初中数学函数测试题
初中数学函数基础知识基础测试题及答案解析

解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;
B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;
C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;
D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,
【点睛】
本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,
5.如图,在 中, , 是边 上一条运动的线段(点 不与点 重合,点 不与点 重合),且 , 交 于点 , 交 于点 ,在 从左至右的运动过程中,设 , 的面积减去 的面积为 ,则下列图象中,能表示 与 的函数关系的图象大致是()
A. B.
C. D.
【答案】D
【解析】
【分析】
判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.
【详解】
解:∵EF∥BC,
∴△AEF∽△ABC,
∴ ,
∴EF= •10=10-2x,
∴S= (10-2x)•x=-x2+5x=-(x- )2+ ,
观察图象,A、B、D的路程始终都在变化,故错误;
C、修车是的路程没变化,故C正确;
故选:C.
【点睛】
考核知识点:函数的图象.理解题意看懂图是关键.
10.如图,AB为半圆的直径,点P为AB上一动点.动点P从点A出发,沿AB匀速运动到点B,运动时间为t.分别以AP与PB为直径作半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为()
A. B. C. D.
【答案】D
新初中数学函数基础知识基础测试题附答案解析

③由横纵坐标看出,乙比甲先到达终点,故③错误;
④由纵坐标看出,甲乙二人都跑了20千米,故④正确;
故选C.
13.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()
新初中数学函数基础知识基础测试题附答案解析
一、选择题
1.下列图形中的曲线不表示y是x的函数的是()
A. B. C. D.
【答案】C
【解析】
【分析】
函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.
【详解】
根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.
故选C
【详解】
甲在乙前面50m处,若两人同时起跑,经过50÷(6−4)=25秒,乙追上甲,则相距是0千米,故A、B错误;
相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是600÷6=100秒,故B.、D错误;
相遇以后两人之间的最大距离是:2×(100−25)=150米.
故选C.
【点睛】
本题主要考查函数的图象,理解函数图象上点的坐标的实际意义,掌握行程问题中的基本数量关系:速度×时间=距离,是解题的关键.
12.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()
【分析】
【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;
【答案】A
【解析】
初中数学函数试题

初中数学函数专题训练一. 填空题1. 在函数32--=x x y 中,自变量x 的取值范围是________ 2. 抛物线362+-=x x y 的顶点坐标是___________3. 正比例函数的图像经过点(3-,6),则函数的关系式是4.函数25+-=x y 与x 轴的交点是 ,与y 轴的交点是 ,与两坐标轴围成的三角形面积是 ;5.若点(3,a )在一次函数13+=x y 的图像上,则=a ;6.二次函数1)3(42-+-=x y 中,图象是 ,开口 ,对称轴是直线 ,顶点坐标是( ),当X 时,函数Y 随着X 的增大而增大,当X 时,函数Y 随着X 的增大而减小。
当X= 时,函数Y 有最 值是 。
7.写一个图象过一、二、四象限的一次函数表达_________.8.写一个图象开口向下,且过原点的二次函数表达式______.9.已知两圆的半径分别是一元二次方程01272=+-x x 的两个根,若两圆的圆心距为5,则这两个圆的位置关系是__________.二.选择题10.若点P (m ,1-2m )的横坐标与纵坐标互为相反数,则点P 一定在( )(A )第一象限(B )第二象限(C )第三象限(D )第四象限11.已知直线y=mx -1上有一点B (1,n ),围成的三角形的面积为( )(A )12(B )14或12(C )14或18 (D) 18或 1212.AE 、CF 是锐角△ABC 的两条高,如果AE :CF =3:2,则sin A :sin C 等于( )(A )3:2 (B )2:3 (C )9:4 (D )4:913.已知M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线y=x +3上,设点M 的坐标为(a ,b ),则二次函数y=-abx 2+(a+b )x ( )(A )有最小值,且最小值是92 (B )有最大值,且最大值是﹣92(C )有最大值,且最大值是92 (D )有最小值,且最小值是﹣92 14.两圆的半径分别是方程x 2-3x+2=0的两根.且圆心距d=1,则两圆的位置关系是( )A .外切B .内切C .外离D .相交15.已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过 ( )A (-a ,-b )B (a ,-b )C (-a ,b )D (0,0)16.已知二次函数2y ax bx c =++的图象如图所示,对称轴是1x =,则下列结论中正确的是( ).A.0ac >B.0b < C.240b ac -< D.20a b +=17.已知22y x =的图象是抛物线,若抛物线不动,把x 轴,y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( ).A.22(2)2y x =-+B.22(2)2y x =+-C.22(2)2y x =-- D.22(2)2y x =++ 18.正比例函数y =kx 的图象经过二、四象限,则抛物线y =kx 2-2x +k 2的大致图象是( A )19.函数211--+=x x y 中,自变量x 的取值范围是( ) A .x ≥-1 B .x >-1且x ≠2C .x ≠2D .x ≥-1且x ≠220.把二次函数122--=x x y 配方成顶点式为( )A .2)1(-=x yB . 2)1(2--=x yC .1)1(2++=x yD .2)1(2-+=x y21.若︒<<︒900α,则下列说法不正确的是 ( )(A) αsin 随α的增大而增大; (B )cos α随α的减小而减小;(C )tan α随α的增大而增大; (D )0<sin α<1.22.抛物线22x y =是由抛物线2)1(22++=x y 经过平移而得到的,则正确的平移是( )A 、先向右平移1个单位,再向下平移2个单位B 、先向左平移1个单位,再向上平移2个单位三.计算题23.已知一次函数y=(m-1)x+2m+1(1) 若函数经过原点,求m 值(2) 若图像平行与直线y=2x,求m 的值(3) 若图像交y 轴于正半轴,求m 的取值范围(4) 若图像经过一、二、四象限,求m 取值范围24.已知一次函数y =(3m-8)x +1-m 图象与y 轴交点在x 轴下方,且y 随x 的增大而减小,其中m 为整数.(1)求m 的值;(2)当x 取何值时,0<y <4?函数y=2-x ,则y 随x 的增大而_______25.已知实数a 不等于零,抛物线y=ax^2-(a+c)x+c 不经过第二象限(1) 判断此抛物线顶点A (x0,y0)所在象限,并说明理由(2) 若经过这条抛物线顶点A(x0,y0)的直线y=-x+k 与抛物线的另一个交点为B ((a+c )/a,-c ),求抛物线的解析式26.为鼓励居民节约用水,某市规定收费标准如下:若每户每月不超过用水标准量,按每吨1.30元收费;若超过用水标准,则超过部分按每吨2.90元收费。
初中数学函数复习题及答案

初中数学函数复习题及答案初中数学函数是数学学习中的一个重要部分,涉及到变量之间的关系和表达。
下面是一些函数的复习题及答案,供同学们参考。
一、选择题1. 下列哪个是一次函数的表达式?- A. \( y = x^2 \)- B. \( y = 3x + 2 \)- C. \( y = \frac{1}{x} \)- D. \( y = 2 \)答案:B2. 函数 \( y = 2x + 3 \) 与 \( x \) 轴的交点坐标是什么?- A. (0, 2)- B. (1, 5)- C. (-1, 1)- D. (0, 3)答案:D3. 如果函数 \( y = kx + b \) 经过点 (1, 5) 和 (2, 8),那么\( k \) 和 \( b \) 的值分别是多少?- A. \( k = 3, b = 2 \)- B. \( k = 2, b = 3 \)- C. \( k = 1, b = 5 \)- D. \( k = 4, b = 1 \)答案:B二、填空题1. 函数 \( y = ax^2 + bx + c \) 是二次函数,其中 \( a \)、\( b \)、\( c \) 是常数,且 \( a \neq 0 \)。
如果 \( a > 0 \),则该函数的图像开口方向是________。
答案:向上2. 已知函数 \( f(x) = x^2 - 4x + 3 \),求 \( f(5) \) 的值。
答案:\( f(5) = 5^2 - 4 \times 5 + 3 = 25 - 20 + 3 = 8 \)三、解答题1. 已知函数 \( y = 2x - 1 \),求当 \( x = 3 \) 时的函数值。
答案:将 \( x = 3 \) 代入函数 \( y = 2x - 1 \) 中,得到\( y = 2 \times 3 - 1 = 6 - 1 = 5 \)。
2. 某工厂生产某种商品,其成本函数为 \( C(x) = 100 + 50x \),其中 \( x \) 表示生产数量。
初中中考数学函数基础28典型题(含答案和解析)

初中中考数学函数基础28道典型题(含答案和解析)1.已知关于x 的方程 mx+3=4的解为 x=1,则直线 y=(m−2)x−3一定不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵关于x的方程mx+3=4的解为x=1.∴m+3=4.∴m=1.∴直线y=(m−2)x−3为直线y=−x−3.∴直线y=(m−2)x−3一定不经过第一象限.考点:函数——一次函数——一次函数与一元一次方程.2.如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB解析式是().A. y=−2x−3B. y=−2x−6C. y=−2x+3D. y=−2x+6答案:D.解析:∵直线AB经过点(a,b),且2a+b=6.∴直线AB经过点(a,6−2a).∵直线AB与直线y=−2x平行.∴设直线AB的解析式是:y=−2x+b1.把(a,6−2a)代入函数解析式得:6−2a=−2a+b1.则b1=6.∴直线AB的解析式是y=−2x+6.考点:函数——一次函数——一次函数图象与几何变换——一次函数平移变换.3.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.答案:x>23.解析:∵函数y=2x过点A(m,3).∴2m=3.解得:m=23.∴A(32,3).∴不等式2x>ax+4的解集为x>23.考点:函数——一次函数——一次函数与一元一次不等式——两条直线相交或平行问题.4.若函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1),则关于x、y的二元一次方程组{x−y=a2x+y=b的解是.答案:{x=2y=1.解析:因为函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1).所以方程组{x−y=a2x+y=b的解是{x=2y=1.考点:函数——一次函数——一次函数与二元一次方程——一次函数与二元一次方程(组)的关系.5.一次函数y=2x−3的图象与y轴交于A,另一个一次函数y=kx+b与y轴交于B,两条直线交于C,C点的纵坐标是1,且S△ABC=5,求k、b的值.答案:(2,1).解析:由题意知C(2,1).过C作CD⊥y轴,CD=2.·AB·CD=5.S△ABC=12∴AB=5.∴B(0,2)或(0,−8).x+2.当B(0,2)时,y=−12x−8.当B(0,−8)时,y=−92考点:函数——一次函数——求一次函数解析式——两条直线相交或平行问题.6.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),求关于x的不等式a(x−1)−b>0的解集.答案:x<−1.解析:∵一次函数y=ax+b的图象过第一、二、四象限.∴b>0,a<0.把(2,0)代入解析式y=ax+b得:0=2a+b.解得:2a=−b.b=−2.a∵a(x−1)−b>0.∴a(x−1)>b.∵a<0..∴x−1<ba∴x<−1.考点:函数——一次函数——一次函数与一元一次不等式.7.如果一次函数y=−x+1的图象与x轴、y轴分别交于A点、B点,点M在x轴上,并且使以点A、B、M为顶点的三角形是等腰三角形,那么这样的点M有().A. 3个B. 4个C. 5个D. 7个答案:B.解析:一次函数y=−x+1中令x=0,解得y=1.令y=0,解得x=1.∴A(1,0),B(0,1),即OA=OB=1.在直角三角形AOB中,根据勾股定理得:AB=√2.分四种情况考虑,如图所示:当BM1=BA时,由BO⊥AM1,根据三线合一得到O为M1A的中点,此时M1(−1,0).当AB=AM2时,由AB=√2,得到OM2=AM2−OA=√2−1,此时M2(1−√2,0).当BA=AM3时,由AB=√2,得到AM3=√2,则OM3=OA+AM3=1+√2,此时M3(1+√2,0).当M4A=M4B时,此时M4与原点重合,此时M4(0,0).综上,这样的M点有4个.故选B.考点:函数——一次函数——一次函数综合题——一次函数与等腰三角形结合.8.如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/S的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).答案:4+2√3.解析:由图②可知,t在2到4秒时,△PAD的面积不发生变化.∴在AB上运动的时间是2秒,在BC上运动的时间是4−2=2秒.∵动点P的运动速度是1cm/s.∴AB=2cm,BC=2cm.过点B作BE⊥AD于点E,过点C作CF⊥AD于点F.则四边形BCFE是矩形.∴BE=CF,BC=EF=2cm.∵∠A=60°.∴BE=ABsin60°=2×√3=√3.2AE=ABcos60°=2×1=1.2∴1×AD×BE=3√3.2×AD×√3=3√3.即12解得AD=6cm.∴DF=AD−AE−EF=6−1−2=3.在Rt△CDF中,CD=√CF2+DF2=√√32+32=2√3.所以,动点P运动的总路程为AB+BC+CD=2+2+2√3=4+2√3.∵动点P的运动速度是1cm/s.∴点P从开始移动到停止移动一共用了(4+2√3)÷1=4+2√3(秒).故答案为:4+2√3.考点:函数——一次函数——一次函数的应用.四边形——梯形.的图像上,OA长为2且∠1=60°。
初中数学一次函数试题

《一次函数》单元检测题姓名小组得分一.选择题(每题3分,共30分)1.下列函数关系式:①xy-=;②;112+=xy③12++=xxy;④xy1=.其中一次函数的个数是( )A. 1个B.2个C.3个D.4个2.函数y=-x-1的图像不经过()象限.A.第一 B.第二 C.第三 D.第四3.已知一次函数y=kx+b的图象如图所示,则k、b的符号是( )(A)k>0,b>0 (B)k>0,b<0(C)k<0,b>0 (D)k<0,b<04.若把一次函数y=2x-3,向上平移3个单位长度,得到图象解析式是( )(A) y=2x (B) y=2x-6 (C) y=5x-3 (D)y=-x-35.若直线y=3x+6与坐标轴围成的三角形的面积为S,则S等于().A.6 B.12 C.3 D.246.下列各曲线中不能表示y是x的函数是()7.若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是()A.)2,0(- B.)0,23( C.(8,20) D.)21,21(8.已知点(-4,y1),(2,y2)都在直线y= -12x+2上,则y1 y2大小关系是( ) (A)y1 >y2(B)y1 =y2(C)y1 <y2(D)不能比较9.龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到达终点。
用1S,S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事相吻合的是()10 .已知一次函数y=ax+4与y=bx-2的图象在x轴上相交于同一点,则ab的值是( )(A) 4 (B) -2 (C)21(D)21-y0 x二.填空题(每小题3分,共30分)1.(1)直线12-=x y 经过第 象限,从左向右 ,y 随x 的增大而 .2.若函数82)3(--=mx m y 是正比例函数,则常数m 的值是 。
初中数学函数复习题及答案
初中数学函数复习题及答案初中数学函数复习题及答案函数作为数学中的重要概念,是学习数学的基础之一。
在初中数学中,函数的学习也是一个重要的内容。
通过复习函数的相关题目,可以帮助学生巩固对函数的理解和运用。
本文将为大家提供一些初中数学函数复习题及答案,希望对大家的学习有所帮助。
一、选择题1. 函数y = 2x + 3的图象是一条()。
A. 直线B. 抛物线C. 正弦曲线D. 余弦曲线答案:A解析:函数y = 2x + 3是一元一次函数,其图象是一条直线。
2. 函数y = x²的图象是一条()。
A. 直线B. 抛物线C. 正弦曲线D. 余弦曲线答案:B解析:函数y = x²是一元二次函数,其图象是一条抛物线。
3. 函数y = sin(x)的图象是一条()。
A. 直线B. 抛物线C. 正弦曲线D. 余弦曲线答案:C解析:函数y = sin(x)是正弦函数,其图象是一条正弦曲线。
二、填空题1. 函数y = 3x - 2的定义域是()。
答案:全体实数解析:一元一次函数的定义域为全体实数。
2. 函数y = x² - 4x + 3的值域是()。
答案:y ≤ 2解析:一元二次函数的值域可以通过求解函数的最值来确定,或者通过绘制函数的图象来观察。
三、解答题1. 已知函数y = 2x + 1和函数y = -x + 3,求两个函数的交点坐标。
解答:将两个函数相等,得到2x + 1 = -x + 3,整理得到3x = 2,解得x = 2/3。
将x的值代入任意一个函数中,求得y的值。
所以交点坐标为(2/3, 5/3)。
2. 已知函数y = x² - 4x + 3,求函数的顶点坐标。
解答:一元二次函数的顶点坐标可以通过求解函数的最值来确定。
首先求导函数,得到y' = 2x - 4。
令y' = 0,解得x = 2。
将x的值代入原函数中,求得y的值。
所以顶点坐标为(2, -1)。
初中数学函数试题及答案
初中数学函数试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项表示的是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = √x答案:A2. 函数y = 3x - 2的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B3. 抛物线y = x^2 - 4x + 3的顶点坐标是?A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)答案:B4. 如果f(x) = 2x + 1,那么f(-3)的值是多少?A. -5C. -3D. 5答案:A5. 函数y = 1/x的图象在哪个象限内y随x的增大而增大?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B6. 函数y = -x + 4与x轴的交点坐标是?A. (0, 4)B. (4, 0)C. (-4, 0)D. (0, -4)答案:B7. 函数y = 2x^2 - 4x + 1的对称轴方程是?A. x = 1B. x = -1C. x = 2D. x = -2答案:A8. 函数y = 3x + 5的图象在y轴上的截距是多少?B. -5C. 3D. -3答案:A9. 抛物线y = x^2 + 2x - 3与y轴的交点坐标是?A. (0, -3)B. (0, 3)C. (0, 2)D. (0, -2)答案:A10. 函数y = 1/x的图象在哪个象限内y随x的增大而减小?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D二、填空题(每题4分,共20分)1. 函数y = 4x - 6的图象在x轴上的截距是_________。
答案:3/22. 函数y = x^2 - 6x + 9的最小值是_________。
答案:03. 函数y = -x + 2与y = 2x - 4的交点坐标是_________。
答案:(2, 0)4. 函数y = 3x + 1的图象在y轴上的截距是_________。
(完整)初中数学三角函数练习题
(完整)初中数学三角函数练习题初中数学三角函数练题1. 求下列三角函数的值:a) sin 30°b) cos 45°c) tan 60°2. 在直角三角形 ABC 中,∠ACB = 90°,AC = 5 cm,BC = 12 cm。
求 sin A、cos A 和 tan A 的值。
3. 如果 sin x = 0.6,求 x 的值(0° ≤ x ≤ 180°)。
4. 已知 sin y = 0.8,求 cos y 的值(0° ≤ y ≤ 180°)。
5. 在直角三角形 DEF 中,∠E = 30°,EF = 6 cm,DE = 8 cm。
求 sin F、cos F 和 tan F 的值。
6. 如果 cos z = 0.4,求 z 的值(0° ≤ z ≤ 180°)。
7. 已知 cos w = 0.7,求 sin w 的值(0° ≤ w ≤ 180°)。
8. 在直角三角形 GHI 中,∠H = 60°,GH = 9 cm,HI = 3 cm。
求 sin G、cos G 和 tan G 的值。
9. 如果 tan v = 1.5,求 v 的值(0° ≤ v ≤ 180°)。
10. 已知 tan u = 2,求 sin u 的值(0° ≤ u ≤ 180°)。
11. 在直角三角形 ___ 中,∠K = 45°,JK = 6 cm,KL = 6 cm。
求 sin L、cos L 和 tan L 的值。
12. 如果 cot t = 0.75,求 t 的值(0° ≤ t ≤ 180°)。
13. 已知 cot s = 4,求 sin s 的值(0° ≤ s ≤ 180°)。
14. 已知cos α = 0.6,求sin^2 α 和cos^2 α 的值。
初中数学练习:函数专题
专题一:一次函数与反比例函数1.(3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.2.(4分)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.3.(3分)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.4.某日上午,甲、乙两车先后从A地出发沿一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是5.在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.6.在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?7.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。
(1) 求v 关于t 的函数表达式(2) 若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?8.(本题满分10分)设一次函数b kx y +=(b k ,是常数,0≠k )的图象过A (1,3),B (-1,-1)(1)求该一次函数的表达式;(2)若点()2,22a a +在该一次函数图象上,求a 的值;(3)已知点C ()11,y x ,D ()22,y x 在该一次函数图象上,设()()2121y y x x m --=,判断反比例函数x m y 1+=的图象所在的象限,说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测试内容(一次函数 反比例函数 二次函数 中等难度) 测试时间 姓名 满分100
一 选择题(每题3分)
1.如果反比例函数x
k y =的图像经过点(-3,-4),那么函数的图像应在( )
A 第一、三象限
B 第一、二象限
C 第二、四象限
D 第三、四象限
2、已知油箱中有油25升,每小时耗油5升,则剩油量P (升)与耗油时间t (小时)之间的函数关系式为( )
A .P =25+5t
B .P =25-5t
C .P =t
525 D .P =5t -25 3、数y =x x 3
-的自变量的取值范围是( )
A .x ≥3
B .x >3
C .x ≠0且x ≠3
D .x ≠0
4.若反比例函数22)12(--=m x m y 的图像在第二、四象限,则m 的值是 ( )
A -1或1
B 小于二分之一的任意实数
C -1 D 不能确定
5.函数x k y =的图象经过点(-4,6),则下列各点中在x
k y =图
象上的是 ( )
A (3,8)
B (3,-8)
C (-8,-3)
D (-4,-6)
6.下列抛物线中,对称轴是x=3的是( )
A .y=-3x 2
B .y=x 2+6x
C .y=2x 2+12x -1
D .y=2x 2-12x +1
7.抛物线y=21x 2-6x +21的顶点坐标是( A .(-3,1) B .(-3,-1) C .(6,3) D .(6,
1)
8.以P (-2,-6)为顶点的二次函数是( )
A .y=5(x +2)2+6
B .y=5(x -2)2+6
C .y=5(x +2)2-6
D .y=5(x -2)2-6 9.将抛物线y=2x 2向左平移1个单位,再向上平移3个单位得到的抛物线,其表达式为( )
A .y=2(x +1)2+3
B .y=2(x -1)2-3
C .y=2(x +1)2-3
D .y=2(x -1)2+3
10.若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )
二 填空题(每题3分)
1.已知反比例函数x
m y 23-=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大;
2. 若反比例函数x
k y 3-=的图象位于一、三象限内,正比例函
数x k y )92(-=过二、四象限,则k 的整数值是________;
3.y=(x -1)2-2可由 的图象向右平移1个单位,再向下平移2个单位得到。
4.函数y=ax 2-2中,当x=1时,y=-4,则函数的最大值是
5.已知二次函数y=41x 2-2
5x +6,当x = 时,y 最小= ;当x 时,y 随x 的增大而减小。
6.已知二次函数y=x 2-2(m -1)x +m 2-2m -3的图象与函数y=-x 2+6x 的图象交于y 轴上一点,则m=
三 解答题
1、(6)北京到天津的低速公路约240千米,骑自行车以每小时20千米匀速从北京出发,t 小时后离天津S 千米.
(1)写出S 与t 之间的函数关系式;
(2)回答:①8小时后距天津多远②出发后几小时,到两地距离相等
2、(5分)已知:反比例函数x
k y =和一次函数12-=x y ,其中一次函数的图像经过点(k ,5).
(1) 试求反比例函数的解析式;
(2) 若点A 在第一象限,且同时在上述两函数的图像上,求A 点的
坐标;
3.(6分)已知二次函数y=x 2+bx +c 的图象过(1,0),(2,5)
两点,求这个二次函数的表达式。
4.(8分)二次函数y=(m-2)x2+(m+3)x+m+2的图象过点(0,5)
(1)求m的值,并写出二次函数的表达式;
(2)求出二次函数图象的顶点坐标、对称轴。
5.(10分)已知二次函数y=ax2+bx+c的图象开口向上,且经过(0,-1)和(3,5)两点,图象的顶点到x轴的距离等于3,求这个函数的表达式。
6.(10分)将进货单价为40元的商品按50元售出时,就能卖出500个,已知这个商品每个涨价1元,其销售量就减少10个。
(1)问:为了赚得8000元的利润,售价应定为多少这时进货多少个(2)当定价为多少元时,可获得最大利润
…。