实验八 杨氏弹性模量的测量
试验八金属丝杨氏弹性模量的测定

实验八 金属丝杨氏弹性模量的测定杨氏模量是表征固体的力学性质的重要物理量,它是工程技术中机械构件选材时的重要参数。
本实验不仅介绍了如何测定此参数,更重要的是通过实验可以领会仪器的配置原则,了解为什么对不同的长度测量应选用不同的测量仪器,以及在测量中由于测量对象及方法的改变如何估算其系统误差。
在实验方法上,通过本实验可以看到,以对称测量法消除系统误差的思路在其它类似的测量中极具普遍意义。
在实验装置上的光杠杆镜放大法,由于它的性能稳定、精度高,而且是线性放大,所以在设计各类测试仪器中得到广泛的应用。
一 实 验 目 的(1)掌握“光杠杆镜”测量微小长度变化的原理,图2。
(2)学会用“对称测量”消除系统误差。
(3)学习如何依实际情况对各个测量值进行误差估算。
(4)练习用逐差法、作图法处理数据。
三 实 验 原 理物体在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力。
设有一截面为S ,长度为L 0的均匀棒状(或线状)材料,受拉力F 拉伸时,伸长了L Δ,其单位面积截面所受到的拉力SF称为胁强,而单位长度的伸长量LLΔ称为胁变。
根据胡克定律,在弹性形变范围内,棒状(或线状)固体胁变与它所受的胁强成正比:0ΔL LY S F =其比例系数Y 取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。
LS FL Y Δ0= (1) 本实验是测定某一种型号钢丝的杨氏弹性模量,其中F 可以由所挂的砝码的重量求出,截面积S 可以通过螺旋测微计测量金属丝的直径计算得出,0L 可用米尺等常规的测量器具测量,但L Δ由于其值非常微小,用常规的测量方法很难精确测量。
本实验将用放大法——“光杠杆镜”来测定这一微小的长度改变量L Δ,图1是光杠杆镜的实物示意图。
图2是光杠杆镜测微小长度变化量的原理图。
左侧曲尺状物为光杠杆镜,M 是反射镜,b 即所谓光杠杆镜短臂的杆长,O 端为b 边的固定端,b 边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了M 镜法线的方向,使得钢丝原长为L 0时,从一个调节好的位于图右侧的望远镜看M 镜中标尺像的读数为1n ;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望远镜上看到的标尺像的读数变为2n 。
金属杨氏弹性模量的测量实验报告

金属杨氏弹性模量的测量实验报告金属杨氏弹性模量的测量实验报告引言:金属杨氏弹性模量是衡量金属材料弹性特性的重要指标,对于材料的力学性能研究和工程设计具有重要意义。
本实验旨在通过测量金属杨氏弹性模量的方法,探究金属材料的弹性特性,并验证实验结果的准确性。
实验原理:杨氏弹性模量是指材料在弹性变形阶段,单位应力下单位应变的比值。
实验中常用悬臂梁法测量金属杨氏弹性模量。
悬臂梁法利用悬臂梁在负载作用下产生弯曲变形,通过测量悬臂梁的挠度和应力,计算得到杨氏弹性模量。
实验步骤:1. 实验前准备:a. 准备金属样品和测力计。
b. 使用卡尺测量金属样品的尺寸,记录下长度、宽度和厚度。
c. 将金属样品固定在支架上,保证悬臂梁形成。
d. 将测力计固定在支架上,使其与金属样品接触。
2. 实验测量:a. 调整测力计,使其读数为零。
b. 用外力作用在悬臂梁上,使其发生弯曲变形。
c. 测量测力计的读数,并记录下来。
d. 测量悬臂梁的挠度,可以使用刻度尺或激光测量仪器。
e. 重复以上步骤,记录多组数据。
3. 数据处理:a. 计算金属样品的截面面积。
b. 根据测力计的读数和悬臂梁的挠度,计算金属样品的应力和应变。
c. 绘制应力-应变曲线,并确定线性弹性阶段。
d. 根据线性弹性阶段的数据,计算金属杨氏弹性模量。
实验结果与讨论:通过实验测量得到的数据,我们可以绘制金属样品的应力-应变曲线。
在线性弹性阶段,应力与应变成正比,即呈线性关系。
通过线性回归分析,我们可以得到金属杨氏弹性模量的数值。
本实验中,我们选择了一块铜材料进行测量。
通过测量得到的数据,我们绘制了铜材料的应力-应变曲线,并利用线性回归分析得到了铜材料的杨氏弹性模量。
实验结果表明,铜材料的杨氏弹性模量为XXX GPa。
这个结果与文献值相符合,验证了实验结果的准确性。
结论:本实验通过悬臂梁法测量金属杨氏弹性模量,得到了准确的实验结果。
实验结果表明,金属杨氏弹性模量是金属材料弹性特性的重要指标,对于材料的力学性能研究和工程设计具有重要意义。
大学物理实验讲义实验杨氏模量的测定

实验1 拉伸法测量杨氏模量杨氏弹性模量(以下简称杨氏模量)是表征固体材料性质的重要的力学参量,它反映材料弹性形变的难易程度,在机械设计及材料性能研究中有着广泛的应用。
其测量方法有静态拉伸法、悬臂梁法、简支梁法、共振法、脉冲波传输法,后两种方法测量精度较高;本实验采用静态拉伸法测量金属丝的杨氏模量,因涉及多个长度量的测量,需要研究不同测量对象如何选择不同的测量仪器。
【实验目的】1. 学习用静态拉伸法测量金属丝的杨氏模量。
2. 掌握钢卷尺、螺旋测微计和读数显微镜的使用。
3. 学习用逐差法和作图法处理数据。
4.掌握不确定度的评定方法。
【仪器用具】杨氏模量测量仪(包括砝码、待测金属丝)、螺旋测微计、钢卷尺、读数显微镜【实验原理】1. 杨氏模量的定义本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用后的伸长或缩短。
按照胡克定律:在弹性限度内,弹性体的应力S F 与应变LL δ成正比。
设有一根原长为l ,横截面积为S 的金属丝(或金属棒),在外力F 的作用下伸长了L δ,则根据胡克定律有)(LLE SF δ= (1-1) 式中的比例系数E 称为杨氏模量,单位为Pa (或N ·m –2)。
实验证明,杨氏模量E 与外力F 、金属丝的长度L 、横截面积S 的大小无关,它只与制成金属丝的材料有关。
若金属丝的直径为d ,则241d S π=,代入(1-1)式中可得 Ld FLE δπ24= (1-2)(1-2)式表明,在长度、直径和所加外力相同的情况下,杨氏模量大的金属丝伸长量较小,杨氏模量小的金属丝伸长量较大。
因此,杨氏模量反映了材料抵抗外力引起的拉伸(或压缩)形变的能力。
实验中,测量出L d L F δ、、、值就可以计算出金属丝的杨氏模量E 。
2. 静态拉伸法的测量方法测量金属丝的杨氏模量的方法就是将金属丝悬挂于支架上,上端固定,下端加砝码对金属丝F ,测出金属丝的伸长量L δ,即可求出E 。
杨氏弹模量的测定

思考题:
两根材料相同,粗细、长短不同的金属丝,在相 同的外力条件下升长量是否一样?它们的弹性模 量是否相同,为什么?
估计测量中造成误差的因素。
山西师范大学 物理与信息工程学院
实验通过测定金属丝受拉力F、长度L、升长量
ΔL和金属丝面积 S (通过直接来确定)来测得E。
山西师范大学 物理与信息工程学院
实验仪器:
杨氏模量测量仪; 光杠杆、镜尺组; 钢卷尺、钢直尺、砝码; 螺旋测微计。
山西师范大学 物理与信息工程学院
仪器原理:
杨氏模量测量仪构造及原理:
山西师范大学 物理与信息工程学院
山西师范大学 物理实验教学中心
杨氏弹性模量的测定
力学实验(四)
山西师范大学 物理与信息工程学院
实验目的:
1. 用拉伸法测量金属丝的杨氏弹性模量; 2. 掌握用光杠杆测量微小长度的原理及方法; 3. 学会用逐差法处理实验数据。
山西师范大学 物理与信息工程学院
实验原理:
一粗细均匀的长度为L、横截 面积为S的金属丝,将其上端 固定,下端悬挂砝码。金属丝 受砝码重力F的作用而发生形 变,伸长量为ΔL ,比值F/S是 金属丝截面上单位面积所受的 作用力,叫做应力,而比值 ΔL/L是金属丝单位长度的相对 形变,叫做应变。
实验步骤:
1. 调节支架底座的三个螺丝,使支架垂直(钢丝铅 直),并使夹持钢丝下端的夹头(小金属圆柱体)能 在平台小孔中无摩擦地自由活动。
2. 将光杠杆放在平台上,两前足尖放在平台的沟 槽中,后足尖放在下夹头的上表面,然后用眼睛 估计,使小平面镜镜面垂直平台。
3. 调节望远镜标尺至光杠杆平面镜的距离。 4. 调节望远镜与小平面镜大致等高(先用钢卷尺测
杨氏模量的测量

杨氏模量的测定一、拉伸法测定金属丝的杨氏模量力作用于物体所引起的效果之一是使受力物体发生形变,物体的形变可分为弹性形变和塑性形变。
固体材料的弹性形变又可分为纵向、切变、扭转、弯曲,对于纵向弹性形变可以引入杨氏模量来描述材料抵抗形变的能力。
杨氏模量是表征固体材料性质的一个重要的物理量,是工程设计上选用材料时常需涉及的重要参数之一,一般只与材料的性质和温度有关,与其几何形状无关。
实验测定杨氏模量的方法很多,如拉伸法、弯曲法和振动法(前两种方法可称为静态法,后一种可称为动态法)。
本实验是用静态拉伸法测定金属丝的杨氏模量。
本实验提供了一种测量微小长度的方法,即光杠杆法。
光杠杆法可以实现非接触式的放大测量,且直观、简便、精度高,所以常被采用。
【实验目的】1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。
2. 掌握各种长度测量工具的选择和使用3. 学习用逐差法和作图法处理实验数据 【实验仪器】MYC-1型金属丝杨氏模量测定仪(一套),钢卷尺,米尺,螺旋测微计,重垂等 【实验原理】 一、杨氏弹性模量设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。
实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即S F =LLY ∆ (1) 则Y =LL SF ∆ (2) 比例系数Y 即为杨氏弹性模量。
在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。
一些常用材料的Y 值见表1。
Y 的国际单位制单位为帕斯卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。
本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S42d S π= 则(2)式可变为Ld FLY ∆=24π (3)可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。
(整理)杨氏模量的测量

杨氏模量的测定一、拉伸法测定金属丝的杨氏模量力作用于物体所引起的效果之一是使受力物体发生形变,物体的形变可分为弹性形变和塑性形变。
固体材料的弹性形变又可分为纵向、切变、扭转、弯曲,对于纵向弹性形变可以引入杨氏模量来描述材料抵抗形变的能力。
杨氏模量是表征固体材料性质的一个重要的物理量,是工程设计上选用材料时常需涉及的重要参数之一,一般只与材料的性质和温度有关,与其几何形状无关。
实验测定杨氏模量的方法很多,如拉伸法、弯曲法和振动法(前两种方法可称为静态法,后一种可称为动态法)。
本实验是用静态拉伸法测定金属丝的杨氏模量。
本实验提供了一种测量微小长度的方法,即光杠杆法。
光杠杆法可以实现非接触式的放大测量,且直观、简便、精度高,所以常被采用。
【实验目的】1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。
2. 掌握各种长度测量工具的选择和使用3. 学习用逐差法和作图法处理实验数据 【实验仪器】MYC-1型金属丝杨氏模量测定仪(一套),钢卷尺,米尺,螺旋测微计,重垂等 【实验原理】 一、杨氏弹性模量设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。
实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即S F =LLY ∆ (1) 则Y =LL SF ∆ (2) 比例系数Y 即为杨氏弹性模量。
在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。
一些常用材料的Y 值见表1。
Y 的国际单位制单位为帕斯卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。
本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S42d S π= 则(2)式可变为Ld FLY ∆=24π (3)可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。
杨氏模量的测量实验

杨氏模量的测量实验引言机械弹性模量是弹性力学中最基本的材料参数之一,常常用来描述材料的弹性特性。
在工程设计中,机械弹性模量的准确测定是十分必要的。
杨氏模量是机械弹性模量中的一种,广泛应用于金属材料和非金属材料的弹性性能测量中。
杨氏模量的测量方法主要有两种:弯曲法和拉伸法。
弯曲法是将试样施加转动力矩,试样的横截面受到弯曲作用,由此得出杨氏模量;而拉伸法是在拉伸状态下测定试样的应变和应力,从而得到杨氏模量。
本实验使用的是金属材料的弯曲测量法,测量试样的弹性模量。
实验原理弹性模量是材料在弹性范围内应变与应力之比的根号,即弹性模量 = 应力 / 应变。
杨氏模量是弹性模量的一种,它描述了材料在拉伸过程中弹性形变的能力。
实验中使用的试样为待测材料的矩形截面棒材。
在实验中,将试样依靠两点支撑,并在中心施加一个分布均匀的外力,使其发生弯曲,然后测量试验中的相关参量。
通过对试验数据的分析,可以得到杨氏模量的值。
对于弯曲挠度的计算,有以下公式:δ = WL³ / 48EI其中,δ为挠度,W为负载,L为跨度,E为弹性模量,I为惯性矩。
因此,我们可以通过测量负载、跨度等物理量,计算出试样的杨氏模量。
实验仪器实验中使用的仪器主要有:实验机、电子天平、卡尺、螺旋测微计、计时器等。
其中,实验机负责施加力和测量弯曲角度,电子天平测量质量,卡尺和螺旋测微计测量跨度和高度,计时器测量挠度时间。
实验操作1. 准备材料:准备待测材料的矩形截面棒材样品,并使用电子天平测量其质量。
2. 测量几何参数:使用卡尺测量试样的截面高度和宽度,并计算出截面积。
使用螺旋测微计测量跨度长度,并记录好。
测量好上述参数后,可以计算出惯性矩I。
3. 预置实验机:将试样放置于两点支撑器上,调整底座和上部支撑器的位置,使其与试样底面和上面保持垂直,同时调整初始测试位置并开启实验机。
4. 施加载荷:利用实验机施加一个分布均匀的外力,使杆件产生弯曲,同时在达到稳定状态前逐步增加负载。
杨氏弹性模量的测定实验报告

杨氏弹性模量的测定实验报告一、实验目的1、学习用拉伸法测定金属丝的杨氏弹性模量。
2、掌握用光杠杆法测量微小长度变化的原理和方法。
3、学会使用望远镜、标尺、螺旋测微器等测量长度的仪器。
4、学会用逐差法处理实验数据。
二、实验原理1、杨氏弹性模量杨氏弹性模量是描述固体材料抵抗形变能力的物理量。
设金属丝的原长为$L$,横截面积为$S$,在外力$F$ 的作用下伸长量为$\Delta L$,根据胡克定律,在弹性限度内,应力($F/S$)与应变($\Delta L/L$)成正比,其比例系数即为杨氏弹性模量$E$,数学表达式为:$E =\frac{F \cdot L}{S \cdot \Delta L}$2、光杠杆原理光杠杆装置由一个平面镜及固定在其一端的三足支架组成,三足尖构成等腰三角形。
当金属丝伸长时,光杠杆的后足随之下降,平面镜绕前足转动一个微小角度$\theta$,从而使反射光线偏转一个较大的角度$2\theta$。
通过望远镜和标尺可以测量出标尺像的位移$n$,设光杠杆前后足间距为$b$,镜面到标尺的距离为$D$,则有:$\Delta L =\frac{n \cdot b}{2D}$将上式代入杨氏弹性模量的表达式,可得:$E =\frac{8FLD}{S\pi d^2 n b}$其中,$d$ 为金属丝的直径。
三、实验仪器杨氏模量测定仪、光杠杆、望远镜及标尺、螺旋测微器、游标卡尺、砝码、米尺等。
四、实验步骤1、调节仪器(1)调节杨氏模量测定仪底座的水平调节螺丝,使立柱铅直。
(2)将光杠杆放在平台上,使平面镜与平台垂直,三足尖位于同一水平面,且三足尖与平台的接触点构成等边三角形。
(3)调节望远镜,使其与光杠杆平面镜等高,且望远镜光轴与平面镜中心等高。
然后通过望远镜目镜看清十字叉丝,再将望远镜对准平面镜,调节目镜和物镜,直至能在望远镜中看到清晰的标尺像。
(4)调节标尺的位置,使其零刻度线与望远镜中十字叉丝的横线重合。