={1, 2}, C={1, 3} • (3)真
/*基本法、反证法证明*/ 设xB,假设xC。因为xB,所以xAB; 因为AB=AC,所以xAC;因为xC,所以 xA;又因为xB,所以x AB;因为 AB=AC ,所以xAC;则xC,这与xC矛
• 2 设R是A上的关系,若R是自反的和传递 的,则RR=R。 其逆命题也成立吗?
证明思想: 证明RR=R,1)证明RRR; 2) 证明 RRR:
• 证明: • 1)证明RRR: 设(a, b)RR,存在cA, 使得(a, c)R, (c, b)R, 因为R是传递的,所以(a, b)R;则RRR; • 2) 证明RRR: 设(a, b)R,R是自反的,(b, b)R,所以(a, b)RR;则RRR。 所以RR=R。