第一章_数制和码制

合集下载

数制与码制

数制与码制
13
【例】将十进制整数27转换为二进制数。 用除2取余法进行转换的操作示意图如图所示。 排列出转换的结果为(27)D=(11011)B

0
1/2
3/2 6/2 13/2 27/2 1 3 6 13 27
余数 1
1
0
1
1
14
【例】将十进制数0.21转换为二进制数,要求转
换误差小于2 。 用乘2取整法进行转换的操作示意图如图1-3所示。
第一章 数制和码制
学习目标 • 了解模拟信号和数字信号的处理特点 • 了解常用的数制及其之间的转换 • 了解常用的码制 • 了解文字符号在计算机中的表示
1
第一章 数制和码制
1.1 模拟信号和数字信号的处理特点 1.2 数制 1.2.1 十进制 1.2.2 二进制 1.2.3 数字技术中二进制的优点 1.3 数制间的转换 1.3.1 二进制转换为十进制 1.3.2 十进制转换为二进制 1.3.3 其他数制的转换 1.4 数字电路中数的表示方法与格式 1.4.1 码的概念 1.4.2 十进制数的表示 1.5 文字符号表示方法
1 0
1
d 2 1 0
2
d m 10
m
d
m
n )称为十进制数的按权展开式。
6
1.2.2 二进制
• 二进制就是权为2的进位制,其基数为2,它只有两个 数码,即0和1,做加、减运算时“逢二进一,借一当 二”。这样,两个二进制数的加法和减法运算如下:
3.运算规则简单 • 以加法为例,二进制的加法规则只有3条: 0+0=0,0+1=1和1+1=10; • 而十进制的加法规则却有55条。运算规则的繁 简也会影响到电路的繁简。结合上述设备用量 比较可知,二进制较十进制具有极大的优势。 • 相对于十进制而言,在数字电路中使用二进制 的优势十分突出,所以现在的数字电路基本都 采用二进制。

第1章数制与码制讲义

第1章数制与码制讲义
数字电路与逻辑设计
南京邮电大学
2020年7月30日星期四
章目录
第一章 数制与码制
1
绪论
一、数字电子技术的发展与应用 二、模拟信号和数字信号 三、数字电子技术的优点 四、二进制代码“1”和“0”的波形表示 五、本课程的研究内容 六、学习方法 七、参考教材
八、考核方法及答疑安排
2020年7月30日星期四
2020年7月30日星期四
标题区 章目录 节目录
第一章 数制与码制
16
三、十六进制(Hexadecimal)
构成:十六个数码(0~9,A~F); 逢十六进一,借一当十六。
n1
(N )16 (N )H ai 16i
im
其中:ai ----0~F中任一数码。
例如:(1110)B=1×23 + 1×22 + 1 ×21 + 0 ×20
章目录
第一章 数制与码制
2
第1章 数制与码制
1.1 数制(计数体制)
一、十进制(Decimal) 二、二进制(Binary) 三、十六进制(Hexadecimal) 四、八进制(Octal) 五、数制转换
2020年7月30日星期四
章目录
第一章 数制与码制
3
1.2 码制(编码的制式)
一、二进制码 二、二—十进制(BCD)码 三、字符、数字代码 作业
标题区 章目录 节目录
第一章 数制与码制
9
五、本课程的研究内容
1.逻辑代数的基本理论; 2.常用数字集成电路的结构、工作原理、逻辑功
能和使用方法 ;
3.数字电路的分析、设计方法;
2020年7月30日星期四
标题区 章目录 节目录
第一章 数制与码制

[课件]数字逻辑_第一章_数制与码制

[课件]数字逻辑_第一章_数制与码制
3
预备知识
一、数字系统的概念 凡是利用数字技术对信息进行处理、传输 的电子系统均可称为数字系统。 二、数字系统与模拟系统的比较 1、从信号来看 、 模拟信号是连续信号,任一时间段都包含 了信号的信息分量,如正弦信号。 数字信号是离散的,只有“0”和“1”两种 值,即是一种脉冲信号,广义地讲,凡是非正 4 弦信号都称为脉冲信号。
i=−n m−1
(ai = 0 ~ 1)
例:(101.1) =1× 例:(101.1)2 =1×22+0×21+1×20+1×2-1 =5.5
13
1.1.3 八进制计数
(1) 基数为八(计数的符号个数):0~7 基数为八(计数的符号个数):0 ):0~ (2) 位权为: 8 位权为:
(s8 ) = am−18 = ∑ai 8i
19
八进制、 1.2.2 八进制、十六进制与二进制数 的转换
(1) 二进制数转换为八进制数 从小数点起三位一组,整数部分不够三位 的向前添0,小数部分不够三位的向后添0 的向前添0,小数部分不够三位的向后添0。 例1: (1011101.0110101)2=(135.324)8 (2) 二进制数转换为十六进制数 从小数点起四位一组,整数部分不够四位 的向前添0,小数部分不够四位的向后添0 的向前添0,小数部分不够四位的向后添0。 例2:(1011101.0110101)2=(5D.6A)16 : 20
i=−n m−1 m−1
i
如果有m位整数,n 如果有m位整数,n位小数。则:
+ am−28
m−2
+⋅⋅⋅ + a08 + a−18 +⋅⋅⋅a−n 8
0
−1
−n
(ai = 0 ~ 7)

第1章 数和码制

第1章 数和码制

*微机组成:CPU、MEM、I/O微机的基本结构微机原理(一):第一章数制和码制§1.1 数制(解决如何表示数值的问题)一、数制表示1、十进制数表达式为:A =∑-=•110 nmi iAi如:(34.6)10= 3×101 + 4×100 + 6×10-1 2、X进制数表达式为:B =∑-=•1 NM iiX Bi如:(11.01)2= 1×21 + 1×20 + 0×2-1+ 1×2-2(34.65)16= 3×161 + 4×160 + 6×16-1+ 5×16-2X进制要点:X为基数,逢X进1,X i为权重。

(X个数字符号:0,1,…,X-1)区分符号:D-decimal (0-9),通常D可略去,B-binary (0-1),Q-octal (0-7),H-hexadecimal (0-9, A-F)常用数字对应关系:D: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12, 13,14,15B:0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111H: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F二、数制转换1、X →十方法:按权展开,逐项累加。

如: 34.6 Q= 3×81 + 4×80 + 6×8-1 = 24 + 4 + 0.75 = 28.75 D2、十→X即:A十进制=B X进制令整数相等,即得:A整数=(B N-1·X N-1 + … + B1·X1)+ B0·X0此式一次除以X可得余数B0,再次除以X可得B1,…,如此直至得到B N-1令小数相等,即得:A小数=B-1·X-1 +(B-2·X-2 + … + B-M·X-M)此式一次乘X可得整数B-1,再次乘X可得B-2,…,如此直至得到B-M.归纳即得转换方法:除X取余,乘X取整。

《数电》48学时第01章_数制和码制

《数电》48学时第01章_数制和码制

例:
0.8125
2( k − 2 2 −1 + k −3 2 − 2 + ⋯ + k − m 2 − m +1 ) = k − 2 ( k −3 2 −1 + ⋯ + k − m 2 − m + 2 ) +
× 2 ⋯⋯⋯⋯ 整数部分= 1 =k −1 1.6250 0.6250 × 2 ⋯⋯⋯⋯ 整数部分= 1 =k − 2 1.2500 0.2500 × 2 ⋯⋯⋯⋯ 整数部分= 0 =k −3 0.5000 0.5000 × 2 ⋯⋯⋯⋯ 整数部分= 1 =k − 4 1.000
数字电子技术基础
《数字电子技术基础》(第五版) 数字电子技术基础》 第五版)
阎 石 主编 高等教育出版社
电子信息工程学院电子工程系 李改新 高级工程师 ligaixin@ ligaixin@
1
数字电子技术基础
课 程 介 绍
• • • • 前言 课程性质 教材 课程内容
14
数字电子技术基础
不同进制数的对照表
十进制数 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 二进制 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 八进制 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 十六进制 0 1 2 3 4 5 6 7 8 9 A B C D E F
( 0101 ,1110 . 1011 , 0010 ) 2
=( 5
E
. B
2)16
四、十六-二转换(每位16进制数转换成4位二进制数)

第1次课——第1章 数制和码制

第1次课——第1章 数制和码制
整数部分除以16,取余数,读数顺序从下往上; 小数部分乘以16,取整数,读数顺序从上至下。 例如:
27. 125 10 1B.216
第1章 逻辑代数基础
二进制转换成十进制的方法:
将二进制数按权展开后,按十进制数相加。 【例】 将二进制数(11001101.11)2 转换为等值的十进制数。 解: 二进制数(11001101.11)2 各位对应的位权如下: 位权:27 26 25 24 23 22 21 20 2-1 2-2 二进制数:1 1 0 0 1 1 0 1. 1 1 等值十进制数为: 27 + 26 + 23 + 22 + 20 + 2-1 + 2-2 =128 + 64 + 8 + 4 + 1 + 0.5 + 0.25 = (205.75)10
第1章 逻辑代数基础
例如:
. 110110012 1 24 1 23 0 22 1 21 1 20 0 2-1 0 2-2 1 2-3 27.12510
八进制转换成十进制的方法:
将八进制数按权展开后,按十进制数相加。 例如:
33.18 3 81 3 80 1 8-1 27.12510
思考(0.0376)10 转换为十进制数?(保留小数点后8位有效数字)
第1章 逻辑代数基础
十进制转换成八进制的方法:
整数部分除以8,取余数,读数顺序从下往上; 小数部分乘以8,取整数,读数顺序从上至下。
例: (27.125) 10 = (33.1) 8
第1章 逻辑代数基础
十进制转换成十六进制的方法:
解:转换过程如下: 二进制数: 1110

01第一章 数制和码制

01第一章 数制和码制

系数
位权 .
i=−m
ki × 10 i ∑
n −1
(D)10=
基数
( D )10 = k n −1k n − 2 ⋯ k 0 k −1 ⋯ k − m = k n −1 × 10 n −1 + ⋯ + k o × 10 0 + k −1 × 10 −1 + ⋯ + k − m × 10 − m =
②初级阶段: ④第三阶段年代中期以后: ③第二阶段: 产生: ①初级阶段年代中期以后: 产生: 阶段 20世纪 第四阶段: 世纪80年代中期以后 ⑥第三阶段: ⑤第二阶段: 第四阶段 世纪 20世纪 年代在通讯技术(电报、 世纪70年代中期集成电路的出 世纪60年代晶体管的出现, 年代中期集成电路的出 年代晶体管的出现 世纪 年代电子计算机中的应用, 年代中期 年代晶体管 年代中期, 20世纪40年代在通讯技术(电报、, 世纪30年代在通讯技术 ,使 世纪70年代中期到 的出现 年代中期到80年代中期 年代中期到 年代中期 世纪40年代电子计算机中的应用 20世纪40年代电子计算机中的应用 产生一些专用和通用的集成芯片, 产生一些专用和通用的集成芯片, 此时以电子管(真空管)作为基本器件 得数字技术有一个飞跃发展,除了计算 使得数字技术有了更广泛的应用, 现,)首先引入二进制的信息存储技术 此时以电子管(真空管)作为基本器件。 得数字技术有一个飞跃发展,基本器件。 电话)首先引入二进制的信息存储技术。 以及一些可编程的数字芯片,并且制作 微电子技术的发展, 可编程的数字芯片 电话使得数字技术有了更广泛的应用, 以及一些可编程的数字芯片 除了计算 微电子技术的发展,使得数字技术得到 而在1847年由英国科学家乔治等领域都 年由英国科学家乔治.布尔 而在通讯领域应用外,在其它如也有应 年由英国科学家乔治 在各行各业医疗 使得数字电路的设计模 另外在电话交换和数字通讯方面也有应 在各行各业医疗、雷达、卫星 布尔 机、通讯领域应用外 在其它如测量领 另外在电话交换和数字通讯方面测量领 技术日益成熟, 迅猛的发展,应用外, 技术日益成熟产生了大规模和超大规模 迅猛的发展医疗、雷达、卫星等领域都 ,, 得到应用 域 用得到应用 创立布尔代数。 (George Boole)创立布尔代数。 创立布尔代数 块化和可编程的特点, 的集成数字芯片, ,提高了设备的性 块化和可编程的特点 的集成数字芯片,应用在各行各业和我 们的日常生活并降低成本,这是数字电 适用性, 能、适用性,并降低成本, 在电子电路中的得到应用, 并在电子电路中的得到应用,形成 路今后发展的趋势。 路今后发展的趋势。 开关代数, 开关代数,并有一套完整的数字逻辑电 路的分析和设计方法

数字电子技术基础第一章-数制和码制

数字电子技术基础第一章-数制和码制
• 请输入您的内容
05
结束语
本章总结
01 02
数制和码制的概念理解
通过本章的学习,我们深入理解了数制和码制的概念,掌握了二进制、 八进制、十进制和十六进制等数制的表示方法和转换规则,同时了解了 不同码制的特性和应用场景。
数制转换的实际操作
通过实例和实践操作,我们学会了如何进行不同数制之间的转换,包括 二进制、八进制、十进制和十六进制之间的转换,以及补码表示法等。
03
码制的优缺点分析
对比分析了二进制、八进制、十进制和十六进制等不同码制的优缺点,
理解了不同码制在计算机科学和技术中的重要性和应用范围。
下章预告
数字逻辑基础
在下一章中,我们将学习数字逻辑基础,了解逻辑门电路 的基本概念和原理,掌握逻辑代数的基本运算和逻辑函数 的表示方法。
逻辑门电路及其应用
进一步了解不同类型逻辑门电路的特性和工作原理,如与 门、或门、非门等,并探讨其在计算机硬件系统中的应用 和实践。
二进制转十进制
总结词
将二进制数转换为十进制数需要采用乘权求和法,即将二进制数的每一位乘以对应的权 值(2的幂次方),然后求和得到十进制数。
详细描述
将二进制数转换为十进制数的过程称为"乘权求和法"。具体步骤如下
二进制转十进制
2. 将得到的积相加,即为该 二进制数的十进制表示。
0 * 2^3 + 1 * 2^2 + 0 * 2^1 + 1 * 2^0 = 0 + 4 + 0 +1=5
例如,将二进制数1010转换 为十进制数的计算过程如下
因此,二进制数1010等于十 进制数5。
八进制转十进制
总结词
将八进制数转换为十进制数需要采用乘权求 和法,即将八进制数的每一位乘以对应的权 值(8的幂次方),然后求和得到十进制数 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数字电子技术基础》第五版
第一章
数制和码制
《数字电子技术基础》第五版
关于课程:
随着电子技术的广泛应用,数字电路 随处可见。如:数字TV、数字音响、数 字通信、数字控制系统(DCS)等无一不 用到数字技术。尤其是计算机是数字技术 最为成功的应用。因而,数字电子技术是 电子类专业学生的一门必修课。
《数字电子技术基础》第五版
(2)按所用器件制作工艺的不同:数字电路可分为双极型 (TTL型)和单极型(MOS型)两类。
(3)按照电路的结构和工作原理的不同:数字电路可分为组 合逻辑电路和时序逻辑电路两类。组合逻辑电路没有记忆功 能,其输出信号只与当时的输入信号有关,而与电路以前的 状态无关。时序逻辑电路具有记忆功能,其输出信号不仅和 当时的输入信号有关,而且与电路以前的状态有关。
(AF4.76)16 = 1010 1111 0100 . 0111 0110
8、十进制数转换为二进制数
采用的方法 — 基数连除、连乘法
原理:将整数部分和小数部分分别进行转换。 整数部分采用基数连除法,小数部分 采用基数连乘法。转换后再合并。
《数字电子技术基础》第五版
整数部分采用基数连除法, 先得到的余数为低位,后得 到的余数为高位。
运算 规则
加法规则:0+0=0,0+1=1,1+0=1,1+1=10 乘法规则:0.0=0, 0.1=0 ,1.0=0,1.1=1
3、八进制
《数字电子技术基础》第五版
数码为:0~7;基数是8。 运算规律:逢八进一,即:7+1=10。 八进制数的权展开式: 如:(207.04)10= 2×82 +0×81+7×80+0×8-1+4 ×8-2 =(135.0625)10 4、十六进制
各数位的权是8的幂
数码为:0~9、A~F;基数是16。 运算规律:逢十六进一,即:F+1=10。 十六进制数的权展开式: 如:(D8.A)2= 13×161 +8×160+10 ×16-1=(216.625)10
各数位的权是16的幂
《数字电子技术基础》第五版
结论
①一般地,N进制需要用到N个数码,基数是N;运算 规律为逢N进一。 ②如果一个N进制数M包含n位整数和m位小数,即 (an-1 an-2 … a1 a0 ·a-1 a-2 … a-m)2
1906年 1946年 发 1947年 世界上第一只电子管问世。 电子技术的发展----电子计算机---ENIAC 晶体管
1965年

第一片IC
LSI 、VLSI
70年代至80年代 当今 UVLSI
集成度(每片芯片中含有的BJT或FET的数量) SSI-----MSI----LSI----VLSI----UVLSI
温度(℃)
1 2 3 4 5 6 7 8 9 10 11 12 Time
《数字电子技术基础》第五版
还有一些物理量,它们在时间和幅度上的取值是 不连续的、离散的,这类物理量叫做数字量。表示数 字量的信号称为数字信号。
温度(℃)
● ● ● ●
采样、量化、编码

● ● ● ● ●
● ● ●
1 2 3 4 5 6 7 8 9 10 11 12 Time
当前:数字电路
高速、低功耗、低电源、大密度
集成等方向。
《数字电子技术基础》第五版
分类
(1)按集成度分类:数字电路可分为小规模(SSI,每 片数十器件)、中规模(MSI,每片数百器件)、大规 模(LSI,每片数千器件)和超大规模(VLSI,每片器 件数目大于1万)数字集成电路。集成电路从应用的角度 又可分为通用型和专用型两大类型。
(2)基 数:进位制的基数,就是在该进位制中可能用到 的数码个数。 (3) 位 权(位的权数):在某一进位制的数中,每一位 的大小都对应着该位上的数码乘上一个固定的数,这个固 定的数就是这一位的权数。权数是一个幂。
《数字电子技术基础》第五版
1、十进制 数码为:0~9;基数是10。 运算规律:逢十进一,即:9+1=10。 十进制数的权展开式: 5×103=5000 103、102、101、100称 5×102= 500 为十进制的权。各数 位的权是10的幂。 1= 5×10 50 5×100= 5 任意一个十进制数都 + 可以表示为各个数位 5 5 5 5 =5555 上的数码与其对应的 权的乘积之和,称权 同样的数码在不同的数 展开式。 位上代表的数值不同。 即:(5555)10=5×103 +5×102+5×101+5×100 又如:(209.04)10= 2×102 +0×101+9×100+0×10-1+4 ×10-2
教学内容包括:理论部分
实践部分(实验与课程设计)
成绩组成: 平时成绩30%
期末考试70% 学习方法:听讲与读书相结合、勤于思考、 注重设计思想和设计能力的培养 而不是具体电路和公式的死记硬背
《数字电子技术基础》第五版
一、模拟信号和数字信号及数字信号表示
自然界广泛存在的物理量都是模拟量,如温度、压 力等。表示模拟量的电信号叫做模拟信号,特点是: ——信号在时间上和幅度上的取值都是连续的。 例如:正弦波就是一种典型的模拟信号。
9.二进制算术运算
二进制算术运算的特点 算术运算:1:和十进制算数运算的规则相同 2:逢二进一 特 点:加、减、乘、除 全部可以用移位和相 加这两种操作实现。简化了电路结构 所以数字电路中普遍采用二进制算数运算
《数字电子技术基础》第五版
原码、反码、补码
二进制数的正、负号也是用0/1表示的。 在定点运算中,最高位为符号位(0为正,1为负) 如 +89 = (0 1011001) -89 = (1 1011001)
《数字电子技术基础》第五版
二进制数的补码: • 最高位为符号位(0为正,1为负) • 正数的补码和它的原码相同 • 负数的补码 = 数值位逐位求反(反码) + 1
如 +5 = (0 0101) -5 = (1 1011)
• 通过补码,将减一个数用加上该数的补码来实现
四、二-十进制代码(BCD 代码)
《数字电子技术基础》第五版
三、数制及其转换
数字系统中的信息表示:
在数字系统中所有信息均用二进制来表示
数制
——计数体制
所谓“数制”,即各种进位计数制 ( Positional number system ) 。 包括:进位制、基数、位权三个方面。
《数字电子技术基础》第五版
(1)进位制:表示数时,仅用一位数码往往不够用,必 须用进位计数的方法组成多位数码。多位数码每一位的 构成以及从低位到高位的进位规则称为进位计数制,简 称进位制。
则该数的权展开式为:
(M)2 = an-1×Nn-1 + an-2 ×Nn-2 + … +a1×N1+ a0 ×N0 +a-1 ×N-1+a-2 ×N-2+… +a-m×N-m
③由权展开式很容易将一个N进制数转换为十进制数。
《数字电子技术基础》第五版 几种进制数之间的对应关系
十进制数 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 二进制数 00 0 00 00 0 01 00 0 10 00 0 11 00 1 00 00 1 01 00 1 10 00 1 11 01 0 00 01 0 01 01 0 10 01 0 11 01 1 00 01 1 01 01 1 10 01 1 11 八进制数 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 十六进制数 0 1 2 3 4 5 6 7 8 9 A B C D E F
《数字电子技术基础》第五版
典型的模拟电子系统
《数字电子技术基础》第五版
DAC
典型的模拟和数字混合系统
《数字电子技术基础》第五版
模拟量
连续的 时间上的连续(任意时刻有一个相对值) 量上的连续(变量任意时刻可以是一定 范围内的任意值) 例如:电流、电压、温度、流量
优点:用精确的值表示事物
缺点:难测量、易受干扰、不便于存储。
逻辑0和逻辑1用物理量(电流和电压)来表示。
数字电路中用高、低电平表示逻辑0和逻辑1。电 平通常表示一定的电压范围,而不是一个固定的电压 值。因此,它不是一个物理量,而是物理量的相对表 示。 正、负逻辑的问题。
正逻辑系统举例
《数字电子技术基础》第五版
VH(max)
高电平(逻辑1)
VH(min)
无效电压区域
真实世界是模拟世界!
对模拟信号进行传输、处理的电子 线路称为模拟电路。
《数字电子技术基础》第五版
数字量
非连续的(离散的)
时间上的离散(变量只在某些时刻有定义)
量上的离散(变量只能是有限集合中的一个值) 例如:CD、DVD、MP3、数字逻辑 优点:更多的灵活性、更快、更精确 容易存储、压缩。 数字信号在数值上是离散的,为了便于实现,通常使之 只有0、1两种取值,在电路上对应开关的开和闭、电平的高 和低。
(2)八进制数转换为二进制数:将每位八进制数用3位二进
制数表示。
(374.26)8 = 011 111 100 . 010 110
《数字电子技术基础》第五版
7、二进制数与十六进制数的相互转换 二进制数与十六进制数的相互转换,按照每4位二进制数 对应于一位十六进制数进行转换。
0 0 0 1 1 1 0 1 0 1 0 0 . 0 1 1 0 = (1E8.6)16
《数字电子技术基础》第五版
数字系统只能识别0和1,怎样才能表示更多的数码、符 号、字母呢?用编码可以解决此问题。 用一定位数的二进制数来表示十进制数码、字母、符 号等信息称为编码。 用以表示十进制数码、字母、符号等信息的一定位数的 二进制数称为代码。
二-十进制代码:用4位二进制数b3b2b1b0来表示十进 制数中的 0 ~ 9 十个数码。简称BCD码。 用四位自然二进制码中的前十个码字来表示十进制数码, 因各位的权值依次为8、4、2、1,故称8421 BCD码。 2421码的权值依次为2、4、2、1;余3码由8421码加0011 得到;格雷码是一种循环码,其特点是任何相邻的两个码字, 仅有一位代码不同,其它位相同。
相关文档
最新文档