初中数学-圆周角典型例题
初三数学圆周角和圆心角的关系试题

初三数学圆周角和圆心角的关系试题1.已知,如图,∠BAC的对角∠BAD=100°,则∠BOC=_______度.【答案】160°【解析】由∠BAD=100°可得∠BAC的度数,再根据圆周角定理即可求得结果.∵∠BAD=100°∴∠BAC=80°∴∠BOC=160°.【考点】邻补角定理,圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.2.如图,AB是⊙O的直径, ,∠A=25°,则∠BOD的度数为________.【答案】50°【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵,∠A=25°∴∠BOD=50°.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.3.如图,AB是半圆O的直径,AC="AD,OC=2,∠CAB=30°," 则点O到CD的距离OE=____.【答案】【解析】由AC=AD,∠CAB=30°可得∠CDO的度数,即可得到∠EOD、∠COE的度数,判断出△COE的形状再结合勾股定理即可求得结果.∵AC=AD,∠CAB=30°,OA=OC∴∠CDO=75°,∠COD=60°∴∠EOD=15°∴∠COE=45°∴△COE为等腰直角三角形∵OC=2∴OE=.【考点】三角形内角和定理,勾股定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.4.如图,A、B、C、D四个点在同一个圆上,四边形ABCD的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对【答案】C【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.相等的角有∠ADB=∠ACB,∠BAC=∠BDC,∠CAD=∠CBD,∠ACD=∠ABC4对,故选C.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.5.如图,D是弧AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵D是弧AC的中点∴∠ABD=∠ACD=∠CBD=∠CAD故选B.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.6.如图, ,则∠A+∠B等于( )A.100°B.80°C.50°D.40°【答案】C【解析】连接CO并延长交圆于点D,根据圆周角定理即可得到结果.连接CO并延长交圆于点D由图可得∠A+∠B=∠AOD+∠BOD=∠AOB=50°故选C.【考点】圆周角定理点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.7.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°【答案】B【解析】根据圆的性质可得这条弦与半径围成的三角形为等边三角形,再根据圆周角定理即可求得结果.由题意得这条弦与半径围成的三角形为等边三角形则该弦所对的圆周角的度数是30°或150°故选B.【考点】圆周角定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.【答案】4cm【解析】连接OC、OD,根据圆周角定理可得∠COD=60°,即可得到△COD是等边三角形,根据等边三角形的性质即可求得结果.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD=4cm.【考点】圆周角定理,等边三角形的判定和性质点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.9.如图,AB为半圆O的直径,弦AD、BC相交于点P,若CD=3,AB=4,求tan∠BPD的值【答案】【解析】连接BD, 根据圆周角定理可得∠ADB=90°,证得△PCD ∽△PAB,根据相似三角形的性质结合余弦的定义可得∠BPD的余弦值,再结合勾股定理即可求得结果.连接BD,∵AB是直径,∴∠ADB=90°.∵∠C=∠A,∠D=∠B,∴△PCD ∽△PAB,∴.在Rt△PBD中,cos∠BPD==,设PD=3x,PB=4x,则BD=,∴tan∠BPD=.【考点】圆周角定理,相似三角形的判定和性质,勾股定理,三角函数点评:本题综合性强,知识点较多,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.10.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,乙随后冲到B点,如图所示,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素)【答案】让乙射门较好【解析】根据圆周角定理结合三角形外角的性质分析即可得到结论.迅速回传乙,让乙射门较好,在不考虑其他因素的情况下, 如果两个点到球门的距离相差不大,要确定较好的射门位置,关键看这两个点各自对球门MN的张角的大小,当张角越大时,射中的机会就越大,如图所示,则∠A<MCN=∠B,即∠B>∠A, 从而B处对MN的张角较大,在B处射门射中的机会大些.【考点】圆周角定理,三角形外角的性质点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.。
初中数学圆的经典测试题及解析

解:如图所示,正六边形的边长为2cm,OG⊥BC,
∵六边形ABCDEF是正六边形,
∴∠BOC=360°÷6=60°,
∵OB=OC,OG⊥BC,
∴∠BOG=∠COG= ∠BOC =30°,
∵OG⊥BC,OB=OC,BC=2cm,
∴BG= BC= ×2=1cm,
∴OB= =2cm,
∴OG= ,
∴圆形纸片的半径为 cm,
【详解】
解:如图所示,
∵等腰三角形的底边和高线长均为10cm,
∴等腰三角形的斜边长= =5 ,即圆锥的母线长为5 cm,圆锥底面圆半径为5,
A. B. C. D.
【答案】C
【解析】
【分析】
连接 ,如图,利用切线的性质得 ,在 中利用勾股定理得 ,利用面积法求得 ,然后利用圆锥的侧面展开图为扇形和扇形的面积公式计算圆锥形纸帽的表面.
【详解】
解:连接 ,作 于 ,如图,
圆锥的母线 与 相切于点 ,
,
在 中, , ,
,
,
,
圆锥形纸帽的底面圆的半径为 ,母线长为12,
【详解】
设P(x,y),
∵PA2=(x+1)2+y2,PB2=(x﹣1)2+y2,
∴PA2+PB2=2x2+2y2+2=2(x2+y2)+2,
∵OP2=x2+y2,
∴PA2+PB2=2OP2+2,
当点P处于OC与圆的交点上时,OP取得最值,
∴OP的最小值为CO﹣CP=3﹣1=2,
∴PA2+PB2最小值为2×22+2=10.
A. B. C. D.
【答案】A
九年级数学上册第二十四章圆典型例题(带答案)

九年级数学上册第二十四章圆典型例题单选题1、如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.√2D.1答案:B分析:连接OA,如图,先根据垂径定理得到AE=BE=4,再利用勾股定理计算出OE=3,然后计算OC﹣OE即可.解:连接OA,如图,∵AB⊥CD,∴AE=BE=1AB=4,2在Rt△OAE中,OE=√OA2−AE2=√52−42=3,∴CE=OC﹣OE=5﹣3=2.故选:B.小提示:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理,掌握垂径定理是解题的关键.2、已知⊙O的半径为3,OA=5,则点A和⊙O的位置关系是()A.点A在圆上B.点A在圆外C.点A在圆内D.不确定答案:B分析:根据点与圆的位置关系的判定方法进行判断,OA小于半径则在圆内,OA等于半径则在圆上,OA大于半径则在圆外.解:∵⊙O的半径为3,OA=5,即A与点O的距离大于圆的半径,所以点A与⊙O外.故选:B.小提示:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD =DC =12AC =2√2 ∴OD 是△ABC 的中位线∴BC =2OD∵OA 2=OD 2+AD 2∴(4−x)2=x 2+(2√2)2,解得x =1∴BC =2OD =2x =2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD 的长是解题的关键.4、如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,则下列结论不一定成立的是( )A .AE =BEB .OE =DEC .AC⌢=BC ⌢D .AD ⌢=BD ⌢ 答案:B分析:根据垂径定理即可判断.解:∵CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∴AE =EB ,AC⌢=BC ⌢, AD ⌢=BD ⌢. 故选:B .小提示:本题主要考查垂径定理,掌握垂径定理是解题的关键.5、斐波那契螺旋线也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,…画出来的螺旋曲线.如图,在每个边长为1的小正方形组成的网格中,阴影部分是依次在以1,1,2,3,5的一个四分之一圆做圆锥的侧面,则该圆锥的底面半径为( )A .54B .2C .52D .4答案:A分析:根据斐波那契数的规律,求出下一个圆弧的底面半径和弧长,结合圆锥的侧面积性质进行求解即可. 解:有根据斐波那契数的规律可知,从第三项起,每一个数都是前面两个数之和,即半径为5的扇形对应的弧长l =2π×5×14=52π设圆锥底面半径为r ,则2πr =52π ∴r =54故选:A .小提示:本题考查圆锥侧面积的计算,结合斐波那契数的规律,及扇形的弧长公式进行转化是解题关键.6、如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM 的度数是( )A .36°B .45°C .48°D .60°答案:C分析:如图,连接AO .利用正多边形的性质求出∠AOM ,∠AOB ,可得结论.解:如图,连接AO.∵△AMN是等边三角形,∴∠ANM=60°,∴∠AOM=2∠ANM=120°,∵ABCDE是正五边形,=72°,∴∠AOB=360°5∴∠BOM=120°−72°=48°.故选:C.小提示:本题考查正多边形与圆,等边三角形的性质,圆周角定理等知识,解题的关键是熟练掌握正多边形的性质,属于中考常考题型.7、如图,斗笠是一种遮挡阳光和蔽雨的编结帽,它可近似看成一个圆锥,已知该斗笠的侧面积为550πcm2,AB是斗笠的母线,长为25cm,AO为斗笠的高,BC为斗笠末端各点所在圆的直径,则OC的值为()A.22B.23C.24D.25答案:A分析:根据圆锥的侧面积和母线可得底面圆的周长,进而可得底面圆的半径.解:∵侧面积为550π cm2,母线长为25cm,∴1×l×25=550π解得l=44π,2∵2πr=44π,∴OC=r=22,故选:A.小提示:本题考查圆锥的计算,根据侧面积和母线得到底面圆的半径是解题关键.8、如图,正五边形ABCDE内接于⊙O,则正五边形中心角∠COD的度数是()A.76°B.72°C.60°D.36°答案:B计算即可.分析:根据正多边形的中心角的计算公式:360°n解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为360°=72°,5故选:B.小提示:本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360°是解题的关键.n9、如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走()米.A .6π−6√3B .6π−9√3C .12π−9√3D .12π−18√3答案:D分析:作OC ⊥AB 于C ,如图,根据垂径定理得到AC =BC ,再利用等腰三角形的性质和三角形内角和计算出∠A ,从而得到OC 和AC ,可得AB ,然后利用弧长公式计算出AB⌢的长,最后求它们的差即可. 解:作OC ⊥AB 于C ,如图,则AC =BC ,∵OA =OB ,∴∠A =∠B =12(180°-∠AOB )=30°, 在Rt △AOC 中,OC =12OA =9, AC =√182−92=9√3,∴AB =2AC =18√3,又∵AB ⌢=120×π×18180=12π,∴走便民路比走观赏路少走12π−18√3米,故选D .小提示:本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.10、在锐角△ABC中,∠ACB=60°,∠BAC、∠ABC的角平分线AD、BE交于点M,则下列结论中错误的是()A.∠AMB=120°B.ME=MDC.AE+BD=AB D.点M关于AC的对称点一定在△ABC的外接圆上答案:D分析:利用三角形内角和定理以及角平分线的定义求出∠MAB+∠MBA=60°,推出∠AMB=120°,可判断A,证明C,E,M,D四点共圆,利用圆周角定理可判断B;在AB上取一点T,使得AT=AE,利用全等三角形的性质证明BD=BT,可判断C;无法判断∠M′与∠ABC互补,可判断D.解:如图,∵∠ACB=60°,∴∠CAB+∠CBA=120°,∵AD,BE分别是∠CAB,∠CBA的角平分线,∴∠MAB+∠MBA=1(∠CAB+∠CBA)=60°,2∴∠AMB=180°-(∠MAB+∠MBA)=120°,故A符合题意,∵∠EMD=∠AMB=120°,∴∠EMD+∠ECD=180°,∴C,E,M,D四点共圆,∵∠MCE=∠MCD,∴EM⌢=DM⌢,∴EM=DM,故B符合题意,∵四边形CEMD是⊙O的内接四边形,∴∠AME=∠ACB=60°=∠BMD,在AB上取一点T,使得AT=AE,在△AME和△AMT中,{AE=AT∠MAE=∠MATAM=AM,∴△AME≌△AMT(SAS),∴∠AME=∠AMT=60°,EM=MT,∴∠BMD=∠BMT=60°,MT=MD,在△BMD和△BMT中,{MD=MT∠BMD=∠BMTBM=BM,∴△BMD≌△BMT,∴BD=BT,∴AB=AT+TB=AE+BD,故C符合题意,∵M,M′关于AC对称,∴∠M′=∠AMC,∵∠AMC=180°−12(∠CAB+∠ACB)=180°−12(180°−∠ABC)=90°+12∠ABC,∴∠M′与∠ABC不一定互补,∴点M′不一定在△ABC的外接圆上,故D不符合题意,故选D.小提示:本题考查三角形的外接圆,四点共圆,圆周角定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.填空题11、如图,已知A为半径为3的⊙O上的一个定点,B为⊙O上的一个动点(点B与A不重合),连接AB,以AB为边作正三角形ABC.当点B运动时,点C也随之变化,则O、C两点之间的距离的最大值是______.答案:6分析:连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.证明△BAO≌△CAN(SAS),推出OB=CN=3,推出OC≤ON+CN=6,可得结论.解:如图,连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.∵OA=ON,OA=AN,∴AO=ON=AN,∴△OAN是等边三角形,∴∠OAN=60°,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠OAN=60°,∴∠BAO=∠CAN,∴△BAO≌△CAN(SAS),∴OB=CN=3,∵OC≤ON+CN=6,∴OC的最大值为6,所以答案是:6.小提示:本题考查了等边三角形的性质,圆的相关性质,垂径定理,利用两地之间线段最短是本题的解题关键.12、一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为__________.cm答案:132分析:连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC=√AB2+BC2=√122+52=13(cm),cm,所以圆形镜面的半径为132cm.所以答案是:132小提示:本题考查了圆周角定理,圆心角、弧、弦之间的关系和勾股定理等知识点,能根据圆周角定理得出AC 是圆形镜面的直径是解此题的关键.13、如图所示的网格中,每个小正方形的边长均为1,点A ,B ,D 均在小正方形的顶点上,且点B ,C 在AD⌢上,∠BAC =22.5°,则BC⌢的长为__________.答案:5π4 分析:先找到AD̂的圆心O ,得到∠BOC =45°,利用弧长公式即可求解. 解:连接AD ,作线段AB 、AD 的垂直平分线,交点即为AD̂的圆心O , 从图中可得:AD̂的半径为OB =5, 连接OC ,∵∠BAC =22.5°,∴∠BOC =2×22.5°=45°,BC ̂的长为45×π×5180=5π4. .所以答案是:5π4.小提示:本题考查了弧长公式,找到AD̂的圆心是解题的关键. 14、如图,正六边形ABCDEF 的边长为4,以A 为圆心,AC 的长为半径画弧,得EC⌢,连接AC 、AE ,用图中阴影部分作一个圆锥的侧面,则这个圆锥的底面半径为______.答案:2√33分析:由正六边形ABCDEF的边长为4,可得AB=BC=4,∠ABC=∠BAF=120°,进而求出∠BAC=30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH=12AC,BH=2.在Rt△ABH中,由勾股定理求得AH=2√3,得到AC=4√3.根据扇形的面积公式可得到阴影部分的面积,即是圆锥的侧面积,最后根据圆锥的侧面积公式求解底面半径即可.解:∵正六边形ABCDEF的边长为4,∴AB=BC=4,∠ABC=∠BAF=(6−2)×180°6=120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=12(180°−∠ABC)=30°,如图,过B作BH⊥AC于H,∴AH=CH=12AC,BH=12AB=12×4=2,在Rt△ABH中,AH=√AB2−BH2=√42−22=2√3,∴AC=2AH=4√3,同理可求∠EAF=30°,∴∠CAE=∠BAF−∠BAC−∠EAF=120°−30°−30°=60°,∴S扇形CAE =60π⋅(4√3)2360=8π,∴S圆锥侧=S扇形CAE=8π,∵S 圆锥侧=πrl =πr ⋅AC =4√3πr ,∴4√3πr =8π,∴r =2√33, 所以答案是:2√33.小提示:本题考查的是正六边形的性质、扇形面积的计算、等腰三角形的性质、勾股定理、圆锥的侧面积,掌握扇形面积公式和圆锥侧面积公式是解题的关键.15、刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积S 1来近似估计⊙O 的面积S ,设⊙O 的半径为1,则S −S 1=__________.答案:π−3分析:如图,过点A 作AC ⊥OB ,垂足为C ,先求出圆的面积,再求出△ABC 面积,继而求得正十二边形的面积即可求得答案.如图,过点A 作AC ⊥OB ,垂足为C ,∵⊙O 的半径为1,∴⊙O 的面积S =π,OA=OB=1,∴圆的内接正十二边形的中心角为∠AOB=360°12=30°,∴AC=12OB=12,∴S △AOB =12OB•AC=14, ∴圆的内接正十二边形的面积S 1=12S △AOB =3,∴则S −S 1=π−3,故答案为π−3.小提示:本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.解答题16、如图,CD 与EF 是⊙O 的直径,连接CE 、CF ,延长CE 到A ,连接AD 并延长,交CF 的延长线于点B ,过点F 作⊙O 的切线交AB 于点G ,点D 是AB 的中点.(1)求证:EF ∥AB ;(2)若AC =3,CD =2.5,求FG 的长.答案:(1)见解析;(2)65分析:(1)连接DE ,根据CD 和EF 都是⊙O 的直径得到∠DEA =∠ECF =90°,根据直角三角形的性质得到CD =AD =BD ,利用等腰三角形三线合一的性质推出∠ADE =∠CDE ,进而得到∠ADE =∠OED ,即可得到EF ∥AB ;(2)根据直角三角形斜边上的中线求得AB=2CD=5,勾股定理求得BC=4,由(1)可得EF=12AB,根据切线的性质可得FG⊥AB,根据sinB=FGBF =ACAB,代入数值,即可得到FC.(1)证明:连接DE,∵CD和EF都是⊙O的直径,∴∠DEA=∠ECF=90°,∵D是AB的中点,∴CD=AD=BD,∴∠ADE=∠CDE,∵OD=OE,∴∠OED=∠CDE,∴∠ADE=∠OED,∴EF∥AB;(2)连接DF,∵CD是⊙O的直径,∴∠DFC=90°,∴∠DFC=∠FCE=∠CED=90°,∴四边形CEDF是矩形,∴FC=DE,DE∥BC,∴AEEC =ADDB=1,∴AE=CE,∴DE是△ABC的中位线,∴DE=12BC,∵AB=2CD=5,AC=3,∴BC=√AB2−AC2=√52−32=4,∴FC=2.∴BF=BC−FC=4−2=2∵FG是⊙O的切线,∴GF⊥EF∵EF∥AB∴FG⊥AB∴∠BGF=∠BCA=90°∴sinB=FGBF =ACAB∴FG2=35∴FG=65小提示:此题考查了圆周角定理,矩形的判定定理及性质定理,勾股定理,三角形中位线的性质,熟记圆周角定理是解题的关键.17、如图,D是△ABC的BC边上一点,连结AD,作△ABD的外接圆O,将△ADC沿直线AD折叠,点C的对应点E 落在⊙O 上.(1)若∠ABC =30°,如图1.①求∠ACB 的度数.②若AD =DE ,求∠EAB 的度数.(2)若AD⌢=BE ⌢,AC =4,CD =2,如图2.求BC 的长. 答案:(1)①30°,②60°;(2)BC =6分析:(1)①根据折叠的性质可得∠ACD =∠AED ,根据等弧所对的圆周角即可求解;②根据等边对等角可得∠DAE =∠DEA ,根据(1)的结论可得∠ACB =∠ABC ,进而根据折叠的性质求得∠CAE =60°,进而根据∠CAB −∠CAE 即可求得∠BAE ,(2)根据AD⌢+DE ⌢=BE ⌢+DE ⌢,可得AE ⌢=DB ⌢,AE =BE ,根据折叠的性质可得DB =AE =4,进而即可求解.(1)①∵AD⌢=AD ⌢,∠ABC =30°, ∴∠AED =∠ABD =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠ACB =∠AED =30° ;②∵ AD =DE ,∴∠DAE =∠DEA ,∵∠DEA =∠DBA ,∴∠DAE =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠DAE =∠DAC =30°,△ABC 中,∠ABC =∠ACB =30°,则∠CAB =180°−∠ABC −∠ACB =120°,∵∠CAE =∠CAD +∠EAD =60°,∴∠EAB =∠CAB −∠CAE =120°−60°=60°,∴∠EAB =60°,(2)∵ AD⌢=BE ⌢ ∴AD⌢+DE ⌢=BE ⌢+DE ⌢ ∴AE⌢=DB ⌢ ∴AE =BE∵折叠∴AC =AE∴DB =AE =4∵CD =2∴BC =CD +DB =4+2=6小提示:本题考查了折叠的性质,同弧或等弧所对的圆周角相等,弧与弦的关系,三角形内角和定理的应用,综合运用以上知识是解题的关键.18、如图,C ,D 是以AB 为直径的半圆上的两点,∠CAB =∠DBA ,连结BC ,CD .(1)求证:CD ∥AB .(2)若AB =4,∠ACD =30°,求阴影部分的面积.答案:(1)答案见解析(2)23π 分析:(1)根据同弧所对的圆周角相等得到∠ACD =∠DBA ,根据 ∠CAB =∠DBA 得到∠CAB =∠ACD ,进而得到结论;(2)连结OC ,OD ,证明所求的阴影部分面积与扇形COD 的面积相等,继而得到结论.(1)证明:∵AD ⌒=AD ⌒,∴∠ACD =∠DBA ,又∵∠CAB =∠DBA ,∴∠CAB =∠ACD ,∴CD ∥AB ;(2)解:如图,连结OC ,OD .∵∠ACD =30°,∴∠ACD =∠CAB =30°,∴∠AOD =∠COB =60°,∴∠COD =180°-∠AOD -∠COB =60°.∵CD ∥AB ,∴S △DOC =S △DBC ,∴S 阴影=S 弓形COD +S △DOC =S 弓形COD +S △DBC=S 扇形COD ,∵AB =4,∴OA =2,∴S 扇形COD=nπr 2360=60×π×22360=23π.∴S阴影=2π.3小提示:本题主要考查扇形的面积,同弧所对的圆周角相等,平行线的判定,掌握定理以及公式是解题的关键.。
初三数学圆试题答案及解析

初三数学圆试题答案及解析1.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.【考点】1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.2.如图,AB是⊙O的直径,点C是圆上一点,,则 °.【答案】20.【解析】∵AB是⊙O的直径,∴.∵OA=OC,,∴.∴.【考点】1.圆周角定理;2.等腰三角形的性质.3.已知一个圆锥的底面半径为3 cm,母线长为10 cm,则这个圆锥的侧面积为 ()A.15π cm2B.30π cm2C.60π cm2D.3cm2【答案】B【解析】圆锥的侧面积=π×3×10=30π cm2.故选B.4.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长是A.4cm B.6cm C.8cm D.10cm【答案】C.【解析】连接OB;∵CD=10cm,∴OC=5cm;∵OM:OC=3:5,∴OM=3cm;Rt△OCP中,OC=OA=5cm,OM=3cm;由勾股定理,得:所以AB=2AM=8cm,故选C.考点: 1.垂径定理;2.勾股定理.5.如图,点A是半圆上一个三等分点,点B是的中点,点P是直径MN上一动点,若⊙O的半径为1,则AP+BP的最小值是.【答案】.【解析】本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.试题解析:作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN^的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴PA+PB=PA′+PB=A′B=.考点: 1.垂径定理;2.勾股定理;3.圆心角、弧、弦的关系;4.轴对称-最短路线问题.6.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(秒)(0≤t<3),连结EF,当t值为________秒时,△BEF是直角三角形.【答案】t=1或或.【解析】∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=,此时点E走过的路程是或,则运动时间是s或s.故答案是t=1或或.【考点】圆周角定理.7.如图,边长为1的小正方形构成的网格中,⊙O的半径为1,则图中阴影部分两个小扇形的面积之和为(结果保留π)【答案】.【解析】如图,根据正方形和圆的对称性,上方的小扇形与下方的红色小扇形面积相等,所以图中阴影部分两个小扇形的面积之和为四分之一半径为1的圆的面积,即.【考点】1.网格问题;2. 正方形和圆的对称性;3. 扇形的面积;4.转换思想的应用.8.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是A.猫先到达B地;B.老鼠先到达B地;C.猫和老鼠同时到达B地;D.无法确定.【答案】C.【解析】以AB为直径的半圆的长是:•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+b+c+d=(a+b+c+d)=•AB.故猫和老鼠行走的路径长相同.故选C.【考点】弧长公式.9.如图,已知在⊙O中,弦AB的长为8cm,半径为5 ㎝,过O作OC AB求点O与AB的距离.【答案】3cm.【解析】连接OA.根据垂径定理求得AC的长,再进一步根据勾股定理即可求得OC的长.试题解析:连接OA.如图:∵OC⊥AB,弦AB长为8cm,∴AC=4(cm).根据勾股定理,得OC=考点: 1.垂径定理;2.勾股定理.10.如图所示,内接于,,,则______.【答案】.【解析】由圆周角定理知:,由于,得到,所以:.故答案是.【考点】圆周角定理.11.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【答案】(1)详见解析;(2)6【解析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(6-x)2=25,从而求得x的值,由勾股定理得出AB的长.试题解析:(1)连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6-x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5-x)2+(6-x)2=25,化简得x2-11x+18=0,解得x1=2,x2=9.∵CD=6-x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5-2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.【考点】1.切线的判定和性质;2.勾股定理;3.矩形的判定和性质4.垂径定理12.如图MN=10是⊙O的直径,AE⊥MN于E,CF⊥MN于F,AE=4,CF=3,(1)在MN上找一点P,使PA+PC最短;(2)求出PA+PC最短的距离。
圆周角二

5.2 圆周角(二)
典型例题
例1.如图,在⊙O中,△ABC是 等边三角形,AD是直径, 则∠ADB= °,∠DAB= °.
A O D
第1题
B
C
例2. 如图,AB是⊙O的直径,若 AB=AC,求证:BD=CD
A
O
C
第2题
D
B
典型例题
例1.如图,AB是⊙O的直径,弦CD与AB 相交于点E,ACD=60°, ∠ADC=50°,求∠CEB的度数.
回顾总结
通过本课的学习,你又有 什么收获?
B O D C
E
巩固练习
1.如图,AB是⊙O的直径,∠A=10°, 则∠ABC= ___. 2.如图,A B是⊙O的直径,CD是弦,∠ACD=40 则∠BCD=_______,∠BOD=_______.
3.如图,AB是⊙O的直径,D是⊙O上的任意一点 (不与点A、B重合),延长BD到点C,使DC=BD, 判断△ABC的形状:__________。 4.如图,AB是⊙O的直径,AC是弦, ∠BAC=30°,则AC的度数是( ) A. 30° B. 60° C. 90° D. 120°
C C O A E
B A
O
E
B
D D
例2.如图,△ABC的顶点都在⊙O上, AD是△ABC的高,AE是⊙O的直 径.△ABE与△ACD相似吗?为什么?
A
A
O
O B F
B
C
D E
C
E D
延伸拓展
例3.如图, A、B、E、C四点都在⊙O上, AD是△ABC的高,∠CAD=∠EAB,AE是 ⊙O的直径吗?为什么? A
初中数学沪科版 圆周角课后练习考试卷考点.doc

初中数学沪科版圆周角课后练习考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、解答题20.如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.(不必写出作图过程,但必须保留作图痕迹)23.如图,在⊙O上位于直径AB的异侧有定点C和动点P,AC=AB,点P在半圆弧AB上运动(不与A、B 两点重合),过点C作直线PB的垂线CD交PB于D点.(1)如图1,求证:△PCD∽△ABC;(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由;(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.11.如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.评卷人得分求证:CF=BF.23.如图,AC为⊙O的直径,AC=4,B、D分别在AC两侧的圆上,∠BAD=60°,BD与AC的交点为E.(1)求∠BOD的度数及点O到BD的距离;(2)若DE=2BE,求的值.5.如图,□ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36° B.46° C.27° D.63°7.如图AB是半圆的直径,点D是的中点,∠ABC=50o,则∠DAB等于()A.550B.600C.650D.7007.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是 ( )A.80°B.160°C.100°D.80°或100°8.如图,点A、B、C是⊙O上三点,∠AOC=130°,则∠ABC等于()A.50°B.60°C.65°D.70°6.若圆的一条弦把圆分成度数的比为1:3的两段弧,则劣弧所对的圆周角等于()A.B.C.D.10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()。
初中数学圆形专题训练50题含(参考答案)

初中数学圆形专题训练50题含参考答案一、单选题1.如图,A ,B ,C 是⊙O 上的三点,且⊙ACB =35°,则⊙AOB 的度数是( )A .35°B .65°C .70°D .90°【答案】C 【分析】根据圆周角定理即可得.【详解】解:由圆周角定理得:223570AOB ACB ∠=∠=⨯︒=︒,故选:C .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.2.如图,在半径为R 的圆内作一个内接正方形,⊙然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n 个内切圆,它的半径是( )A .RB .(12)RC .(12)n -1RD .n R3.如图,在ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是()A.AD BD AB+<B.AD一定经过ABC的重心C.BAD CAD∠=∠D.AD一定经过ABC的外心【答案】C【分析】根据题意易得AD平分⊙BAC,然后根据三角形的重心、外心及三边关系可排除选项.【详解】解:⊙AD平分⊙BAC,⊙BAD CAD∠=∠,故C正确;在⊙ABD中,由三角形三边关系可得AD BD AB+>,故A错误;由三角形的重心可知是由三角形三条中线的交点,所以AD不一定经过ABC的重心,故B选项错误;由三角形的外心可知是由三角形三条边的中垂线的交点,所以AD不一定经过ABC的外心,故D选项错误;故选C.【点睛】本题主要考查三角形的重心、外心及角平分线的尺规作图,熟练掌握三角形的重心、外心及角平分线的尺规作图是解题的关键.4.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若⊙D=40°,则⊙A的度数为()A.20°B.25°C.30°D.40°【点睛】此题主要考查了切线的性质,正确得出⊙DOC =50°是解题关键.5.如图,点A ,B ,C 在圆O 上,65∠=︒ABO ,则ACB ∠的度数是( )A .50︒B .25︒C .35︒D .20︒6.如图4,在Rt ABC △中,90C =∠,3AC =.将其绕B 点顺时针旋转一周,则分别以BA ,BC 为半径的圆形成一圆环.该圆环的面积为( )AB .3πC .3πD .3π 【答案】C 【分析】根据勾股定理,得两圆的半径的平方差即是AC 的平方.再根据圆环的面积计算方法:大圆的面积减去小圆的面积,即9π.【详解】解:圆环的面积为πAB 2-πBC 2,=π(AB 2-BC 2),=πAC 2,=32π,=9π.故选C.7.已知水平放置半径为6cm的球形容器中装有溶液,容器内液面的面积为27πcm2,如图,是该球体的一个最大纵截面,则该截面O中阴影部分的弧长为()A.2πcm B.4πcm C.6πcm D.8πcm意,灵活运用所学知识解决问题,属于中考常考题型.8.如图,点A,B,C都在圆O上,若⊙C=34°,则⊙AOB为()A.34⊙B.56⊙C.60⊙D.68⊙【答案】D【分析】由题意直接根据圆周角定理中同圆同弧所对的圆周角等于这条弧所对的圆心角的一半进行分析即可求解.【详解】解:⊙⊙C=34°,⊙⊙AOB=2⊙C=68°.故选:D.【点睛】本题考查圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.9.下列命题中,真命题的个数是()⊙同位角相等⊙经过一点有且只有一条直线与这条直线平行⊙长度相等的弧是等弧⊙顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【答案】A【详解】解:两直线平行,同位角相等,⊙错误;经过直线外一点有且只有一条直线与这条直线平行,⊙错误;在同圆或等圆中,长度相等的弧是等弧,⊙错误;顺次连接菱形各边中点得到的四边形是矩形,⊙正确.故选A.【点睛】本题考查命题与定理.10.AB是⊙O的直径,PB、PC分别切⊙O于点B、C,弦CD AB∥,若PB=AB=10,则CD的长为()A .6B C .D .3 OCF CPE ,四边形12BE OF OF ==,【详解】解:过点⊙OCF CPE , OF OC CE PC =, PB 、PC 分别切⊙O PB PC =,10PB AB ==,11.如图,AB 是O 的直径,ACD 是O 的内接三角形,若6AB =,105ADC ∠=︒,则BC 的长为( )A .8πB .4πC .2πD .π【答案】C【分析】连接OC 、BC ,根据四边形ABCD 是圆的内接四边形和⊙D 的度数,即可求出303602π=,【点睛】本题考查了圆内接四边形的性质、圆周角定理以及弧长公式等知识,根据圆12.将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD 与直尺的一边重合,光盘与直尺相切于点B ,与直角三角板相切于点C ,且3AB =,则光盘的直径是( )A .6B .C .3D .【答案】D13.如图,正五边形ABCDE,则⊙DAC的度数为()A.30°B.36°C.60°D.72°【答案】B【分析】根据正五边形和等腰三角形的性质即可得到结论.【详解】⊙在正五边形ABCDE中,AE=DE=AB=BC,⊙E=⊙B=⊙EAB=108°,⊙⊙EAD=⊙BAC=36°,⊙⊙DAC=108°﹣36°﹣36°=36°,故选:B.【点睛】此题考查正多边形和圆,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.14.菱形对角线的交点为O,以O为圆心,以O到菱形一边的距离为半径的圆与其他几边的关系为()A.相交B.相切C.相离D.不能确定【答案】B【分析】首先根据菱形的性质可知:菱形的对角线将菱形分成四个全等的直角三角形,故四个三角形面积相等且斜边相等,然后根据等面积法得出斜边的高相等,这样问题就容易解决了.【详解】如图:⊙菱形对角线互相垂直平分,⊙AO=CO,BO=DO,AB=BC=CD=DA.⊙⊙ABO⊙⊙BCO⊙⊙CDO⊙⊙DAO.⊙⊙ABO、△BCO、△CDO、△DAO的面积相等.又⊙AB=BC=CD=DA,⊙⊙ABO、△BCO、△CDO、△DAO斜边上的高相等.即O到AB、BC、CD、DA的距离相等.⊙O到菱形一边的距离为半径的圆与另三边的位置关系是相切.故选B..【点睛】本题考查了直线与圆的位置关系,解题的关键是画出图形进行分析.15.如图,已知AB是⊙O的直径,弦CD⊙AB于点E,G是弧AB的中点,连接AD,AG ,CD ,则下列结论不一定成立的是( )A .CE =DEB .⊙ADG =⊙GABC .⊙AGD =⊙ADC D .⊙GDC =⊙BAD 【答案】D 【详解】⊙AB 是⊙O 的直径,弦CD ⊙AB ,⊙CE =DE ,A 成立;⊙G 是AB 的中点,⊙AG BG =,⊙⊙ADG =⊙GAB ,B 成立;⊙AB 是⊙O 的直径,弦CD ⊙AB ,⊙AC AD =,⊙⊙AGD =⊙ADC ,C 成立;⊙GDC =⊙BAD 不成立,D 不成立,故选D .16.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =, 1.5m OB =,则阴影部分的面积为( )A .24.25m πB .23.25m πC .23m πD .22.25m π【答案】D 【分析】根据S 阴影=S 扇形AOD -S 扇形BOC 求解即可.17.下列命题为真命题的是( )A .同旁内角互补B .三角形的外心是三条内角平分线的交点C .平行于同一条直线的两条直线平行D .若甲、乙两组数据中,20.8S =甲,2 1.4S =乙,则乙组数据较稳定【答案】C【分析】根据平行线的性质和判定,三角形的外心性质,方差一一判断即可.【详解】解:A 、两平行线被第三直线所截,同旁内角互补,原命题是假命题,不符合题意;B 、三角形的外心是三条边垂直平分线的交点,原命题是假命题,不符合题意;C 、平行于同一条直线的两条直线平行,是真命题,符合题意;D 、若甲、乙两组数据的平均数都是3,S 甲2=0.8,S 乙2=1.4,则甲组数据较稳定,原命题是假命题,不符合题意;故选:C .【点睛】考查了命题与定理的知识,解题的关键是根据平行线的性质和判定,三角形的外心性质,方差解答.18.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D ,E 两点,且⊙ACD=45°,DF⊙AB 于点F ,EG⊙AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )A.B.C.D.19.如图,AB为⊙O的直径,AB=AC,AC交⊙O于点E,BC交⊙O于点D,F为CE 的中点,连接DF.给出以下四个结论:⊙BD=DC;⊙AD=2DF;⊙BD DE;⊙DF是⊙O的切线.其中正确结论的个数是:()A.4B.3C.2D.1【答案】B【详解】连接AD,OD,⊙AB是直径,⊙⊙ADB=⊙AEB=90°,又⊙AB=AC,⊙BD=DC,故⊙正确;⊙F是CE中点,BD=CD,⊙BE//DF,BE=2DF,但没有办法证明AD与BE相等,故⊙错误;⊙AB=AC,BD=CD,⊙⊙BAD=⊙CAD,⊙BD=DE,⊙BD=DE,故⊙正确;⊙⊙AEB=90°,⊙⊙BEC=180°-⊙AEB=90°,⊙BE//DF,⊙⊙DFC=⊙BEC=90°,⊙O为AB的中点,D为BC的中点,⊙OD//AC,⊙⊙ODF=⊙DFC=90°,⊙OD是半径,⊙DF是⊙O的切线,故⊙正确,所以正确的结论有3个,故选B.【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质、三角形的中位线等,能根据具体的图形选择和灵活运用相关性质解题是关键.二、填空题20.如图,若正五边形和正六边形有一边重合,则⊙BAC=_____.【答案】132°##132度【详解】解:⊙正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,⊙⊙BAC=360°-108°-120°=132°.故答案为132°.21.已知直角⊙ABC中,⊙C=90°,BC=3,AC=4,那么它的内切圆半径为_______.【答案】1【分析】O分别与BC、AC、AB切于点D、E、F,连接OD、OE、OF,由切线的性质可得:⊙ODC=⊙OEC=90°,设OD=OE=r根据正方形的判定即可证出四边形OECD是正方形,从而得出:EC=CD=OD=OE=r,再根据切线长定理可得:BF=BD =3-r,AF=AE =4-r,再根据勾股定理求出AB,利用AB的长列方程即可.【详解】解:如图所示,O分别与BC、AC、AB切于点D、E、F,连接OD、OE、OF⊙⊙ODC=⊙OEC=90°22.如图,AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,BE =4,CG =6,则BC =_______.【答案】10【分析】从圆外一点可以引圆的两条切线,它们的切线长相等,据此分析解答.【详解】⊙AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,BE =4,CG =6,⊙BF =BE =4,CF =CG =6,⊙BC =BF +FC =10,故填:10.【点睛】此题主要是综合运用了切线长定理和切线的性质定理.23.若一个扇形的圆心角为60︒,面积为26cm π,则这个扇形的弧长为__________ cm(结果保留π)24.如图,在O 中,弦AC =B 是圆上一点,且=45ABC ∠︒,则O 的半径R =_____.25.如图,⊙O 的内接四边形ABCD 中,⊙A =45°,则⊙C 的度数 _____________ .【答案】135°【分析】根据圆内接四边形的对角互补可得结论.【详解】∵⊙O的内接四边形ABCD中,⊙A=45°,⊙⊙C=135°.故答案为135°.【点睛】本题考查了圆内接四边形,关键是掌握圆内接四边形的性质:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).26.如图,四边形ABCD内接于⊙O,E是BC延长线上一点,若⊙BAD=105°,则⊙DCE的度数是________°.【答案】105【详解】⊙四边形ABCD是圆内接四边形,⊙⊙DAB+⊙DCB=180°,⊙⊙BAD=105°,⊙⊙DCB=180°﹣⊙DAB=180°﹣105°=75°,⊙⊙DCB+⊙DCE=180°,⊙⊙DCE=⊙DAB=105°.故答案为10527.如图,圆O的半径OA=5cm,弦AB=8cm,点P为弦AB上一动点,则点P到圆心O的最短距离是____cm.【答案】3【分析】由当OP⊙AB时,OP最短,根据垂径定理,可求得AP的长,然后由勾股定28.如图,在矩形ABCD 中,AB a ,BC b =,点P 是BC 上的一个动点,连接AP ,把PAB 沿着AP 翻折到⊙PB C '(点B '在矩形的内部),连接B C ',B D '.点P 在整个运动过程中,若存在唯一的位置使得⊙B CD 为直角三角形,则a ,b 之间的数量关系是 __.为直径作O ,当点为直角三角形且唯一,在Rt ADO 中,根据22OD OA ,可得,计算可得答案. 为直径作O ,当点到O 的最小距离等于得B CD '为直角三角形且唯一,Rt ADO 中,2AD OD +22211())22b a a +=+,整理得22b =,a>,∴=2b29.尺规作图特有的魅力曾使无数人沉湎其中,传说拿破仑通过下列尺规作图考他的大臣:⊙将半径2的⊙O六等分,依次得到A,B,C,D,E,F六个分点;⊙分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;⊙连结OG.问:OG的长是多少?大臣给出的正确答案是_________2222OA,(23)222.【点睛】本题考查了圆周角定理,等腰三角形三线合一的性质以及勾股定理解直角三30.半径为O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若⊙OBD是直角三角形,则弦BC的长为_______________.31.如图,P A,PB是⊙O的切线,A,B是切点,点C是⊙O上异于A、B的一点,若⊙P=40°,则⊙ACB的度数为_________________.【答案】110°【分析】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APBO中,根据四边形的内角和求出⊙AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出⊙ADB的度数,再根据圆内接四边形的对角互补即可求出⊙ACB的度数.【详解】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示:⊙PA、PB是⊙O的切线,⊙OA⊙AP,OB⊙BP,⊙⊙OAP=⊙OBP=90°,又⊙⊙P=40°,⊙⊙AOB=360°-(⊙OAP+⊙OBP+⊙P)=140°,32.如图,矩形ABCD 中,6AB =,9BC =.将矩形沿EF 折叠,使点A 落在CD 边中点M 处,点B 落在N 处.连接EM ,以矩形对称中心O 为圆心的圆与EM 相切于点P ,则圆的半径为________.33.如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则AMN周长的最小值为________.34.如图所示,在⊙O 中,AB 是⊙O 的直径,⊙ACB 的角平分线CD 交⊙O 于D ,则⊙ABD=_________ 度.【答案】45.【详解】试题解析:⊙CD 平分⊙ACB⊙⊙ACD=⊙BCD=45°⊙⊙ABD=⊙ACD=45°.考点:圆周角定理.35.如图,在平面直接坐标系xOy 中,()40A ,,()03B ,,()43C ,,I 是ABC ∆的内心,将ABC ∆绕原点逆时针旋转90°后,I 的对应点'I 的坐标为________.【答案】(-2,3)【分析】直接利用直角三角形的性质得出其内切圆半径,进而得出I点坐标,再利用旋转的性质得出对应点坐标.【详解】解:过点作IF⊙AC于点F,IE⊙OA于点E,⊙A(4,0),B(0,3),C(4,3),⊙BC=4,AC=3,则AB=5,⊙I是⊙ABC的内心,⊙I到⊙ABC各边距离相等,等于其内切圆的半径,⊙IF=1,故I到BC的距离也为1,则AE=1,故IE=3-1=2,OE=4-1=3,则I(3,2),⊙⊙ABC绕原点逆时针旋转90°,⊙I的对应点I'的坐标为:(-2,3).故答案为:(-2,3).【点睛】此题主要考查了旋转的性质以及直角三角形的性质,得出其内切圆半径是解题关键.36.一个半径为4cm的圆内接正六边形的面积等于_______cm2.S=ABC⊙内接正六边形的面积是故答案是:37.圆心角为40°,半径为2的扇形面积为________.38.如图,在半圆O中,直径AE=10,四边形ABCD是平行四边形,且顶点A、B、C在半圆上,点D在直径AE上,连接CE,若AD=8,则CE长为_____【答案】【详解】连接OC,过O点作BC垂线,设垂足为F,根据垂径定理、勾股定理可以得到OC=5,CF=4,OF=3,在等腰三角形CDE中,高=OF=3,底边长DE=10-8=2,根据勾股定理即可求出CE.解:连接OC,过O点作OF⊙BC,垂足为F,交半圆与点H,⊙OC=5,BC=8,⊙根据垂径定理CF=4,点H为弧BC的中点,且为半圆AE的中点,⊙由勾股定理得OF=3,且弧AB=弧CE⊙AB=CE,又⊙ABCD为平行四边形,⊙AB=CD,⊙CE=CD,⊙⊙CDE为等腰三角形,在等腰三角形CDE中,DE边上的高CM=OF=3,⊙DE=10-8=2,⊙由勾股定理得,CE2=OF2+(DE)2,⊙CE=,故答案为.本题考查了勾股定理和垂径定理以及平行四边形的性质,是基础知识要熟练掌握.39.如图,⊙O是⊙ABC的外接圆,连接OB、OC,若OB=BC,则⊙BAC的度数是_____.三、解答题40.如图,AB是⊙O的直径,C是半圆上的一点,CD是⊙O的切线,AD⊙CD于点D,交⊙O于点E.(1)求证:AC平分⊙DAB;(2)若点E为弧AC的中点,⊙O的半径为1,求图中阴影部分的面积.41.如图,AB是⊙O的直径,点C、E位于⊙O上AB两侧.在BA的延长线上取点D,使⊙ACD=⊙B.(1)求证:DC是⊙O的切线;(2)当BC=EC时,求证:AC2=AE•AD;(3)在(2)的条件下,若BC=AD:AE=5:9,求⊙O的半径.【点睛】本题考查了切线的判定,圆周角定理,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.42.如图,已知、是⊙的切线,、为切点.直径的延长线与的延长线交于点.(1)求证:;(2)若,.求图中阴影部分的面积(结果保留根号与).【答案】(1)证明见解析;(2).【详解】试题分析:(1)连接,根据是⊙的切线,由切线长定理得到AP=BP,OP平分⊙APB,根据等腰三角形的性质三线合一得到OP⊙AB,再根据AC是⊙O的直径,得到⊙ABC=90°,即AB⊙BC,BC⊙OB,得到内错角相等,由等量代换得到结果.(2)根据切线长定理和三角形全等,S△OPA=S△OPB,通过解直角三角形得到OB,PB,再根据三角形的面积和扇形的面积推出结论.试题解析:(1)证明:连接. 1分⊙是⊙的切线,⊙平分. 2分.⊙是⊙的直径,⊙, 即:. 3分⊙.⊙. 4分,⊙. 5分(2) 连接.⊙,⊙⊙、是⊙的切线,⊙,,又⊙⊙⊙⊙.⊙. 6分在中,,. 7分在中,,⊙. 8分⊙.⊙,.⊙. 9分⊙所求的阴影面积:. 10分考点:1.切线的性质;2.扇形面积的计算.43.数学课上,王老师画好图后并出示如下内容:“已知AB为O的直径,O过AC 的中点D.DE为O的切线.(1)求证:DE BC ⊥(2)王老师说:如果添加条件“1DE =,1tan 2C =”,则能求出O 的直径.请你写出求解过程.DE 为O 的切线,OD DE ∴⊥,即∠AB 为O 的直径,OA OB ∴=,即点点D 为AC 的中点,OD BC ∴∥,CED ODE ∴∠=∠=BC .DE BC ⊥1tan DE CE ∴=O∴的直径为【点睛】本题考查了圆的切线的性质、圆周角定理、三角形中位线定理、解直角三角形等知识点,熟练掌握圆的切线的性质和圆周角定理是解题关键.44.如图,点A、B、C分别是⊙O上的点,⊙B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.45.如图,在O 中,弦AB 与CD 相交于点E ,AB CD =,连接AD BC ,,25ADC ∠=︒.(1)求证:AD BC =;(2)求证:AE CE =;(3)若弦BD 经过点O ,求BEC ∠的度数. 【答案】(1)见解析(2)见解析(3)65︒【分析】(1)由AB CD =,推出AB CD =,推出BC AD =;(2)证明AED CEB ≌可得结论;(3)先求出90BCD ︒∠=,再求出25CBE,即可得答案. 【详解】(1)解:AB CD =,C ABD ∴=, AB AC CD AC ∴-=-,BC AD ∴=;(2)BC AD ,BC AD ∴=,ADE ∠和CBE ∠都是AC 的圆周角,ADE CBE ∴∠=∠,AED CEB ,AED CEB ∴≌,AE CE ∴=;(3)25ADC ,25CBE ,弦BD 经过点O ,BD ∴是O 的直径,90BCD ︒∴∠=,⊙在CEB 中,18065BEC BCD CBE .【点睛】本题考查了圆心角、弧、弦之间的关系,全等三角形的判定和性质,直径所对的圆周角是90︒,三角形的内角和,解题的关键是正确寻找全等三角形解决问题. 46.如图,在ABC 中,90ABC ∠=,O 是AB 上一点,以O 为圆心OB 为半径的圆与AB 交于点E ,与AC 交于点D ,连接DE 、DE 、OC ,且//DE OC .()1求证:AC 是O 的切线;()2若8DE OC ⋅=,求O 的半径.【答案】(1)证明见解析;(2)2. 【分析】(1)先由OD=OE ,利用等边对等角可得⊙2=⊙3,再利用DE⊙OC ;进而利用平行线的性质,可得⊙3=⊙4,⊙1=⊙2,等量代换可得⊙1=⊙4;再结合OB=OD ,OC=OC ,利用SAS 可证△DOC⊙⊙BOC ,那么⊙CDO=⊙CBO ,而⊙ABC=90°,于是⊙CDO=90°,即CD 是 O 的切线;(2)由(1)可知⊙2=⊙4,而⊙CDO=⊙BDE=90°,易证△CDO⊙⊙BDE ,可得比例线段,OD :DE=OC :BE ,又BE=2OD ,可求OD .【详解】()1证明:连接OD ,⊙OE OD =,⊙23∠=∠,又⊙//DE OC ,⊙12∠=∠,34∠=∠,⊙14∠=∠;在DOC 和BOC 中,OD OB =,14∠=∠,OC OC =,⊙DOC BOC ≅,⊙CDO CBO ∠=∠;⊙90ABC ∠=,⊙90CDO ∠=,⊙CD 是O 的切线;()2⊙BE 是直径,⊙90BDE ∠=,在COD 和BED 中,24∠=∠,90EDB ODC ∠=∠=,⊙COD BED ∽,⊙::OD DE OC BE =;又⊙2BE OD =,⊙22OD DE OC =⋅,⊙2OD =.【点睛】考查了等边对等角,平行线的性质,全等三角形的判定与性质,切线的判定,直径所对的圆周角是直角,相似三角形的判定与性质.综合性比较强,难度较大. 47.已知:对于平面直角坐标系xOy 中的点P 和O ,O 的半径为4,交x 轴于点A ,B ,对于点P 给出如下定义:过点C 的直线与O 交于点M ,N ,点P 为线段MN 的中点,我们把这样的点P 叫做关于MN 的“折弦点”.(1)若()2,0C -⊙点()10,0P ,()21,1P -,()32,2P中是关于MN 的“折弦点”的是______;⊙若直线y kx =0k ≠)上只存在一个关于MN 的“折弦点”,求k 的值;(2)点C 在线段AB 上,直线y x b =+上存在关于MN 的“折弦点”,直接写出b 的取值范围.与D相交或相切,分两种情况利用勾股定理求出【详解】(1))与D相切,与D相交或相切,=+垂直直线y xy轴交于点重合时,b有最大值,此时48.如图1,AB 为O 的直径,C 为O 上一点,连接CB ,过C 作CD AB ⊥于点D ,过点C 作BCE ∠,使BCE BCD ∠=∠,其中CE 交AB 的延长线于点E .(1)求证:CE 是O 的切线.(2)如图2,点F 在O 上,且满足2FCE ABC ∠=∠,连接AF 并延长交EC 的延长线于点G .若4CD =,3BD =,求线段FG 的长.CD OB ⊥DCB ∴∠+∠BCE ∠=∠OC OB=OCB∴∠=OCB∴∠+即:OC⊥CE∴是O的切线.(2)过点O作OHFCE∠=FCE∴∠=FCE∠=FCO∴∠OC CE⊥DCO∴∠+DCO∴∠=DCO∴∠=CDO∠=OCH∴∆≅CH CD∴=8CF∴=设OB OC=2OC OD=2(x x∴=解得:256 x.256OB OC∴==.CDB中,OC CG ⊥GCF ∴∠GCF ∴∠AFCB 是圆的内接四边形,GFC ∴∠GFC∴∆∽∴GF CF BC OC=GF =49.问题探究:(1)如图⊙,已知在⊙ABC 中,BC =4,⊙BAC =45°,则AB 的最大值是 . (2)如图⊙,已知在Rt ⊙ABC 中,⊙ABC =90°,AB =BC ,D 为⊙ABC 内一点,且AD=BD =2.,CD =6,请求出⊙ADB 的度数.问题解决:(3)如图⊙,某户外拓展基地计划在一处空地上修建一个新的拓展游戏区⊙ABC ,且AB =A C .⊙BAC =120°,点A 、B 、C 分别是三个任务点,点P 是⊙ABC 内一个打卡点.按照设计要求,CP =30米,打卡点P 对任务点A 、B 的张角为120°,即⊙APB =120°.为保证游戏效果,需要A 、P 的距离与B 、P 的距离和尽可能大,试求出AP +BP 的最大值.的外接圆O,连接)如图⊙,作⊙的外接圆O,连接BAC=90°,OB是等腰直角三角形的外接圆O,连接AKC=⊙APB 是等边三角形。
初中数学专题复习(圆周角定理)

初中数学专题复习(圆周角定理)1.(2020•陕西)如图,点A、B、C在⊙O上,BC∥OA,连接BO并延长,交⊙O于点D,连接AC,DC.若∠A=25°,则∠D的大小为()A.25°B.30°C.40°D.50°解:∵BC∥OA,∴∠ACB=∠A=25°,∠B=∠AOB=2∠ACB=50°,∵BD是⊙O的直径,∴∠BCD=90°,∴∠D=90°﹣∠B=90°﹣50°=40°,故选:C.2.(2020•兰州)如图,AB是⊙O的直径,若∠BAC=20°,则∠ADC=()A.40°B.60°C.70°D.80°解:∵AB是直径,∴∠ACB=90°,∵∠BAC=20°,∴∠ABC=90°﹣20°=70°,∴∠ADC=∠ABC=70°,故选:C.3.(2020•阜新)如图,AB为⊙O的直径,C,D是圆周上的两点,若∠ABC=38°,则锐角∠BDC的度数为()A.57°B.52°C.38°D.26°解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=38°,∴∠BAC=90°﹣∠ABC=52°,∴∠BDC=∠BAC=52°.故选:B.4.(2020•眉山)如图,四边形ABCD的外接圆为⊙O,BC=CD,∠DAC=35°,∠ACD=45°,则∠ADB的度数为()A.55°B.60°C.65°D.70°解:∵BC=CD,∴=,∵∠ABD和∠ACD所对的弧都是,∴∠BAC=∠DAC=35°,∵∠ABD=∠ACD=45°,∴∠ADB=180°﹣∠BAD﹣∠ABD=180°﹣70°﹣45°=65°.故选:C.5.(2020•十堰)如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=()A.2B.4C.D.2解:连接OC,如图,∵∠ADC=30°,∴∠AOC=60°,∵OA⊥BC,∴CE=BE,在Rt△COE中,OE=OC,CE=OE,∵OE=OA﹣AE=OC﹣1,∴OC﹣1=OC,∴OC=2,∴OE=1,∴CE=,∴BC=2CE=2.故选:D.6.(2020•黄石)如图,点A、B、C在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D、E,若∠DCE=40°,则∠ACB的度数为()A.140°B.70°C.110°D.80°解:如图,在优弧AB上取一点P,连接AP,BP,∵CD⊥OA,CE⊥OB,∴∠ODC=∠OEC=90°,∵∠DCE=40°,∴∠AOB=360°﹣90°﹣90°﹣40°=140°,∴∠P=∠AOB=70°,∵A、C、B、P四点共圆,∴∠P+∠ACB=180°,∴∠ACB=180°﹣70°=110°,故选:C.7.(2020•荆门)如图,⊙O中,OC⊥AB,∠APC=28°,则∠BOC的度数为()A.14°B.28°C.42°D.56°解:∵在⊙O中,OC⊥AB,∴=,∵∠APC=28°,∴∠BOC=2∠APC=56°,故选:D.8.(2020•营口)如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是()A.110°B.130°C.140°D.160°解:如图,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠CAB=90°﹣40°=50°,∵∠B+∠ADC=180°,∴∠ADC=180°﹣50°=130°.故选:B.9.(2020•河池)如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=35°.解:如图,连接AD.∵AB是直径,∴∠ADB=90°,∵∠1=∠ADE,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.10.(2020•聊城)如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是60°.解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵四边形OABC为菱形,∴∠B=∠AOC,∴∠D+∠AOC=180°,∵∠AOC=2∠D,∴3∠D=180°,∴∠ADC=60°,故答案为60°.11.(2020•宜宾)如图,A、B、C是⊙O上的三点,若△OBC是等边三角形,则cos∠A=.解:∵△OBC是等边三角形,∴∠BOC=60°,∴∠A=30°,∴cos∠A=cos30°=.故答案为:.12.(2020•随州)如图,点A,B,C在⊙O上,AD是∠BAC的角平分线,若∠BOC=120°,则∠CAD的度数为30°.21教育网解:∵∠BAC=∠BOC=×120°=60°,而AD是∠BAC的角平分线,∴∠CAD=∠BAC=30°.故答案为:30°.13.(2020•宿迁)如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是否是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求弦AB的长.解:(1)直线AC是⊙O的切线,理由如下:如图,连接OA,∵BD为⊙O的直径,∴∠BAD=90°=∠OAB+∠OAD,∵OA=OB,∴∠OAB=∠ABC,又∵∠CAD=∠ABC,∴∠OAB=∠CAD=∠ABC,∴∠OAD+∠CAD=90°=∠OAC,∴AC⊥OA,又∵OA是半径,∴直线AC是⊙O的切线;(2)方法一、过点A作AE⊥BD于E,∵OC2=AC2+AO2,∴(OA+2)2=16+OA2,∴OA=3,∴OC=5,BC=8,=×OA×AC=×OC×AE,∵S△OAC∴AE==,∴OE===,∴BE=BO+OE=,∴AB===.方法二、∵∠CAD=∠ABC,∠C=∠C,∴△ACD∽△BCA,∴=,∴,∴BC=8,AB=2AD,∴BD=6,∵AB2+AD2=BD2,∴5AD2=36,∴AD=,∴AB=2AD=.14.(2020•南京)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D 作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠EAF=∠B,∴∠AEF=∠EAF,∴AF=EF.15.(2020•温州)如图,C,D为⊙O上两点,且在直径AB两侧,连接CD交AB于点E,G是上一点,∠ADC =∠G.(1)求证:∠1=∠2.(2)点C关于DG的对称点为F,连接CF.当点F落在直径AB上时,CF=10,tan∠1=,求⊙O的半径.解:(1)∵∠ADC=∠G,∴=,∵AB为⊙O的直径,∴=,∴∠1=∠2;(2)如图,连接DF,∵=,AB是⊙O的直径,∴AB⊥CD,CE=DE,∴FD=FC=10,∵点C,F关于DG对称,∴DC=DF=10,∴DE=5,∵tan∠1=,∴EB=DE•tan∠1=2,∵∠1=∠2,∴tan∠2=,∴AE==,∴AB=AE+EB=,∴⊙O的半径为.16.(2020•泰州)如图,在⊙O中,点P为的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若⊙O的半径为8,的度数为90°,求线段MN的长.(1)证明:∵AD⊥PC,∴∠EMC=90°,∵点P为的中点,∴,∴∠ADP=∠BCP,∵∠CEM=∠DEN,∴∠DNE=∠EMC=90°=∠DNB,∵,∴∠BDP=∠ADP,∴∠DEN=∠DBN,∴DE=DB,∴EN=BN,∴N为BE的中点;(2)解:连接OA,OB,AB,AC,∵的度数为90°,∴∠AOB=90°,∵OA=OB=8,∴AB=8,由(1)同理得:AM=EM,∵EN=BN,∴MN是△AEB的中位线,∴MN=AB=4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 在半径等于5cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为( ). (A )60°或120° (B )30°或120° (C )60° (D )120° 解:如图, OA =OB =5cm ,AB =53cm .过O 作OC 上AB 于C ,
则AC=
325AB 2
1 cm .∵sin α
= 2
3
5/325OA AC ∵α为锐角,∴α=60°. ∴∠AOB=120°.
当圆周角的顶点在优弧
上时,得∠ADB=60°;当圆周角的顶点在劣弧上时.得
∠AD’B =120°.
∴此弦所对的圆周角为60°或120°.
说明:此题为基础题,求一条弦所对的圆周角.圆周角的顶点可以在这条弦所对的优孤上,也可以这这条弦所对的劣弧上.
例 (河南省,2002)已知:如图,以△ABC 的BC 边为直径的半圆交AB 于D ,交AC 于E ,过E 作EF ⊥BC ,垂足为F ,且BF :FC =5:1,AB=8,AE=2.求EC 的长.
分析:连结BE ,构造直角三角形,并出现典型的双垂直图形,通过解直角三角形解得. 解:如图,连结BE ,则BE ⊥AC , ∴6028AE AB BE 2
2
2
2
2
,
设BF=5x ,BC=6x .
∵EF ⊥BC ,∠EBF=∠CBE ,
∴△BEF ∽△BCE ,∴BC BF BE 2
.即60=5x ·6x ,∵FC>0,∴2x
.
∴26x 6BC ,∵126072BE BC EC 2
2
2
,∴22EC .
说明:①添加辅助线,构造直角三角形;②构成典型的双垂直图形,非常重要.
例 (陕西省,2002)已知:如图,BC 为半圆O 的直径,F 是半圆上异于B 、C 的一点,A 是
的中点,AD ⊥BC 于点D ,BF 交AD 于点E .
(1)求证:BE ·BF=BD ·BC ;
(2)试比较线段BD 与AE 的大小,并说明道理. 分析:(1)连结FC ,证△BDE ∽△BCF 即可;(2)要比较两条线段的大小,通常是把两条线段转移到一个三角形内,利用大角对大边来判断. 证明:(1)连结FC ,则BF ⊥FC . 在△BDE 和△BCF 中,
∵∠BEC=∠EDB=90°,∠EBC=∠EBD ,∴△BDE ∽△BCF .
∴BF
BD BC BE ,即BE ·BF=BD ·BC . 解:(2)AE>BD ,连结AC 、AB ,则∠BAC=90°,∵
=
,∴∠1=∠2.
又∵∠2+∠ABC=90°,∠3+∠ABD=90°,∴∠2=∠3,∴AE=BE . 在Rt △EBD 中,BE>BD ,∴AE>BD .
B
说明:①训练学生添加辅助线;②第(2)小问是教材P102中3题的拓展.
例 (太原市,2002)如图,已知BC 为⊙O 的直径,AD ⊥BC ,垂足为D ,BF 交AD 于E ,且AE=BF . (1)求证:
=
;
(2)如果sin ∠FBC=5
3
,AB 54 ,求AD 的长.
解:(1)连结AC .∵BC 是⊙O 的直径,∴∠BAC=90°, 又AD ⊥BC ,垂足为D ,∴∠1=∠3.
在△AEB 中,AE=BE ,∴∠1=∠2.∴∠2=∠3,
=
.
(2)设DE=3x ,∵AD ⊥BC ,sin ∠FBC=5
3
,∴BE=5x ,BD=4x . ∵AE=BE ,∴AE=5x ,AD=8x .
在Rt △ADB 中,∠ADB=90°,AB 54 ,∴222)54()x 4()x 8( .
解这个方程,得 x=1,∴AD=8.
说明:①此题是教材P102中3题的变形;②训练学生求线段长度的方法:直接求和列方程求解.
典型例题五
例 如图,等腰三角形中,AC AB ,顶角为 40,以其一腰AB 为直径作半圆分别交AC 、BC 于E 、D ,求
的度数.
分析:一般在圆或半圆中要作出一些辅助线构成直角.
本题若连结AD ,则AB 为直径,AD 和BC 互相垂直,再应用等腰三角形三线合一的性质,问题就解决了.
解 连结AD ,AB 为直径, BC AD
又AC AB ,
202
1
BAC BAD ,
40,同理, 40,
1004040180
说明:弧的度数等于它所对的圆心角的度数,也等于它所对的圆周角的度数的2倍.已知中有关于直径的条件时,常添辅助线使之构成直角三角形.
典型例题六
例 (辽宁省试题,2002)已知:如图,AB 是⊙O 的半径,C 是⊙O 上一点,连结AC ,过点C 作直线AB CD 于D (DB AD ),点E 是DB 上任意一点
(点D 、B 除外),直线CE 交⊙O 于点F ,连结AF 与直线CD 交于点G .
(1)求证:AF AG AC 2
;
(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明,若不成立,请说明理由.
(1)证明: 证法一:
延长CG 交⊙O 于H
AB CD ,∴
∴CFA ACG 又FAC CAG , ∴ACG ∽AFC ∴AC
AF AG AC 即AF AG AC 2
证法二:
连结CB
AB 是直径, 90,ADC ACB AB CD
∴Rt CAD ∽Rt BAC ∴ABC ACD 又AFC ABC , ∴AFC ACD 又FAC CAG , ∴ACG ∽AFC ∴
AC
AF
AG AC 即AF AG AC 2。