初中数学圆心角和圆周角之欧阳光明创编
九年级上册数学教案《圆周角与圆心角的关系》

九年级上册数学教案《圆周角与圆心角的关系》教材分析《圆周角》这节课是人教版九年级上册第二十四章第一节第四部分的内容,是在学生学习了圆、弧、弦、圆心角等概念和相关知识的基础上出现的。
圆周角与圆心角的关系,在圆的有关说理、作图、计算中,应用比较广泛。
通过对圆周角定理的探讨,培养学生严谨的思维品质。
同时,教会学生从特殊到一般的分类讨论的思维方法。
因此,本节课无论在知识上,还是方法上,都起着十分重要的作用。
所以这一节课既是对前面所学知识的延续,又是对后面研究圆与其它平面图形的桥梁。
学情分析初三学生已经具备一定的独立思考和探索能力,学生既能在探索过程中条理清晰地阐述自己的观点,又能在倾听别人意见的过程中,逐渐完善自己的想法。
因此,本节课设计了一系列探究活动,给学生提供探索与交流的空间,体现知识的形成过程。
由于学生有了自主意识及参与度的提高,因此,这节课可以给学生充分的时间讨论交流。
教学目标1、理解圆周角的概念,掌握圆周角的两个特征。
2、经历探索圆周角与圆心角及其对弧关系的过程,了解并证明圆周角定理,发展合情推理和演绎推理的能力。
3、能用圆周角定理,进行计算及证明。
教学重点探索圆周角和圆心角的关系。
教学难点感悟圆周角和圆心角定理,证明过程中的分类、转化的数学思想。
教学方法讲授法、演示法、讨论法、练习法教学过程一、创设情境如图,运动员在球门前画了一个圆,进行无人防守的射门训练。
点B对球门AC的张角与点D对球门AC的张角,哪个张角大?师:要研究这个问题,我们先研究∠ABC、∠ADC、∠AEC。
观察这几个角,你发现了什么?学生经过观察,发现几个角的顶点都在圆上,角两边都与圆相交。
圆周角定义:顶点在圆上,两边分别与圆还有一个交点,像这样的角,叫做圆周角。
二、探究新知如图,连接AO,BO,得到圆心角∠AOB。
可以发现,∠ACB与∠AOB对着同̂,分别测量图中AB̂所对的圆周角∠ACB和圆心角∠AOB的度数,它们一条弧AB之间存在什么关系呢?我们来研究这个问题。
《圆心角和圆周角》

contents•圆心角和圆周角的基本概念
•圆心角和圆周角的性质
目录
•圆心角和圆周角的计算与应用
•圆心角和圆周角在高级数学和物理学中
的拓展
定义
圆心角的度数等于所对弧的度数。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
性质
应用
定义
性质应用
圆心角与圆周角的关系
可加性
半径无关性
等于圆心角的一半可变性
与弦切角的关系
定义和性质理解01
弧度和角度的转换02
应用公式进行计算
03
圆心角与正弦、余弦函数圆周角与正切函数
圆心角和圆周角在三角函数中的拓展
圆心角与物体运动轨迹
在物理学中,物体的运动轨迹往往与圆心角有关,例如,物体做匀速圆周运动时,其运动轨迹就是一个圆,圆心角的大小可以用来描述物体运动的角度范围。
圆周角与向心加速度
圆周角还与向心加速度有密切关系,向心加速度是物体做圆周运动时指向圆心的加速度,其大小与圆周角的变化率成正比。
因此,通过研究圆周角的变化规律,可以更好地理解向心加速度的物理意义。
圆心角和圆周角在物理学中的拓展。
圆周角和圆心角演示课件

A
A
=
1 2
∠AOC.
A
C
C
C
●O
●O
●O
B
B B
老师提示:圆周角定理是承上启下的知识点,要予以重视.
•16
练习: D
1.求圆中角X的度数
C 120°
O
.O
C
70° x
.O
X
A
B
B
A
BA
C
2.如图,圆心角∠AOB=100°,则∠ACB=_1_3_0°。
3、 如图,在直径为AB的半圆中,O为圆心,C、D为半 圆上的两点,∠COD=500,则∠CAD=_________
A A
O
O
B
C
B
C
一条弧所对的圆周角等于它所对的圆心角的一半
•10
想一想
类比圆心角探知圆周角
• 在同圆或等圆中,相等的弧所对的圆心角相等.
• 在同圆或等圆中,相等的弧所对的圆周角有什么关系?
A
A
A
C
C
C
●O
●O
●O
B
B B
为了解决这个问题,我们先探究一条弧所对的圆 周角和圆心角之间有的关系.
•11
图1 不是
图2
不是
图4
2、指出图中的圆周角。
不是
是
图3
不是
图5
•7
A
O B
⌒ ⌒
有没有圆周角? 有没有圆心角? 它们有什么共同的特点?
C 它们都对着同一条弧所对的
•8
下列图形中,哪些图形中的圆心角∠BOC和 圆周角∠A是同对一条弧。
A
A
O B
A O
圆周角和圆心角的关系-北师大版九年级数学下册教案

圆周角和圆心角的关系 - 北师大版九年级数学下册教案一、知识目标1.记住圆周角和圆心角的定义,知道它们的度数关系。
2.熟悉相关概念和公式,能够灵活运用。
3.理解圆周角和圆心角的概念对于解题的重要性。
二、教学重点1.记住圆周角和圆心角的定义,明确它们的度数关系。
2.了解使用相关概念和公式解题的方法。
3.掌握圆周角和圆心角的应用技巧。
三、教学难点1.掌握圆周角和圆心角的应用技巧。
2.在实际应用中能够识别圆周角和圆心角。
四、教学过程1. 导入环节老师可以出示两个圆形图片,一个是圆周角的例子,一个是圆心角的例子,让学生自主分析其定义和特点,提出不同于直角角度的新角度,并引出本节课的主旨:圆周角和圆心角的关系。
2. 讲解圆周角和圆心角的概念1.圆周角:以圆心为端点,它所对的弧所对应的角度称为圆周角。
常用的表示方法为:θ=弧长/圆周长×360°。
2.圆心角:以圆的圆心为端点,它所对的弧所对应的角度称为圆心角。
常用的表示方法为:θ=弧长/半径。
3. 圆周角和圆心角的度数关系1.当圆弧等于圆周时,圆周角为360°,圆心角为2π。
2.当其他弧对应的圆周角大小为x°时,圆心角的大小为2x°。
3.当弧对应的圆周角大小为x°,半径为r时,弧长为x/360×2πr。
4. 综合练习1.练习1:在相同半径的圆中,一圆周角为120度,求另一圆弧所对的圆心角的大小。
2.练习2:半径为3cm的圆上的一弧所对的圆周角的大小为60度,求这个弧的长度。
3.练习3:在相同圆周上,圆心角比圆周角小20度,求这个圆弧对应的圆心角和圆周角的大小。
五、教学体会本节课主要介绍了圆周角和圆心角的概念和度数关系,通过逐一分析演示,使学生更加深刻地了解到各种情形下圆周角和圆心角的度数大小,并通过解题练习加深了对相关知识的掌握。
在教学的过程中,应适时提醒学生注重归纳总结,加强题目训练,以提高学生对知识点的理解和认识。
九年级数学圆周角与圆心角的关系

解决几何作图题
在数学竞赛中,利用圆周 角定理可以解决一些几何 作图题。
05
练习与思考
基础练习题
1、题目
已知⊙O的半径为5cm,圆心角 ∠AOB = 100°,则弦AB的长为
_______.
2、题目
已知$angle AOB = 60^{circ}$, 点$P$是$OB$上一点,$OP =
5$,则以点$P$为圆心,与 $OA$相切的圆中最小的半径为
学习目标
理解圆周角和圆心角 的定义及性质。
能够运用圆周角与圆 心角的关系解决实际 问题。
掌握圆周角与圆心角 之间的定理及其证明。
02
圆周角与圆心角的基本概 念
圆周角的定义
顶点在圆上,两边都和圆相交的角叫 做圆周角。
圆周角等于它所夹弧所对的圆心角的 一半。
圆心角的定义
顶点在圆心上,两边都和圆相交的角叫做圆心角。 圆心角等于的半径
利用圆周角定理,可以确定一个点在 圆上的位置。
通过圆周角定理,可以计算出圆的半 径。
绘制圆的切线
利用圆周角定理,可以绘制出圆的切 线。
在数学竞赛中的应用
解决几何证明题
在数学竞赛中,利用圆周 角定理可以证明一些几何 命题。
解决几何计算题
通过圆周角定理,可以解 决一些几何计算题,例如 计算角度或长度。
证明过程还可以通过其他方法,如利用相似三角形来证明。
定理的应用示例
应用示例1
证明两个圆周角相等。如果两个 圆周角所对的弧相等,那么这两 个圆周角相等,这是圆周角定理
的一个直接应用。
应用示例2
计算圆心角的大小。已知一个圆周 角的大小,可以利用圆周角定理计 算出它所对的圆心角的大小。
应用示例3
北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1一. 教材分析北师大版数学九年级下册 3.4《圆周角和圆心角的关系》是本节课的主要内容。
通过本节课的学习,让学生理解圆周角和圆心角的关系,掌握圆周角定理,并能运用圆周角定理解决实际问题。
教材通过引入圆周角和圆心角的概念,引导学生探究它们之间的关系,从而发现圆周角定理。
二. 学情分析学生在学习本节课之前,已经学习了圆的基本概念,如圆的半径、直径等,对圆有一定的认识。
但学生对圆周角和圆心角的概念可能比较陌生,需要通过实例和探究活动来理解和掌握。
此外,学生需要具备一定的观察和推理能力,通过观察图形和逻辑推理来发现圆周角定理。
三. 教学目标1.知识与技能目标:让学生掌握圆周角定理,能运用圆周角定理解决实际问题。
2.过程与方法目标:通过观察、操作、推理等过程,培养学生的观察能力和推理能力。
3.情感态度与价值观目标:让学生体验数学学习的乐趣,培养学生的探究精神和合作意识。
四. 教学重难点1.教学重点:圆周角定理的掌握和运用。
2.教学难点:圆周角定理的证明和理解。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.问题驱动法:通过提出问题,引导学生观察、思考和推理,培养学生的问题解决能力。
3.合作学习法:引导学生分组讨论和合作,培养学生的团队合作意识和交流能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示圆周角和圆心角的图形和实例。
2.教学素材:准备一些相关的实例和习题,用于引导学生进行探究和练习。
3.教学工具:准备圆规、直尺等绘图工具,方便学生进行绘图和操作。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,如自行车轮子的转动、钟表的指针运动等,引导学生观察和思考这些现象与圆周角和圆心角的关系。
2.呈现(10分钟)呈现圆周角和圆心角的定义,引导学生理解它们的概念。
通过PPT展示一些实例,让学生观察和思考圆周角和圆心角之间的关系。
九年级数学上册《圆心角和圆周角的关系》教案、教学设计

4.应用举例:通过具体例题,展示圆心角和圆周角关系在实际问题中的应用,使学生认识到数学知识在实际生活中的价值。
(三)学生小组讨论
1.分组:将学生分成若干小组,确保每个小组内成员的数学水平相对均衡。
2.讨论主题:以圆心角和圆周角的关系为主题,让学生在小组内分享自己的发现,互相交流,共同完善圆心角和圆周角的关系。
二、学情分析
九年级的学生已经具备了一定的数学基础和逻辑思维能力,他们在之前的课程中学习了角度、三角形等基本概念,为本章节的学习奠定了基础。但在圆的相关知识方面,学生们的认识可能还不够深入,对圆心角和圆周角的关系理解可能存在困难。因此,在教学过程中,要注意以下几点:
1.充分发挥学生已有的知识经验,引导他们主动发现圆心角和圆周角的关系。
五、作业布置
为了巩固学生对圆心角和圆周角知识的掌握,提高他们的实际应用能力,特布置以下作业:
1.基础巩固题:根据课堂所学,完成课本相关练习题,加深对圆心角和圆周角概念的理解。
(1)画出一个圆,并在圆内画出两个圆心角相等、圆周角相等的两组角,比较它们之间的关系。
(2)画出一个圆,并在圆内画出两个圆心角相等、圆周角不相等的两组角,分析原因。
2.提高拓展题:结合圆心角和圆周角的关系,解决以下实际问题。
(1)一块圆形的披萨,被切成八等份,每份的圆心角是多少度?如果切成十二等份呢?
(2)一个圆形的花坛,要将其分割成若干个扇形区域,每个区域圆心角相等,且总面积为花坛面积的一半。请问需要分割成几个区域?
3.创新研究题:以小组为单位,选择以下课题进行研究,并将研究结果以报告形式提交。
c.组织小组讨论,让学生分享自己的发现,互相交流,共同完善圆心角和圆周角的关系。
人教版九年级上册数学24.1.4圆心角和圆周角教案

举例:针对难点,教师可以通过以下方法帮助学生突破:
-使用模型或动画演示,让学生直观地看到圆心角和圆周角的关系。
-设计不同难度的练习题,从基础的计算题到综合应用题,逐步提升学生的计算能力。
-在讲解圆周角定理时,通过具体例题,展示定理在不同图形中的应用,帮助学生掌握定理的使用方法。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆心角和圆周角的基本概念。圆心角是圆上任意两条半径所夹的角,圆周角是圆上一段弧所对的角。它们在几何图形中具有重要的性质和作用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析圆上不同位置和度数的圆心角和圆周角,了解它们在实际中的应用,以及如何帮助我们解决问题。
-理解圆心角和圆周角的概念:圆心角是圆上任意两条半径所夹的角,圆周角是圆上一段弧所对的角。这两个概念是本节课的核心,需让学生充分理解。
-掌握圆心角和圆周角的性质:圆心角等于其所对圆周角的一半;在同圆或等圆中,相等的圆心角所对的弧相等,相等的圆周角所对的弧相等。这些性质是解决相关问题的关键。
-学会圆心角和圆周角的计算:能够根据已知条件,如半径、直径或角度,计算所对弧的长度或圆心角、圆周角的度数。
此外,关于学生小组讨论,我发现大部分学生能够围绕主题展开讨论,提出有见地的观点。但在引导与启发环节,我觉得自己的问题设置还有待优化,可以更加具有针对性和开放性,以便激发学生的思维。
在总结回顾环节,我尝试让学生自己总结今天的学习内容,以检验他们对知识点的掌握程度。但从学生的回答来看,部分同学对圆心角和圆周角的性质、计算方法等还不够熟练。这说明我在教学中需要加强对重点难点的讲解和练习,确保学生能够扎实掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆心角和圆周角及之间的关系
欧阳光明(2021.03.07)
内容(课题):圆心角和圆周角及之间的关系
教学目的:1、了解圆周角的概念。
2、理解圆周角定理的证明。
3、通过圆周角定理的证明,培养学生对数学的逻辑严密性的体验,树立正确的数学学习观。
4、培养学生的合作交流意识和数学交流能力。
重难点(考点)分析:
要注意分类讨论和有关圆的问题的多解性,同时结合阅读理解,条件开放,结论开放的探索题型,圆周角的概念和圆周角定理的证明,理解圆周角定理的证明中的分类证明思想。
教学过程:
一、圆周角与圆心角的定义
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
注意圆周角定义的两个基本特征:
(1)顶点在圆上;
(2)两边都和圆相交。
圆心角:顶点在圆心的角。
利用两个错误的图形来强调圆周角定义的两个基本特征:
练习:判断下列各图形中的是不是圆周角,并说明理由.
二、看一看
A
O
B C
有没有圆周角?∠BAC 有没有圆心角?∠BOC
它们有什么共同的特点?它们都对着同一条弧BC
三、猜想归纳:请画出弧BC所对的圆周角. 若按圆心O与这个圆周角的位置关系来分类,我们可以分成几类?圆
周角的度数与什么有关系?动手量一量∠BOC与∠BAC有何数量关系?
A
B C
O
A
B C
O
四、证明圆心角与圆周角之间的关系
1、首先考虑一种特殊情况:
当圆心(O)在圆周角(∠BAC)的一边(AB)上时,圆周角∠BAC与圆心角∠BOC的大小关系.
∵∠BOC是△ACO的外角
∴∠BOC=∠C+∠A
∵OA=OC,
∴∠A=∠C
∴∠BOC=2∠A
即∠BAC = 1/2∠BOC
2、如果圆心不在圆周角的一边上,结果会怎样?
当圆心(O)在圆周角(∠ABC)的内部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?
思考:能否转化成1中的情况?
证明:过点A作直径AD.由1可得:
∵∠BAD = 1/2∠BOD,∠CAD = 1/2∠COD
∴∠BAC = 1/2∠BOC.
3、当圆心(O)在圆周角(∠ABC)的外部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?
思考:同样是否能转化成1中的情况?
过点B作直径AD.由1可得:
8.△ABC 中,∠B=90°,以BC 为直径作圆交AC 于E ,若BC=12,AB=12,则的度数为( )
(A )60° (B )80° (C )100° (D ))120°
9.如图,△ABC 是⊙O 的内接等边三角形,D 是AB 上一点,AB 与CD 交于E 点,则图中60°的角共有( )个.
(A )3 (B )4 (C )5 (D )6
10.如图,△ABC 内接于⊙O ,∠OBC=25°,则∠A 的度数为( )
(A )70° (B )65° (C )60° (D ))50°
二、填空题:
1.如图4,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=_______
度.
C
B
A
O D
C
B
A
O
E
D C
B
A
O
(1) (2) (3)
2.如图5,AB 是⊙O 的直径,BC BD =,∠A=25°,则∠BOD 的度数为________.
3.如图6,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______.
三、解答题:
1.如图,已知AB 是O 的直径,AC 是弦,过点O 作OD AC ⊥于D ,连结BC .
(1)求证:12OD BC =; (2)若40BAC =∠,求ABC 的度数. 2.如图,⊙O 的直径AB=8cm,∠CBD=30°,求弦DC 的长.
30︒
D
C
B
A
O
3.如图,A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC 的长.
A
B
C D
O (图1)
D
C
B
A
O
四、能力提升:
如图1,AB是半⊙O的直径,过A、B两点作半⊙O的弦,当两弦交点恰好落在半⊙O上C点时,则有AC·AC+BC·BC=AB2.
(1)如图2,若两弦交于点P在半⊙O内,则AP·AC+BP·BD=AB2是否成立?请说明理由.(2)如图3,若两弦AC、BD的延长线交于P点,则AB2=.参照(1)填写相应结论,并证明你填写结论的正确性.
学生对于本次课的评价:
○特别满意○满意○一般○差
学生签字:________
教学总结:。