江苏省苏州市吴中区2016-2017学年九年级(上)期中数学试卷(解析版)
2016~2017学年江苏苏州吴中区初三上学期期末数学试卷(解析)

(1) 求证:是⊙的切线.
答 案 证明见解析.
解 析 连结,如图,
∵是⊙的切线,
∴,
∵,
∴,
∴.
(2)
若,.求⊙的半径和线段的长.
答案 解析
在∴延则,设,中长,. ⊙解, 交的得∵⊙半, ,于径(,为j负i连,a值o接则舍s,,h去,i.)i,z,
2018/12/11
∴,
∵,
∴.
答 案 证明见解析.
解 析 已知方程化为: , ∴, ∵为实数, ∴, ∴方程有两个不相等的实数根.
(2) 试说明,方程的根不可能是.
答 案 证明见解析.
解 析 若方程有一根为,
学生版
教师版
答案版
编辑
则,
这与一个实数的平方根是非负数矛盾,
即原方程的根不可能是.
目录
选择题(本大题共10小题,每小题3分,… 填空题:(本大题共8小题,每小题3分… 解答题(本大题共10小题,共76分)
22. 如图,己知四边形内接于圆,连结,,.
(1) 求证:. 答案 解析
证明见解析.
2018/12/11
∴∵∴∵∴∵,,,,,四边形内接j于ia圆o,
∴.
(2) 若圆的半径为,求的长(结果保留).
答 案 的长为.
解 析 ∵, ∴, 由圆周角定理,得的度数为:, 故, 答:的长为.
C.2018/12/11
D.
解 析 ∵, ∴或, 故选:.
3. 一组数据,,,,的平均数是(
jia)o.
A.
B.
C.
D.
答案 C
解析 . 答:一组数据,,,,的平均数是.
4. 一个扇形的圆心角是,半径是,那么这个扇形的面积是( ).
【初三数学】苏州市九年级数学上期中考试单元检测试卷(含答案解析)

新九年级上学期期中考试数学试题(答案)一、选择题(每小题3分,共30分)1.一元二次方程3x 2-6x -1=0的二次项系数、一次项系数、常数项分别是( ) A .3,6,1 B .3,6,-1 C .3,-6,1 D .3,-6,-12.用配方法解方程x 2-4x +2=0,配方正确的是( ) A .(x -2)2=2 B .(x +2)2=2C .(x -2)2=-2D . (x -2)2=63.下列手机手势解锁图案中,是中心对称图形的是( )A .B .C .D . 4.已知x 1,x 2是一元二次方程x 2-6x -5=0的两个根,则x 1+x 2的值是( ) A .6 B .-6 C .5 D .-5 5.如图,⊙O 的直径为10,弦AB =8,P 是AB 上一个动点,则OP 的最小值为( )A .2B .3C .4D .56.某市“赏花节”观赏人数逐年增加,据有关部门统计,2016年约为20万人次,2018年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20C .20(1+x )2=28.8D .20+20(1+2x )+ 20(1+x )2=28.87.如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ′,点A 在B ′C 上,则∠B ′的大小为( ) A .42° B .48° C .52° D .58° 8.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =35°,则∠CAB 的度数为( ) A .35°B .45°C .55°D .65°9.抛物线y =ax 2-2ax -3a 上有A (-0.5,y 1),B (2,y 2)和C (3,y 3)三点,若抛物线与y 轴的交点在正半轴上,则y 1,y 2,y 3的大小关系为( ) A .y 3<y 1<y 2 B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 1<y 2<y 3第5题图第7题图ABCA 'B 'A第8题图10.某学习小组在研究函数y =16x 3-2x 的图象和性质时,已列表、描点并画出了图象的一部分,则方程16x 3-2x =1实数根的个数为( )A .1B .2C .3D .4二、填空题(每小题3分,共18分)11.一元二次方程x 2-9=0的解是 .12.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有 个班级参赛.13.抛物线y =12x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是 .14.飞机着陆后滑行的距离s (m )与滑行时间t (s )的函数关系式为s =60t-1.5t 2,飞机着陆后滑行 m 才能停下来.15.如图,将⊙O沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AB 上的一动点,则∠APB 的大小是 度.16.如图,⊙O 的半径是1,AB 为⊙O 的弦,将弦AB 绕点A 逆时针旋转120°,得到AC ,连OC ,则OC 的最大值为 .第10题图第16题图第15题图三、解答题(本大题共8小题,共72分)17.(本题8分)解方程x2-3x+1=018.(本题8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)直接写出方程ax2+bx+c=2的根;(2)直接写出不等式ax2+bx+c<0的解集.19.(本题8分) 关于x的一元二次方程x2+(2m-1)x+m2=0有实数根. (1)求m的取值范围;(2)若两根为x1、x2且x12+x22=7,求m的值.20.(本题8分) 如图,△ABC是等边三角形.(1)作△ABC的外接圆;(2)在劣弧BC上取点D,分别连接BD,CD,并将△ABD绕A点逆时针旋转60°;(3)若AD=4,直接写出四边形ABDC的面积.21.(本题8分) 如图,AB为⊙O的直径,且AB=10,C为⊙O上一点,AC平分∠DAB交⊙O于点E,AE=6,,AD⊥CD于D,F为半圆弧AB的中点,EF交AC于点G.(1)求CD的长;(2)求EG的长.第18题图第20题图AB C第21题图A B22.(本题10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和100米长的木栏围成一个矩形菜园ABC D.(1)如图1,已知矩形菜园的一边靠墙,且AD≤MN,设AD=x米.①若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;②求矩形菜园ABCD面积的最大值;(2)如图2,若a=20,则旧墙和木栏能围成的矩形菜园ABCD面积的最大值是米2.23.(本题10分) 如图,在等腰Rt△ABC中,∠ACB=90°,点P是△ABC内一点,连接PA,PB,PC,且PA,设∠APB=α,∠CPB=β.(1)如图1,若∠ACP=45°,将△PBC绕点C顺时针旋转90°至△DAC,连结新九年级(上)数学期中考试试题(含答案)(1)一、选择题(本大题共10小题,共30.0分)1.下列运算中,结果正确的是()A. B. C. D.2.若是关于x.y的方程2x-y+2a=0的一个解,则常数a为()A. 1B. 2C. 3D. 43.下列由左到右边的变形中,是因式分解的是()A. B.C. D.4.如图,直线a∥b,∠1=120°,则∠2的度数是()A.B.C.D. AB CD M NNMDCBA第22题图2第22题图15.已知a m=6,a n=3,则a2m-3n的值为()A. B. C. 2 D. 96.下列代数式变形中,是因式分解的是()A. B.C. D.7.已知4y2+my+9是完全平方式,则m为()A. 6B.C.D. 128.803-80能被()整除.A. 76B. 78C. 79D. 829.如果x=3m+1,y=2+9m,那么用x的代数式表示y为()A. B. C. D.10.已知关于x,y的方程组,则下列结论中正确的是()①当a=5时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a使得x=y;④若22a-3y=27,则a=2.A. B. C. D.二、填空题(本大题共6小题,共24.0分)11.在方程4x-2y=7中,如果用含有x的式子表示y,则y=______.12.将方程3x+2y=7变形成用含y的代数式表示x,得到______.13.若要(a-1)a-4=1成立,则a=______.14.如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为______°.15.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(2a+b),宽为(a+2b)的大长方形,则需要C类卡片______张.16.若x+y+z=2,x2-(y+z)2=8时,x-y-z=______.三、计算题(本大题共2小题,共20.0分)17.计算:(1)(8a3b-5a2b2)÷4ab(2)(2x+y)2-(2x+3y)(2x-3y)18.我县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图1所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图2的竖式与横式两种无盖礼品盒.①两种裁法共产生A型板材______张,B型板材______张;y个,根据题意完成表格:B型(张)x③做成的竖式和横式两种无盖礼品盒总数最多是______个;此时,横式无盖礼品盒可以做______个.(在横线上直接写出答案,无需书写过程)四、解答题(本大题共5小题,共36.0分)19.化简:(1)(2a2)4÷3a2(2)(1+a)(1-a)+a(a-3)20.先化简,再求值:(2x+3)(2x-3)-(x-2)2-3x(x-1),其中x=2.21.已知a-b=7,ab=-12.(1)求a2b-ab2的值;(2)求a2+b2的值;(3)求a+b的值.22.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数.23.已知:如图,AB∥CD,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.(1)请问BD和CE是否平行?请你说明理由.(2)AC和BD的位置关系怎样?请说明判断的理由.答案和解析1.【答案】A【解析】解:A、x3•x3=x6,本选项正确;B、3x2+2x2=5x2,本选项错误;C、(x2)3=x6,本选项错误;D、(x+y)2=x2+2xy+y2,本选项错误,故选:A.A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方,熟练掌握公式及法则是解本题的关键.2.【答案】B【解析】解:将x=-1,y=2代入方程2x-y+2a=0得:-2-2+2a=0,解得:a=2.故选:B.将x=-1,y=2代入方程中计算,即可求出a的值.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.【答案】D【解析】解:A、(x+2)(x-2)=x2-4,是多项式乘法,故此选项错误;B、x2-1=(x+1)(x-1),故此选项错误;C、x2-4+3x=(x+4)(x-1),故此选项错误;D、x2-4=(x+2)(x-2),正确.故选:D.直接利用因式分解的意义分别判断得出答案.此题主要考查了因式分解的意义,正确把握定义是解题关键.4.【答案】C【解析】解:∵a∥b∴∠3=∠2,∵∠3=180°-∠1,∠1=120°,∴∠2=∠3=180°-120°=60°,故选C.如图根据平行线的性质可以∠2=∠3,根据邻补角的定义求出∠3即可.本题考查平行线的性质,利用两直线平行同位角相等是解题的关键,记住平行线的性质,注意灵活应用,属于中考常考题型.5.【答案】A【解析】解:∵a m=6,a n=3,∴原式=(a m)2÷(a n)3=36÷27=,故选:A.原式利用同底数幂的除法法则及幂的乘方运算法则变形,将已知等式代入计算即可求出值.此题考查了同底数幂的除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.6.【答案】D【解析】解:A、是整式的乘法,故A错误;B、左边不等于右边,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.本题考查了因式分解的意义,把一个多项式转化成几个整式乘积的形式是解题关键.7.【答案】C【解析】解:∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选:C.原式利用完全平方公式的结构特征求出m的值即可.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.8.【答案】C【解析】解:∵803-80=80×(802-1)=80×(80+1)×(80-1)=80×81×79.∴803-80能被79整除.故选:C.先提取公因式80,再根据平方查公式进行二次分解,即可得803-80=80×81×79,继而求得答案.本题考查了提公因式法,公式法分解因式.注意提取公因式后,利用平方差公式进行二次分解是关键.9.【答案】C【解析】解:x=3m+1,y=2+9m,3m=x-1,y=2+(3m)2,y=(x-1)2+2,故选:C.根据移项,可得3m的形式,根据幂的运算,把3m代入,可得答案.本题考查了幂的乘方与积的乘方,先化成要求的形式,把3m代入得出答案.10.【答案】D【解析】解:把a=5代入方程组得:,解得:,本选项错误;由x与y互为相反数,得到x+y=0,即y=-x,代入方程组得:,解得:a=20,本选项正确;若x=y,则有,可得a=a-5,矛盾,故不存在一个实数a使得x=y,本选项正确;方程组解得:,由题意得:2a-3y=7,把x=25-a,y=15-a代入得:2a-45+3a=7,解得:a=,本选项错误,则正确的选项有,故选:D.把a=5代入方程组求出解,即可做出判断;根据题意得到x+y=0,代入方程组求出a的值,即可做出判断;假如x=y,得到a无解,本选项正确;根据题中等式得到2a-3y=7,代入方程组求出a的值,即可做出判断.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.11.【答案】【解析】解:4x-2y=7,解得:y=.故答案为:将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.12.【答案】x=【解析】解:由题意可知:x=故答案为:x=根据等式的性质即可求出答案.本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.13.【答案】4,2,0【解析】解:a-4=0,即a=4时,(a-1)a-4=1,当a-1=1,即a=2时,(a-1)a-4=1.当a-1=-1,即a=0时,(a-1)a-4=1故a=4,2,0.故答案为:4,2,0.根据任何非0的数的0次幂等于1,以及1的任何次幂等于1、-1的偶次幂等于1即可求解.本题考查了整数指数幂的意义,正确进行讨论是关键.14.【答案】25【解析】解:∵∠B=55°,∠C=100°,∴∠A=180°-∠B-∠C=180°-55°-100°=25°,∵△ABC平移得到△A′B′C′,∴AB∥A′B′,∴∠AB′A′=∠A=25°.故答案为:25.根据三角形的内角和定理求出∠A,再根据平移的性质可得AB∥A′B′,然后根据两直线平行,内错角相等可得∠AB′A′=∠A.本题考查了平移的性质,三角形的内角和定理,平行线的性质,熟记平移的性质得到AB∥A′B′是解题的关键.15.【答案】5【解析】解:长方形的面积=(2a+b)(a+2b)=2a2+5ab+b2,所以要拼成一个长为(2a+b),宽为(a+2b)的大长方形,则需要A类卡片2张,B类卡片1张,C类卡片5张.故答案为5.计算长方形的面积得到(2a+b)(a+2b),再利用多项式乘多项式展开后合并,然后确定ab的系数即可得到需要C类卡片的张数.本题考查了多项式乘多项式相乘:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.16.【答案】4【解析】解:∵x2-(y+z)2=8,∴(x-y-z)(x+y+z)=8,∵x+y+z=2,∴x-y-z=8÷2=4,故答案为:4.首先把x2-(y+z)2=8的左边分解因式,再把x+y+z=2代入即可得到答案.此题主要考查了因式分解的应用,关键是熟练掌握平方差公式分解因式.平方差公式:a2-b2=(a+b)(a-b).17.【答案】解:(1)原式=2a2-ab;(2)原式=4x2+4xy+y2-4x2+9y2=10y2+4xy.【解析】(1)原式利用多项式除以单项式法则计算即可求出值;(2)原式利用完全平方公式,以及平方差公式计算,去括号合并即可得到结果.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】64 38 20 16或17或18【解析】解:(1)由题意得:,解得:,答:图甲中a与b的值分别为:60、40.(2)由图示裁法一产生A型板材为:2×30=60,裁法二产生A型板材为:1×4=4,所以两种裁法共产生A型板材为60+4=64(张),由图示裁法一产生B型板材为:1×30=30,裁法二产生A型板材为,2×4=8,所以两种裁法共产生B型板材为30+8=38(张),故答案为:64,38.由已知和图示得:横式无盖礼品盒的y个,每个礼品盒用2张B型板材,所以用B型板材2y张.由上表可知横式无盖款式共5y个面,用A型3y张,则B型需要2y张.则做两款盒子共需要A型4x+3y张,B型x+2y张.则4x+3y≤64;x+2y≤38.两式相加得5x+5y≤102.则x+y≤20.4.所以最多做20个.两式相减得3x+y≤26.则2x≤5.6,解得x≤2.8.则y≤18.则横式可做16,17或18个.故答案为:20,16或17或18.(1)由图示列出关于a、b的二元一次方程组求解.(2)根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数,同样由图示完成表格,并完成计算.本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a、b的值,再是根据图示解答.19.【答案】解:(1)原式=24a8÷3a2=.(2)原式=1-a2+a2-3a=1-3a.【解析】(1)根据单项式的幂的乘方法则和除法法则进行计算.(2)根据多项式的乘法法则以及单项式乘多项式的法则进行计算.本题考查单项式的乘方法则、单项式除以单项式的法则、乘法公式等知识,正确运用法则是解题的关键.20.【答案】解:(2x+3)(2x-3)-(x-2)2-3x(x-1)=4x2-9-x2+4x-4-3x2+3x=7x-13,当x=2时,原式=7×2-13=1.【解析】利用平方差及完全平方公式化简,再把x=2代入求解即可.本题主要考查了整式的化简求值,解题的关键是正确的化简.21.【答案】解:(1)∵a-b=7,ab=-12,∴a2b-ab2=ab(a-b)=-12×7=-84;(2)∵a-b=7,ab=-12,∴(a-b)2=49,∴a2+b2-2ab=49,∴a2+b2=25;(3)∵a2+b2=25,∴(a+b)2=25+2ab=25-24=1,∴a+b=±1.【解析】(1)直接提取公因式ab,进而分解因式得出答案;(2)直接利用完全平方公式进而求出答案;(3)直接利用(2)中所求,结合完全平方公式求出答案.此题主要考查了完全平方公式以及提取公因式法分解因式,正确应用完全平方公式是解题关键.22.【答案】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°.【解析】由平行线的性质知∠DEF=∠EFB=20°,进而得到图b 中∠GFC=140°,依据图c 中的∠CFE=∠GFC-∠EFG 进行计算.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性新九年级上册数学期中考试试题(答案)一、选择题(每小题3分,共30分)1.下列四个图形中是中心对称图形的为(A )2.方程2x 2=3x 的解为(D )A .x =0B .x =32C .x =-32D .x 1=0,x 2=323.(2018·岳阳)抛物线y =3(x -2)2+5的顶点坐标是(C )A .(-2,5)B .(-2,-5)C .(2,5)D .(2,-5)4.(2018·淮安)若关于x 的一元二次方程x 2-2x -k +1=0有两个相等的实数根,则k 的值是(B )A .-1B .0C .1D .25.(2018·成都)关于二次函数y =2x 2+4x -1,下列说法正确的是(D )A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-36.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD.下列结论一定正确的是(C )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC,第6题图) ,第9题图),第10题图)7.(2018·贵港)已知α,β是一元二次方程x 2+x -2=0的两个实数根,则α+β-αβ的值是(B )A .3B .1C .-1D .-38.(2018·赤峰)2017~2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为(B )A .12x(x -1)=380B .x(x -1)=380C .12x(x +1)=380 D .x(x +1)=380 9.如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是(C )A . 3 cm 2B .32 3 cm 2C .92 3 cm 2D .2723 cm 2 10.(2018·贵阳)已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是(D )A .-254<m <3B .-254<m <2 C .-2<m <3 D .-6<m <-2 二、填空题(每小题3分,共24分)11.已知x =1是关于x 的方程ax 2-2x +3=0的一个根,则a =-1.12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x +21=0的根,则三角形的周长为16.13.用一条长40 cm 的绳子围成一个面积为64 cm 2的矩形.设矩形的一边长为x cm ,则可列方程为x(20-x)=64.14.(2018·孝感)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是x 1=-2,x 2=1.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.如图,在△ABC 中,AB =4,BC =7,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为3.16.(2018·内江)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为1.17.(2018·沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =150m 时,矩形土地ABCD 的面积最大.18.如图是抛物线y 1=ax 2+bx +c(a ≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx +n(m ≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②方程ax 2+bx +c =3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x <4时,有y 2>y 1;⑤x(ax +b)≤a +b ,其中正确的结论是②⑤.(只填写序号) 三、解答题(共66分)19.(6分)用适当的方法解下列方程.(1)(2x +3)2-16=0; (2)2x 2=3(2x +1).(1)x 1=12,x 2=-72 解:(2)x 1=3+152,x 2=3-15220.(6分)已知2-5是一元二次方程x 2-4x +c =0的一个根,求它的另一个根及c 的值. 设方程的另一根为t ,则2-5+t =4,(2-5)t =c ,解得 t =2+ 5. c =-1.∴它的另一个根是2+5,c 的值是121.(6分)已知抛物线y =ax 2+bx +c ,当x =-1时,y =-22;当x =0时,y =-8;当x =2时,y =8.(1)求抛物线解析式;(2)判断点(-2,-40)是否在该抛物线上?说明理由.(1)将(-1,-22),(0,-8),(2,8)代入抛物线,得⎩⎨⎧-22=a -b +c ,-8=c ,8=4a +2b +c ,解得⎩⎨⎧a =-2,b =12,c =-8,所以,抛物线解析式:y =-2x 2+12x -8 (2)把x =-2代入抛物线解析式,则有y =-40,所以点(-2,-40)在抛物线上22.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.已知△ABC.(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1C 1;(只画出图形)(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2(只画出图形),写出B 2和C 2的坐标.(1)△A 1B 1C 1如图所示 (2)△A 2B 2C 2如图所示,B 2(4,-1),C 2(1,-2)23.(8分)关于x 的一元二次方程x 2+2x +2m =0有两个不相等的实数根.(1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,且x 12+x 22=8,求m 的值.(1)∵一元二次方程x 2+2x +2m =0有两个不相等的实数根,∴Δ=22-4×1×2m =4-8m >0,解得m <12.∴m 的取值范围为m <12(2)∵x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,∴x 1+x 2=-2,x 1·x 2=2m ,∴x 12+x 22=(x 1+x 2)2-2x 1·x 2=4-4m =8,解得m =-1.当m =-1时,Δ=4-8m =12>0.∴m 的值为-124.(10分)(2018·遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.新九年级上册数学期中考试试题(答案)一、选择题(每小题3分,共30分)1.下列四个图形中是中心对称图形的为(A )2.方程2x 2=3x 的解为(D )A .x =0B .x =32C .x =-32D .x 1=0,x 2=323.(2018·岳阳)抛物线y =3(x -2)2+5的顶点坐标是(C )A .(-2,5)B .(-2,-5)C .(2,5)D .(2,-5)4.(2018·淮安)若关于x 的一元二次方程x 2-2x -k +1=0有两个相等的实数根,则k 的值是(B )A .-1B .0C .1D .25.(2018·成都)关于二次函数y =2x 2+4x -1,下列说法正确的是(D )A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-36.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD.下列结论一定正确的是(C )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC ,第6题图) ,第9题图),第10题图)7.(2018·贵港)已知α,β是一元二次方程x 2+x -2=0的两个实数根,则α+β-αβ的值是(B )A .3B .1C .-1D .-38.(2018·赤峰)2017~2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为(B )A .12x(x -1)=380B .x(x -1)=380C .12x(x +1)=380 D .x(x +1)=380 9.如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是(C )A . 3 cm 2B .32 3 cm 2C .92 3 cm 2D .2723 cm 2 10.(2018·贵阳)已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是(D )A .-254<m <3B .-254<m <2 C .-2<m <3 D .-6<m <-2 二、填空题(每小题3分,共24分)11.已知x =1是关于x 的方程ax 2-2x +3=0的一个根,则a =-1.12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x +21=0的根,则三角形的周长为16.13.用一条长40 cm 的绳子围成一个面积为64 cm 2的矩形.设矩形的一边长为x cm ,则可列方程为x(20-x)=64.14.(2018·孝感)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是x 1=-2,x 2=1.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.如图,在△ABC 中,AB =4,BC =7,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为3.16.(2018·内江)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为1.17.(2018·沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =150m 时,矩形土地ABCD 的面积最大.18.如图是抛物线y 1=ax 2+bx +c(a ≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx +n(m ≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②方程ax 2+bx +c =3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x <4时,有y 2>y 1;⑤x(ax +b)≤a +b ,其中正确的结论是②⑤.(只填写序号)三、解答题(共66分)19.(6分)用适当的方法解下列方程.(1)(2x +3)2-16=0; (2)2x 2=3(2x +1).(1)x 1=12,x 2=-72 解:(2)x 1=3+152,x 2=3-15220.(6分)已知2-5是一元二次方程x 2-4x +c =0的一个根,求它的另一个根及c 的值. 设方程的另一根为t ,则2-5+t =4,(2-5)t =c ,解得 t =2+ 5. c =-1.∴它的另一个根是2+5,c 的值是121.(6分)已知抛物线y =ax 2+bx +c ,当x =-1时,y =-22;当x =0时,y =-8;当x =2时,y =8.(1)求抛物线解析式;(2)判断点(-2,-40)是否在该抛物线上?说明理由.(1)将(-1,-22),(0,-8),(2,8)代入抛物线,得⎩⎨⎧-22=a -b +c ,-8=c ,8=4a +2b +c ,解得⎩⎨⎧a =-2,b =12,c =-8,所以,抛物线解析式:y =-2x 2+12x -8 (2)把x =-2代入抛物线解析式,则有y =-40,所以点(-2,-40)在抛物线上22.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.已知△ABC.(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1C 1;(只画出图形)(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2(只画出图形),写出B 2和C 2的坐标.(1)△A 1B 1C 1如图所示 (2)△A 2B 2C 2如图所示,B 2(4,-1),C 2(1,-2)23.(8分)关于x 的一元二次方程x 2+2x +2m =0有两个不相等的实数根.(1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,且x 12+x 22=8,求m 的值.(1)∵一元二次方程x 2+2x +2m =0有两个不相等的实数根,∴Δ=22-4×1×2m =4-8m >0,解得m <12.∴m 的取值范围为m <12(2)∵x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,∴x 1+x 2=-2,x 1·x 2=2m ,∴x 12+x 22=(x 1+x 2)2-2x 1·x 2=4-4m =8,解得m =-1.当m =-1时,Δ=4-8m =12>0.∴m 的值为-124.(10分)(2018·遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.新九年级上册数学期中考试试题(答案)一、选择题(每小题3分,共30分)1.下列四个图形中是中心对称图形的为(A )2.方程2x 2=3x 的解为(D )A .x =0B .x =32C .x =-32D .x 1=0,x 2=323.(2018·岳阳)抛物线y =3(x -2)2+5的顶点坐标是(C )A .(-2,5)B .(-2,-5)C .(2,5)D .(2,-5)4.(2018·淮安)若关于x 的一元二次方程x 2-2x -k +1=0有两个相等的实数根,则k 的值是(B )A .-1B .0C .1D .25.(2018·成都)关于二次函数y =2x 2+4x -1,下列说法正确的是(D )A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-36.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD.下列结论一定正确的是(C )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC,第6题图) ,第9题图),第10题图)7.(2018·贵港)已知α,β是一元二次方程x 2+x -2=0的两个实数根,则α+β-αβ的值是(B )A .3B .1C .-1D .-38.(2018·赤峰)2017~2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为(B )A .12x(x -1)=380B .x(x -1)=380C .12x(x +1)=380 D .x(x +1)=380 9.如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是(C )A . 3 cm 2B .32 3 cm 2C .92 3 cm 2D .2723 cm 2 10.(2018·贵阳)已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是(D )A .-254<m <3B .-254<m <2 C .-2<m <3 D .-6<m <-2 二、填空题(每小题3分,共24分)11.已知x =1是关于x 的方程ax 2-2x +3=0的一个根,则a =-1.12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x +21=0的根,则三角形的周长为16.13.用一条长40 cm 的绳子围成一个面积为64 cm 2的矩形.设矩形的一边长为x cm ,则可列方程为x(20-x)=64.14.(2018·孝感)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是x 1=-2,x 2=1.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.如图,在△ABC 中,AB =4,BC =7,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为3.16.(2018·内江)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为1.17.(2018·沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =150m 时,矩形土地ABCD 的面积最大.18.如图是抛物线y 1=ax 2+bx +c(a ≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx +n(m ≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②方程ax 2+bx +c =3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x <4时,有y 2>y 1;⑤x(ax +b)≤a +b ,其中正确的结论是②⑤.(只填写序号)三、解答题(共66分)19.(6分)用适当的方法解下列方程.(1)(2x +3)2-16=0; (2)2x 2=3(2x +1).(1)x 1=12,x 2=-72 解:(2)x 1=3+152,x 2=3-15220.(6分)已知2-5是一元二次方程x 2-4x +c =0的一个根,求它的另一个根及c 的值. 设方程的另一根为t ,则2-5+t =4,(2-5)t =c ,解得 t =2+ 5. c =-1.∴它的另一个根是2+5,c 的值是121.(6分)已知抛物线y =ax 2+bx +c ,当x =-1时,y =-22;当x =0时,y =-8;当x =2时,y =8.(1)求抛物线解析式;(2)判断点(-2,-40)是否在该抛物线上?说明理由.(1)将(-1,-22),(0,-8),(2,8)代入抛物线,得⎩⎨⎧-22=a -b +c ,-8=c ,8=4a +2b +c ,解得⎩⎨⎧a =-2,b =12,c =-8,所以,抛物线解析式:y =-2x 2+12x -8 (2)把x =-2代入抛物线解析式,则有y =-40,所以点(-2,-40)在抛物线上22.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.已知△ABC.(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1C 1;(只画出图形)(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2(只画出图形),写出B 2和C 2的坐标.(1)△A 1B 1C 1如图所示 (2)△A 2B 2C 2如图所示,B 2(4,-1),C 2(1,-2)23.(8分)关于x 的一元二次方程x 2+2x +2m =0有两个不相等的实数根.(1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,且x 12+x 22=8,求m 的值.(1)∵一元二次方程x 2+2x +2m =0有两个不相等的实数根,∴Δ=22-4×1×2m =4-8m >0,解得m <12.∴m 的取值范围为m <12(2)∵x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,∴x 1+x 2=-2,x 1·x 2=2m ,∴x 12+x 22=(x 1+x 2)2-2x 1·x 2=4-4m =8,解得m =-1.当m =-1时,Δ=4-8m =12>0.∴m 的值为-124.(10分)(2018·遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.。
江苏省苏州市吴中区16-17学九级(上)期中数学试卷(解析版)

(3)如果在每班参加复赛的选手中分别选出 2 人参加决赛,你认为哪个班的实力更强一些,说明理由 .
平均分 (分 ) 中位数 (分) 众数(分) 方差(分 2)
八 (1)
85
85
70
八 (2)
85
80
分数
100 95 90 85 80 75 70
1号
2号 3号
八 (1)班 八 (2)班 4 号 5 号 选手编号
A . 12 13
B. 5 13
C. 5 12
D. 13 5
A
C
2.直角坐标系中,以坐标原点 O 为圆心, 5 为半径画圆,点 P 的坐标是 (4, 3),则点 P 与⊙ O 的位
置关系是
A .点 P 在⊙ O 上
B.点 P 在⊙ O 内
3.已知方程 kx2 — x+1=0 有两个不等的实数根,则
1 A . k> 4
7.若 1- tanB= 0,则锐角∠ B 的度数是
°.
8.一元二次方 程 x(x- 2) =( x- 2)的根为
.
9.已知一个圆锥形纸帽的母线长为 6,底面圆的半径为 2,则纸帽的侧面积为 __________ .
全国中小学教育资源门户网站
| 天量课件、教案、试卷、学案 免费下载 |
A
A .33, 7
B. 32, 4
C. 30, 4
D . 30, 7
5.如图, AB 是⊙ O 的直径, PA 是⊙ O 的切线, 点 C 在⊙ O 上, AC⊥ OP,
O
P
BC= 2,AC= 4,则 PA 长为
A . 3.5
B. 4
C. 2 5
B
C
D. 2 3
苏教版九年级(上)期中数学试卷参考答案与试题解析

九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在下表相应位置上)1.(3分)使有意义的x的取值范围是()B≥2.(3分)(2006•无锡)设一元二次方程x2﹣2x﹣4=0的两个实数为x1和x2,则下列结论==2=3.(3分)(2010•随州)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()B=3x==5.(3分)点P到⊙O的圆心O的距离为d,⊙O的半径为r,d与r的值是一元二次方程x26.(3分)当b<0时,化简等于()∴∴7.(3分)如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,tan∠OBM=,则AB的长是()=,AB8.(3分)如图,一种电子游戏,电子屏幕上有一正方形ABCD,点P沿直线AB从右向左移动,当出现:点P与正方形四个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有()二、填空题(每题3分,共30分)9.(3分)=2..10.(3分)(2012•历下区二模)己知α是锐角,且,则α=45°.进行解答即可.11.(3分)小明沿着坡度为1:2的山坡向上走了100m,则他升高了20m.B==B==20mm12.(3分)(2008•濮阳)某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线AC=20cm.13.(3分)最简二次根式与是同类二次根式,则xy=9.14.(3分)关于x的方程mx2﹣(2m﹣1)x+m﹣2=0有两个实数根,则m的取值范围是m且m≠0.﹣﹣m15.(3分)若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm、深约为2 cm的小坑,则该铅球的直径约为14.5cm.(16.(3分)如图,⊙O的直径AB与弦CD相交于点E,若AE=7,BE=1,cos∠AED=,则CD=2.AB=×AED=,,=CD=2DF=2.17.(3分)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为 2.3.EF=18.(3分)如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则sin∠APD的值是.,BE==,=,BE==BE=,=ABF==APD=故答案为:三、解答题19.(8分)计算:.(﹣×﹣20.(8分)先化简,再求值:(),其中a满足a2+a﹣1=0.÷•21.(8分)关于x的一元二次方程x2﹣x+p﹣1=0有两个实数根x1、x2.(1)求p的取值范围;(2)若,求p的值.≤,22.(8分)如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.23.(10分)(2006•上海)已知:如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sinB=.求:(1)线段DC的长;(2)tan∠EDC的值.,∴EDC=tanC=.24.(10分)国家为了加强对房地产市场的宏观调控,抑制房价的过快上涨,规定购买新房满5年后才可上市转卖,对二手房买卖征收差价的x%的附加税.某城市在不征收附加税时,每年可成交10万套二手房;征收附加税后,每年减少0.1x万套二手房交易.现已知每套二手房买卖的平均差价为10万元.如果要使每年征收的附加税金为16亿元,并且要使二手房市场保持一定的活力,每年二手房交易量不低于6万套.问:二手房交易附加税的税率应确定为多少?25.(10分)(2011•宁波)如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.BE=26.(10分)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(下面两小题的结果都精确到0.1米,参考数据:≈1.732)(1)若修建的斜坡BE的坡度为1:0.8,则平台DE的长为14.0米;(2)斜坡前的池塘内有一座建筑物GH,小明在平台E处测得建筑物顶部H的仰角(即∠HEM)为30°,测得建筑物顶部H在池塘中倒影H′的俯角为45°(即∠H′EM),测得点B、C、A、G、H、H′在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,求建筑物GH的高和AG的长.×=15×=15∴==,=1∴==×=3027.(12分)(2011•盘锦)已知菱形ABCD的边长为5,∠DAB=60°.将菱形ABCD绕着A 逆时针旋转得到菱形AEFG,设∠EAB=α,且0°<α<90°,连接DG、BE、CE、CF.(1)如图(1),求证:△AGD≌△AEB;(2)当α=60°时,在图(2)中画出图形并求出线段CF的长;(3)若∠CEF=90°,在图(3)中画出图形并求出△CEF的面积.CDH=CF×=.AC=2AO=5,=AC=5=ME=,(﹣•EF=28.(12分)如图,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,速度为2cm/s,同时点Q由A出发沿AC方向向点C匀速运动,速度为1cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤5).解答下列问题:(1)当t为何值时,△APQ是直角三角形?(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由;(3)把△APQ沿AB(或沿AC)翻折,翻折前后的两个三角形所组成的四边形能不能是菱形?若能,求出此时菱形的面积;若不能,请说明理由.APAE==,∴=t=,=,∴=t=,t=或××=t•×AD=AP=(=,∴=t=,A=×=×=×××=;AQ=,=,∴=t=,×)×=×,×××=;或.。
【精品】2017年江苏省苏州市吴江区九年级上学期期中数学试卷带解析答案

2016-2017学年江苏省苏州市吴江区九年级(上)期中数学试卷一、选择题:(本大题共有10小题,每小题3分,共30分.)1.(3分)下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个 B.3个 C.4个 D.5个2.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α+β=()A.2 B.﹣2 C.3 D.﹣33.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.4.(3分)(x2+y2)2﹣4(x2+y2)﹣5=0,则x2+y2的值为()A.5 B.﹣1 C.5或﹣1 D.无法确定5.(3分)某商品两次价格上调后,单位价格从4元变为4.84元,则平均每次调价的百分率是()A.9% B.10% C.11% D.12%6.(3分)如图,▱ABCD的一边AB为直径的⊙O过点C,若∠AOC=70°,则∠BAD 等于()A.145°B.140°C.135° D.130°7.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径是()A.cm B.cm C.cm D.cm8.(3分)等边三角形的内切圆半径、外接圆半径和一边上的高的比为()A.1::B.1::2 C.1:2:3 D.1:2:9.(3分)如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15°B.20°C.25°D.30°10.(3分)如图,以AB为直径的半圆绕A点,逆时针旋转60°,点B旋转到点B′的位置,已知AB=6,则图中阴影部分的面积为()A.6πB.5πC.4πD.3π二、填空题:(本大题共10小题,每小题3分,共30分.)11.(3分)方程x2=3x的根是.12.(3分)已知m,n是方程x2+2x﹣5=0的两个实数根,则m2+3mn+n2=.13.(3分)已知关于x的一元二次方程m2x2+(2m﹣1)x+1=0有两个不相等的实数根,则m的取值范围是.14.(3分)甲、乙两同学解方程x2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和﹣10,则原方程为.15.(3分)已知⊙O的周长为12π,若点P到点O的距离为5,则点P在⊙O.16.(3分)已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为.17.(3分)如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=.18.(3分)如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=.19.(3分)如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=°.20.(3分)如图,海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°.为了避免触礁,轮船P与A、B的张角∠APB的最大值为.三、解答题:(本大题共8小题,共70分,)21.(20分)解方程(1)x2﹣6x﹣18=0(配方法)(2)3(x﹣2)2=x(x﹣2)(3)x2+2x﹣5=0(4)(2x﹣3)2﹣2(2x﹣3)﹣3=0.22.(6分)关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为正,求实数m的取值范围?23.(7分)已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.24.(7分)某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,那么每件童装应降价多少元?25.(7分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.26.(7分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.27.(8分)已知:如图,AB是⊙O的直径,点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.(1)试说明:DE=BF;(2)若∠DAB=60°,AB=6,求△ACD的面积.28.(8分)如图,△ABC中,∠C=90°,AC=4,BC=3.半径为1的圆的圆心P以1个单位/S的速度由点A沿AC方向在AC上移动,设移动时间为t(单位:s).(1)当t为何值时,⊙P与AB相切;(2)作PD⊥AC交AB于点D,如果⊙P和线段BC交于点E.求当t为何值时,四边形PDBE为平行四边形.2016-2017学年江苏省苏州市吴江区九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共有10小题,每小题3分,共30分.)1.(3分)下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个 B.3个 C.4个 D.5个【解答】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选:B.2.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α+β=()A.2 B.﹣2 C.3 D.﹣3【解答】解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2.故选:B.3.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,解得:a=﹣1.故选:B.4.(3分)(x2+y2)2﹣4(x2+y2)﹣5=0,则x2+y2的值为()A.5 B.﹣1 C.5或﹣1 D.无法确定【解答】解:设=tx2+y2,则原方程可化为:(t﹣5)(t+1)=0,所以t=5或t=﹣1(舍去),即x2+y2=5.故选:A.5.(3分)某商品两次价格上调后,单位价格从4元变为4.84元,则平均每次调价的百分率是()A.9% B.10% C.11% D.12%【解答】解:设平均每次调价的百分率为x,依题意有4(1+x)2=4.84,解得x1=10%,x2=﹣2.1(不合题意,舍去).故平均每次调价的百分率是10%.故选:B.6.(3分)如图,▱ABCD的一边AB为直径的⊙O过点C,若∠AOC=70°,则∠BAD 等于()A.145°B.140°C.135° D.130°【解答】解:∵∠AOC=70°,∴∠B=∠AOC=35°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ABC+∠BAD=180°,∴∠BAD=145°,故选:A.7.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径是()A.cm B.cm C.cm D.cm【解答】解:设AP=x,则PB=5x,那么⊙O的半径是(x+5x)=3x∵弦CD⊥AB于点P,CD=10cm∴PC=PD=CD=×10=5cm由相交弦定理得CP•PD=AP•PB即5×5=x•5x解得x=或x=﹣(舍去)故⊙O的半径是3x=3cm,故选:C.8.(3分)等边三角形的内切圆半径、外接圆半径和一边上的高的比为()A.1::B.1::2 C.1:2:3 D.1:2:【解答】解:如图,∵△ABC是等边三角形,∴△ABC的内切圆和外接圆是同心圆,圆心为O,设OE=r,AO=R,AD=h,∵AD⊥BC,∴∠DAC=∠BAC=×60°=30°,在Rt△AOE中,∴R=2r,OD=OE=r,∴AD=AO+OD=2r+r=3r,∴r:R:h=r:2r:3r=1:2:3,故选:C.9.(3分)如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15°B.20°C.25°D.30°【解答】解;如图,由四边形的内角和定理,得∠BOA=360°﹣90°﹣90°﹣80°=100°,由=,得∠AOC=∠BOC=50°.由圆周角定理,得∠ADC=∠AOC=25°,故选:C.10.(3分)如图,以AB为直径的半圆绕A点,逆时针旋转60°,点B旋转到点B′的位置,已知AB=6,则图中阴影部分的面积为()A.6πB.5πC.4πD.3π【解答】解:如图所示:∵以AB为直径的半圆绕A点,逆时针旋转60°,∴AB=AB′=6,∠BAB′=60°,==6π.∴图中阴影部分的面积为:S扇形B′AB故选:A.二、填空题:(本大题共10小题,每小题3分,共30分.)11.(3分)方程x2=3x的根是0或3.【解答】解:x2=3xx2﹣3x=0即x(x﹣3)=0∴x=0或3故本题的答案是0或3.12.(3分)已知m,n是方程x2+2x﹣5=0的两个实数根,则m2+3mn+n2=﹣1.【解答】解:∵m,n是方程x2+2x﹣5=0的两个实数根,∴m+n=﹣2,mn=﹣5,∴m2+3mn+n2=(m+n)2+mn=(﹣2)2﹣5=﹣1.故答案为:﹣1.13.(3分)已知关于x的一元二次方程m2x2+(2m﹣1)x+1=0有两个不相等的实数根,则m的取值范围是m<且m≠0.【解答】解:∵a=m,b=2m﹣1,c=1,方程有两个不相等的实数根,∴△=b2﹣4ac=(2m﹣1)2﹣4m2=1﹣4m>0,∴m<.又∵二次项系数不为0,∴m≠0即m<且m≠0.14.(3分)甲、乙两同学解方程x2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和﹣10,则原方程为x2+9x+14=0.【解答】解:∵x2+px+q=0,甲看错了一次项,得两根2和7,∴q=2×7=14,∵x2+px+q=0,乙看错了常数项,得两根1和﹣10,∴p=﹣(1﹣10)=9,∴原一元二次方程为:x2+9x+14=0.故答案为:x2+9x+14=0.15.(3分)已知⊙O的周长为12π,若点P到点O的距离为5,则点P在⊙O的内部.【解答】解:∵⊙O的周长为12π,∴⊙O的半径为6,∵点P到圆心O的距离为5,∴点和圆心的距离小于6,∴点P在⊙O的内部.故答案是:的内部.16.(3分)已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为10或11.【解答】解:将x=3代入x2﹣(m+1)x+2m=0中,得:9﹣3(m+1)+2m=0,解得:m=6,将m=6代入原方程,得x2﹣7x+12=(x﹣3)(x﹣4)=0,解得:x1=3,x2=4,∴三角形的三边为:3,3,4或3,4,4(均满足两边之和大于第三边).∴C=3+3+4=10或C△ABC=3+4+4=11.△ABC故答案为:10或11.17.(3分)如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=50°.【解答】解:∵∠A=70°∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案为:50°.18.(3分)如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=33°.【解答】解:连接EO,∵AD=DO,∴∠BAC=∠DOA=22°,∴∠EDO=44°,∵DO=EO,∴∠OED=∠ODE=44°,∴∠DOE=180°﹣44°﹣44°=92°,∴∠EOG=180°﹣92°﹣22°=66°,∴∠EFG=∠EOG=33°,故答案为:33°.19.(3分)如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=65°.【解答】解:连接DO,∵∠DAB=20°,∴∠DOB=40°,∴∠COD=90°﹣40°=50°,∵CO=DO,∴∠OCD=∠CDO,∴∠OCD=(180°﹣50°)÷2=65°.故答案为:65.20.(3分)如图,海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°.为了避免触礁,轮船P与A、B的张角∠APB的最大值为40°.【解答】解:∵海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°.∴当P点在圆上时,不进入经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,轮船P与A、B的张角∠APB的最大,此时为∠AOB=80°的一半,为40°.故答案为:40°.三、解答题:(本大题共8小题,共70分,)21.(20分)解方程(1)x2﹣6x﹣18=0(配方法)(2)3(x﹣2)2=x(x﹣2)(3)x2+2x﹣5=0(4)(2x﹣3)2﹣2(2x﹣3)﹣3=0.【解答】解:(1)x2﹣6x﹣18=(x﹣3)2﹣27=0,∴(x﹣3)2=27,x﹣3=±3,∴x1=3+3,x2=﹣3+3.(2)原方程整理为:x2﹣5x+6=(x﹣2)(x﹣3)=0,解得:x1=3,x2=2.(3)x2+2x﹣5=(x+1)2﹣6=0,∴(x+1)2=6,x+1=±,∴x1=﹣1,x2=﹣﹣1.(4)设2x﹣3=y,则原方程变形为y2﹣2y﹣3=(y+1)(y﹣3)=0,解得:y1=﹣1,y2=3.当y=﹣1时,2x﹣3=﹣1,解得:x=1;当y=3时,2x﹣3=3,解得:x=3.∴方程(2x﹣3)2﹣2(2x﹣3)﹣3=0的解为3或1.22.(6分)关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为正,求实数m的取值范围?【解答】解:∵关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为正,∴a=1,b=2,c=1﹣2m,1﹣2m>0,∴m<,∴b2﹣4ac=4﹣4(1﹣2m)=8m≥0,即m≥0,∴m 的取值范围为:0≤m<.23.(7分)已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.【解答】解:(1)证明:∵在方程x2﹣6x﹣k2=0中,△=(﹣6)2﹣4×1×(﹣k2)=36+4k2≥36,∴方程有两个不相等的实数根.(2)∵x1,x2为方程x2﹣6x﹣k2=0的两个实数根,∴x1+x2=6,∵x1+2x2=14,∴x2=8,x1=﹣2.将x=8代入x2﹣6x﹣k2=0中,得:64﹣48﹣k2=0,解得:k=±4.答:方程的两个实数根为﹣2和8,k的值为±4.24.(7分)某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,那么每件童装应降价多少元?【解答】解:设每件童装应降价x元,由题意得:(40﹣x)(20+2x)=1200,解得:x=10或x=20.因为减少库存,所以应该降价20元.25.(7分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.【解答】解:(1)先作弦AB的垂直平分线;在弧AB上任取一点C连接AC,作弦AC的垂直平分线,两线交点作为圆心O,OA作为半径,画圆即为所求图形.(2)过O作OE⊥AB于D,交弧AB于E,连接OB.∵OE⊥AB∴BD=AB=×16=8cm由题意可知,ED=4cm设半径为xcm,则OD=(x﹣4)cm在Rt△BOD中,由勾股定理得:OD2+BD2=OB2∴(x﹣4)2+82=x2解得x=10.即这个圆形截面的半径为10cm.26.(7分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【解答】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)解:过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6﹣x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5﹣x)2+(6﹣x)2=25,化简得x2﹣11x+18=0,解得x1=2,x2=9.∵CD=6﹣x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5﹣2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.27.(8分)已知:如图,AB是⊙O的直径,点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.(1)试说明:DE=BF;(2)若∠DAB=60°,AB=6,求△ACD的面积.【解答】(1)证明:∵弧CB=弧CD∴CB=CD,∠CAE=∠CAB(1分)又∵CF⊥AB,CE⊥AD∴CE=CF(2分)∴Rt△CED≌Rt△CFB(HL)∴DE=BF;(4分)(2)解:∵CE=CF,∠CAE=∠CAB∴△CAE≌△CAF∵AB是⊙O的直径∴∠ACB=90°∵∠DAB=60°∴∠CAB=30°,AB=6∴BC=3∵CF⊥AB于点F∴∠FCB=30°∴,∴S=S△ACE﹣S△CDE=S△ACF﹣S△CFB=•(AF﹣BF)•CF=(AB﹣2BF)•CF=.(8△ACD分)28.(8分)如图,△ABC中,∠C=90°,AC=4,BC=3.半径为1的圆的圆心P以1个单位/S的速度由点A沿AC方向在AC上移动,设移动时间为t(单位:s).(1)当t为何值时,⊙P与AB相切;(2)作PD⊥AC交AB于点D,如果⊙P和线段BC交于点E.求当t为何值时,四边形PDBE为平行四边形.【解答】解:(1)∵过P作PH⊥AB于H,又∵⊙P与AB相切,∴PH=1,∴∠AHP=∠C=90°,∠A=∠A,∴△APH∽△ABC,…(2分)∴,∵△ABC中,∠C=90°,AC=4,BC=3,∴AB==5,∴,∴AP=,∴当t=时,⊙P与AB相切;…(5分)(2)∵PD⊥AC,∠C=90°,∴PD∥BE,∴当PE∥AB时,四边形PDBE为平行四边形.∴△CPE∽△CAB,∴,∴,∴CP=,∴AP=AC﹣CP=,∴当t=时,四边形PDBE为平行四边形.…(9分)赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为 M FEB2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
江苏省苏州市吴中区九年级上学期期中教学质量调研数学试题

吴中区初三年级期中教学质量调研测试数学试卷2013.11 注意事项:1.本试卷满分130分,考试时间120分钟;2.答卷前将答题卡上的相关项目填涂清楚,所有解答均须写在答题卡上,在本试卷上答题无效.一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.)1.若使二次根式在实数范围内有意义,则x的取值范围是( )A.x≥5 B.x>5 C.x<5 D.x≤52.下列计算中,正确的是( )A.=±2 B.3-2=1C.÷=4 D.=23.下列电视台图标中,属于中心对称图形的是( )4.若半径分别为6和8的两圆相切,则两圆的圆心距为( )A.14 B.2 C.14或2 D.7或15.用配方法解方程x2-2x-5=0时,原方程应变形为( )A.(x+1)2=6 B.(x-1)2=6C.(x+2)2=9 D.(x-2)2=96.某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩与方差S2如下表所示,如果要选择一个成绩高且发挥稳定的人参赛,则这个人应是( )A.甲B.乙C.丙D.丁7.如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB=100°,则∠ACB的度数为( )A.40°B.50°C.60°D.80°8.小刚用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是( )A.120πcm2B.240πcm2C.260πcm2D.480πcm29.已知关于x的方程x2+mx+n=0有一个根是-n(n≠0),则下列代数式的值恒为常数的是( ) A.n+m B.C.n-m D.nm10.在平面直角坐标系中,以点(3,-5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离等于1,则圆的半径,.的取值范围是( )A.r>4 B.0<r<6 C.4≤r<6 D.4<r<6二、填空题(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上.)11.一元二次方程x2-4=0的解是▲.12.计算:▲.13.在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.96,2.10,2.31则这组数据的极差是▲.14.关于x的一元二次方程x2-4x-a=0无实数根,则实数a的取值范围是▲.15.若⊙O的半径是方程(2x+1)(x-4)=0的一个根,圆心O到直线l的距离为3,则直线l与⊙O 的位置关系是▲.16.若(a-3)2+,则=▲.17.如图,等腰梯形ABCD内接于半圆O,且AB=1,BC=2,则OA=▲.18.若⊙O的半径为R,则⊙O的内接正八边形的边长是▲.三、解答题(本大题共11小题,共76分,把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔.)19.(本题满分520.(本题满分5分)解关于x的方程:(3x-1)(x+1)=4.21.(本题满分6分)关于x的一元二次方程mx2-(3m-1)x=1-2m,其根的判别式(即b2-4ac)的值为122.(本题满分6分)关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围.(2)请选择一个k的负整数值,并求出方程的根.23.(本题满分6分)某工程队在我市轻轨2号线建设过程中,承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%.从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2.求:(1)该工程队第一天拆迁的面积;(2)若该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.24.(本题满分6分)某校九年级开展男、女学生数学学习竞赛.从全体九年级学生中随意抽取男生、女生各10名同学,进行“十分制”(满分10分)答题对抗赛,竞赛成绩结果(单位:分)如下:男生:2,4,6,8,7,7,8,9,9,10:女生:9,6,7,6,2,7,7,9,8,9.(1)男女两组学生的对抗赛成绩的方差各是多少?(2)规定成绩较稳定者胜出,你认为哪一组应胜出?说明理由.25.(本题满分7分)如图,点A、B、C是⊙O上的三点,AB//OC.(1)求证:AC平分∠OAB;(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长.26.(本题满分8分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为正整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样小明就找到了一种把式子a+b化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a =▲,b=▲;(2)利用所探索的结论,找一组正整数a、b、m、n填空:▲+▲=(▲+▲)2;(3)若a+4=(m+n)2,且a、m、n均为正整数,求a的值.27.(本题满分8分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.(1)判断CD与⊙O的位置关系,并证明你的结论;(2)若E是的中点,⊙O的半径为1,求图中阴影部分的面积.28.(本题满分9分)把一边长为60cm的正方形硬纸板,进行适当的剪裁,折成一个长方体盒子(纸板的厚度忽略不计).(1)如图1,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子;①要使折成的长方体盒子的底面积为576cm2,那么剪掉的正方形的边长为多少?②设长方体盒子的侧面积为Scm2,试说明:S不可能大于1800 cm2.(2)如图2,若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分正好折成-个有盖的长方体盒子.若折成的一个长方体盒子的表面积为2800cm2,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).29.(本题满分10分)如图,平面直角坐标系的单位是厘米,直线AB的解析式为y=x-6,分别与x轴、y轴相交于A、B两点.动点C从点B出发沿射线B以3cm/秒的速度运动,以C点为圆心作半径为1cm的⊙C.(1)求A、B两点的坐标;(2)设⊙C运动的时间为t,当⊙C和坐标轴相切时,则时间t的值是▲:(直接写出答案,不必写推理过程.)(3)在点C运动的同时,另有动点P从O点出发沿射线OA以2cm/秒的速度运动,以P点为圆心作半径为3cm的⊙P;若点C与点P同时分别从点B、点O开始运动,问是否存在一点P,使⊙P 与⊙C相外切,如果存在,求点P的坐标;如果不存在,请说明理由.。
2016-2017年度苏科版第一学期九年级数学期中试卷含答案

2016-2017学年度第一学期期中检测九年级数学试题(全卷共120分,考试时间90分钟)温馨提示:请把答案全部填涂在答题纸上,否则不给分.一、选择题(本题共8题,每题3分,共24分. 在每题给出的四个选项中,有且只有一项 是正确的,请将正确选项前的字母填写在答题卡上) 1. 一元二次方程x 2-9=0的根为A . x = 3B . x =-3C . x 1= 3,x 2 =-3D . x = 9 2. 如图,点A 、B 、C 是⊙O 上的三点,若∠BOC =80º,则∠A 的度数是 A .40º B .60º C .80º D .100º 3.用配方法解方程x 2-4x -1=0时,配方后得到的方程为A .(x +2)2= 3 B .( x +2)2 = 5 C .(x -2)2 = 3 D .( x -2)2 = 54.下列关于x 的一元二次方程有实数根的是A .x 2 + 1= 0B .x 2 + x + 1= 0C .x 2 - x + 1= 0D .x 2 -x -1= 05.在下列命题中,正确的是A .长度相等的弧是等弧B .直径所对的圆周角是直角C .三点确定一个圆D .三角形的外心到三角形各边的距离相等 6.对于二次函数 y =-(x +1)2-3 ,下列结论正确的是A .函数图像的顶点坐标是(-1,-3)B .当 x >-1时,y 随x 的增大而增大C .当x =-1时,y 有最小值为-3D .图像的对称轴是直线x = 17.如图,圆弧形桥拱的跨度AB = 16 m ,拱高CD = 4 m ,则圆弧形桥拱所在圆的半径为 A .6 m B .8 m C .10 m D .12 mB OCA( 第2题 )yx-3O-1( 第7题 ) ( 第8题 )ABDC8.如图是二次函数y = ax 2 + bx + c 图像的一部分,其对称轴为直线x =-1,且过点(-3,0),下列说法:① abc < 0;② 2a -b = 0;③ 4a + 2b + c < 0;④若(-5,y 1) ,(2.5,y 2)是抛物线上两点,则y 1 > y 2,其中说法正确的是 ( )A .①②③B .②③C .①②④D .①②③④ 二、填空题(每小题3分,共30分) 9. 方程x 2 = x 的解是_______________.10.已知扇形的圆心角为120º,半径为6 cm ,则该扇形的弧长为_______ cm (结果保留π). 11.一元二次方程2x 2 + 4x -1= 0的两根为x 1、x 2,则x 1 + x 2的值是_________. 12.圆锥的底面半径为3 cm ,母线长为5 cm ,则这个圆锥的侧面积是_________cm 2. 13. 抛物线y = x 2沿x 轴向右平移1个单位长度,则平移后抛物线对应的表达式是________. 14.一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x ,根据题意,可列方程是:_________________.15.若关于x 的一元二次方程x 2+2x +m = 0有两个相等的实数根,则m =______.16.如图,P A 、PB 是⊙O 的两条切线,A ,B 是切点,若∠APB = 60°,PO = 2,则PB =_________. 17.如图,半圆O 的直径AB =2,弦CD ∥AB ,∠COD =90°,则图中阴影部分的面积为_____.18. 已知二次函数y = ax 2+ bx + c 中,函数y 与自变量x 的部分对应值如下表:x … -2 -1 0 1 2 … y…1771-11…则当y < 7时,x 的取值范围是______________.( 第16题 ) ( 第17题 )C DB AO三、解答题(共66分)19. 解方程 (每题5分,共10分)(1) x 2 + 4x -2 = 0; (2) (x -1)(x +2) = 2(x +2)20. (6分)如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于E ,CD =16,AB =20,求BE 的长.21. (8分) 如图,已知二次函数y = ax 2 + bx + c 的图像经过A (-1,2)、B (0,-1)、C (1,-2).(1) 求二次函数的表达式; (2) 画出二次函数的图像.EDO C( 第20题 )xyACB O( 第21题 )22. (8分) 如图,学校准备修建一个面积为48 m 2的矩形花园.它的一边靠墙,其余三边利用长20 m的围栏.已知墙长9 m ,问围成矩形的长和宽各是多少?23. (10分) 如图,在Rt △ABC 中,∠C = 90°,∠BAC 的角平分线AD 交BC 边于D .以AB 上某一点O 为圆心作⊙O ,使⊙O 经过点A 和点D . (1) 判断直线BC 与⊙O 的位置关系,并说明理由; (2) 若AC = 3,∠B = 30°.① 求⊙O 的半径;② 设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积 ( 结果保留根号和π ) .( 第22题)( 第23题 )EOA24. (12分) 某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数图像如图:(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?(2) 为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x =5m+600,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?y(元/千度)千度)( 第24题)25. (12分) 在平面直角坐标系中,抛物线y =-x 2-2x + 3与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1) 请直接写出点A ,C ,D 的坐标;(2) 如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3) 如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形? 若存在,求出点P 的坐标,若不存在,请说明理由.2016-2017学年度第一学期期中检测九年级数学试题参考答案及评分标准一、选择题(每题3分,共24分)( 图1 ) ( 图2 )( 第25题 )y x DCA OB yxDCA O B二、选择题 (每题3分,共30分)9. x 1=0,x 2=1; 10.4π; 11.-2; 12.15π; 13.y = (x -1)2; 14. 60 (1-x )2 = 48.6; 15. 1 ; 16.3; 17.41π ; 18. -1< x < 3. 三、解答题 (共66分) 19.解法一:(1)x 2+4x +4-4-2=··································································································································· 1分 (x +2)2=6··································································································································· 2分 x +2=6± ··································································································································· 3分 x 1=-26-,x 2=-26+··································································································································· 5分 解法二:a=1,b =4,c=-2··································································································································· 1分 △=42-4·1·(-2) = 24··································································································································· 2分 x=2244±- ··································································································································· 3分 x 1=62--,x 2 =62+- ··································································································································· 5分 (2)解:(x-1)(x +2)-2(x +2)=··································································································································· 1分 (x +2)(x-3)=··································································································································· 2分 x +2=,x-3=··································································································································· 3分 x 1=-2,x 2=3··································································································································· 5分20.解:连接OC ,∵AB是⊙O的直径,CD ⊥AB ,∴CE =21CD = 8··································································································································· 2分 ∵AB=20,∴OB=OC =10···································································································································∵∠OEC =90°,∴22810-=OE = 6··································································································································· 5分 又∵BE =OB-OE,∴BE =10-6=4··································································································································· 6分21. 解:(1)∵二次函数y =ax 2+ bx + c 的图像经过A (-1,2)、B (0,-1)、C (1,-2).∴⎪⎩⎪⎨⎧-=++-==+-212c b a c c b a ··································································································································· 3分解得⎪⎩⎪⎨⎧-=-==121c b a ··································································································································· 4分 ∴二次函数的表达式为y=x 2-2x-1··································································································································· 5分(2) 图像如图:··································································································································CyxAOB22. 解:设宽为x m,则长为(20-2x) m. ···································································································································1分由题意,得x·(20﹣2x) = 48, ···································································································································3分解得x1 = 4,x2 = 6. ···································································································································5分当x= 4时,20-2×4 = 12>9 (舍去), ···································································································································6分当x=6时,20-2×6= 8. ···································································································································7分答:围成矩形的长为8 m、宽为 6 m. ···································································································································8分23. 解:(1) 连结OD,∵OA=OD,∴∠OAD =∠ODA. ···································································································································1分∵∠BAC的角平分线AD交BC边于D,∴∠CAD =∠OAD. ···································································································································2分∴∠CAD =∠ODA ,∴OD ∥AC ,··································································································································· 3分∴∠ODB =∠C =90°,即OD ⊥BC .··································································································································· 4分又∵直线BC 过半径OD 的外端,∴直线BC 与⊙O 相切.··································································································································· 5分(2) ① 设OA = OD = r ,在Rt △BDO 中,∠B = 30°,∴OB = 2r .··································································································································· 6分在Rt △ACB 中,∠B =30°,∴AB = 2AC = 6.··································································································································· 7分∴3r = 6,解得r =2.··································································································································· 8分② 在Rt △ACB 中,∠B =30°,∴∠BOD = 60°.∴ππ322360602=⋅⋅︒=︒ODES 扇形. ··································································································································· 9分∴所求图形面积为π3232-=-∆ODE BOD S S 扇形.··································································································································· 10分。
江苏省苏州市吴中、吴江区九年级上学期数学期中考试试卷附答案解析

九年级上学期数学期中考试试卷一、单项选择题1.以下方程中,属于一元二次方程的是〔〕A. x+1=0B. x2=2x﹣1C. 2y﹣x=1D. x2+3=2.方程x2=3x的解为〔〕A. x=3B. x=0C. x1=0,x2=﹣3D. x1=0,x2=33.如图,点、、在上,假设,那么的度数是〔〕A. 18°B. 36°C. 54°D. 72°4.九年级〔1〕班甲、乙、丙、丁四名同学几次数学测试成绩的平均数〔分〕及方差S2如下表:老师想从中选派一名成绩较好且状态稳定的同学参加省初中生数学竞赛,那么应选〔〕A. 甲B. 乙C. 丙D. 丁5.一元二次方程x2+kx﹣3=0的一个根是x=1,那么k的值为〔〕A. 2B. ﹣2C. 3D. ﹣36.圆锥的底面半径为3cm,母线长为6cm,那么圆锥的侧面积是〔〕A. 18cm2B.C. 27cm2D.7.如图,在边长为4的正方形中,以点为圆心,为半径画弧,交对角线于点,那么图中阴影局部的面积是〔结果保存〕〔〕A. B. C. D.8.10个大小相同的正六边形按如下列图方式紧密排列在同一平面内,A,B,C,D,E,O均是正六边形的顶点.那么点O是以下哪个三角形的外心〔〕.A. B. C. D.9.根据以下表格的对应值:判断方程x2+x-1=0一个解的取值范围是〔〕A. 0.59<x<0.60B. 0.60<x<0.61C. 0.61<x<0.62D. 0.62<x<0.6310.如图,菱形ABCD的边长为10,面积为80,∠BAD<90°,⊙O与边AB,AD都相切菱形的顶点A到圆心O的距离为5,那么⊙O的半径长等于〔〕A. 2.5B.C.D. 3二、填空题11.方程x2=9的解为12.假设⊙O的半径为3,点P为平面内一点,OP=2,那么点P在⊙O________〔填“上〞、“内部〞或“外部〞〕13.一组数据4,1,7,4,5,6那么这组数据的极差为________.14.三角形两边的长分别是3和4,第三边的长是方程的根,那么该三角形的周长为________.15.关于的一元二次方程有两个不相等的实数根,那么实数的取值范围是________.16.如图,△ABC内接于⊙O,∠BAC=30°,BC=2,那么⊙O的直径等于________.17.如图,AB是⊙O的直径,AB=20cm,弦BC=12cm,F是弦BC的中点.假设动点E以2cm/s的速度从A 点出发沿着AB方向运动,设运动时间为t〔s〕〔0≤t≤10〕,连接EF,当△BEF是直角三角形时,t〔s〕的值为________.18.我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D -d.在平面直角坐标系xOy中,图形G为以原点O为圆心,2为半径的圆,那么点A(1,-1)到图形G的距离跨度是________.三、解答题19.解方程:〔1〕〔2〕20.〔1〕根据要求,解答以下问题:①方程的解为________;②方程的解为________;③方程的解为________;〔2〕根据以上方程特征及其解的特征,请猜想:①方程的解为________.②关于x的方程________的解为x1=1,x2=n;〔3〕请用配方法解方程,以验证猜想结论的正确性.21.为了了解某校八年级学生每周平均课外阅读时间的情况,随机抽取了50名八年级学生,对其每周平均课外阅读时间进行统计,并绘制成下面的统计图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
B
A
泰兴市 实验初级中学 初三数学阶段试题
2016.11
(考试时间120分钟 满分150分)
第一部分 选择题(共18分)
一、选择(每小题3分,共18分)
1.如图,在△ABC 中,∠C =90°,AB =13,AC =5,则sin B 的值是 A .13
12
B .13
5 C .125 D .513
2.直角坐标系中,以坐标原点O 为圆心,5为半径画圆,点P 的坐标是(4,3),则点P 与⊙O 的位置关系是
A .点P 在⊙O 上
B .点P 在⊙O 内
C .点P 在⊙O 外
D .无法确定 3.已知方程2kx —x +1=0 有两个不等的实数根,则k 的取值范围是 A .k >14 B .k <14 C .k ≠14 D .k <1
4
且k ≠0
4.体育课上,体育委员记录了6位同学在25秒内连续垫排球的情况,6位同学连续垫球的个数 分别为30、27、32、30、28、34,则这组数据的众数和极差分别是 A .33,7
B .32,4
C .30,4
D .30,7
5.如图,AB 是⊙O 的直径,P A 是⊙O 的切线,点C 在⊙O 上,AC ⊥OP BC =2,AC =4,则P A 长为 A .3.5
B .4
C .25
D .23
6.下列说法:①方程x 2-x -1=0的两实根和为1;②相等的圆心角所对的弦相等; ③若数据a +1、a +2、a +3的方差是s 2,则数据a 、a +1、a +2的方差也为s 2;④圆和它的一个内接正三角形组成中心对称图形;⑤菱形的四边中点在同一个圆上. 其中正确的有
A .4个
B .3个
C .2 个
D . 1个
第二部分 非选择题(共132分)
二、填空(每小题3分,共30分)
7.若 1-tan B =0,则锐角∠B 的度数是 °. 8.一元二次方程x (x -2) =(x -2)的根为 .
9.已知一个圆锥形纸帽的母线长为6,底面圆的半径为2,则纸帽的侧面积为__________.
O
D C
B
A O
C
B
A D
C
B
A
10.如图,点G 为△ABC 的重心,过点G 作DE ∥A C 分别交AB 、BC 于点D 、E ,则AB
BD
的值为 .
11.如图,点O 是△ABC 的内切圆的圆心,若∠BOC =130°,则∠A 的度数为 °. 12.如图,△ABC 中,D 在BC 上,且∠DAC =∠B ,若BD ︰DC =3︰2,AC =102,则BC 长为 .
第10题 第11题 第12题 第13题
13.如图,A 、B 、C 三点在⊙O 上,若∠ABC =135°,则∠AOC 的度数为 °. 14.如图,在扇形OAB 中,∠AOB =100°,半径OA =6,将扇形OAB 沿过点A 的直线折叠,
点O 恰好落在弧AB 上的点D 处,折痕交OB 于点C ,则弧BD 的长为 .
第14题 第15题 第16题
15.如图是4×4的正方形网格,A 、B 、C 、D 为网格格点,连接AB 、CD 交于点O ,则cos ∠BOC
的值是____________.
16.如图,已知⊙O 的半径为5,弦AB 的长为6,现将一直角三角板的直角顶点置于圆心O
处,绕点O 旋转三角板,设三角板的两条直角边OC 、OD (足够长)分别交弦AB 所在直 线于E 、F 两点,则旋转过程中线段EF 的最小值为____________. 三、解答题 17.(本题10分
)
(1)
032tan60(1--+- (2)解方程:2x 2-4x +1=0
B
18.(本题8分)先化简,再求值:23344
(1)-11
a a a a a +++-÷-,其中a 满足a 2-a =0
19.(本题8分)如图,平面直角坐标系中,△ABC 的顶点
都在正方形(每个小正方形边长为单位1)网格的格点上。
(1) △ABC 的形状是____________________(直接写答案) (2)画出△ABC 沿x 轴翻折后的△A 1B 1C 1
(3)画出△ABC 绕点B 顺时针旋转90°的△BA 2C 2并求出 旋转过程中△ABC 扫过的面积.(结果保留π)
20.(本题10分)已知关于x 的方程x 2-(m +2)x +2m -1=0. (1)试说明:方程一定有两个不相等的实数根; (2)若方程有一根是1,求m 的值和另一个根.
21.(本题10分)某中学开展演讲比赛活动,八(1)、八(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示. (1)根据右图填写下表;
(2)结合两班复赛成绩的平均数和中位数、方差,分析哪个班级的复赛成绩较好?
(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,说明理由.
22.(本题10分)如图,已知△ABC ,∠C =90°,sin ∠A =
3
5
,AB =10,
D A BD 是中线,求AC 长和cos ∠DBC 的值.
23.(本题10分)某特产专卖店销售一种核桃,其进价为每千克40元,若按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10千克,若该专卖店销售这种核桃想要达到平均每天获利2240元的预期目标,且尽可能让利于顾客.问:每千克核桃应降价多少元?
24.(本题10分)如图,已知四边形ABCD 内接于⊙O ,DA 、CB 的
延长线交于点P ,连接AC 、BD ,BD =BC. (1) 证明:AB 平分∠P AC ;
(2) 若A C 是直径,AC =5,BC =4,求DC 长.
25.(本题12分)如图1,已知正方形ABCD 边长为4,点E 、F 分别在BC 、DC 上,AE ⊥EF ,连接
AF .
(1)求证:△A BE ∽△ECF
(2)若△AB E ∽△AEF ,求证:BE =CE
(3)如图2,在(2)的条件下,动点Q 从点F 出发沿F A 向终点A 匀速移动,同时动点P 从点D 出发 沿DF 向终点F 匀速移动,当一点到达终点停止移动时,另一点也停止移动;已知P 、Q 两点 移动的速度均为每秒1个单位长度,设移动时间为t 秒,求当t 为何值时,P 、Q 两点到点D 的 距离相等?
26.(本题14分)如图1,直线y =-x +4分别交x 轴、y 轴于A 、B 两点,点M 是线段AB 上一动点,以M 为圆心,r 为半径画圆.
(1)若点M 的横坐标为3,当⊙M 与x 轴相切时,则半径r 为 ,此时⊙M 与y 轴的位 置关系是 .(直接写答案) (2)若r =
5
2
,当⊙M 与坐标轴有且只有3个公共点时,求点M 的坐标;(可用图2进行探究) (3)如图3,当圆心M 与B 重合,r =2时,设点C 为⊙M 上的一个动点,连接OC ,将线段OC 绕 点O 顺时针旋转90°,得到线段OD ,连接BD 、BC ,求BD 长的最值并直接写出对应的点C 坐标.
命题:伏贵先 审核:张 昕 (数阶2 01机 2016秋)。