纳米硅碳负极材料研究报告
硅碳纳米负极材料

硅碳纳米负极材料简介硅碳纳米负极材料是一种新型的负极材料,由硅、碳以及纳米级的颗粒组成。
它具有优异的电化学性能和稳定性,被广泛应用于锂离子电池等能源存储领域。
本文将详细介绍硅碳纳米负极材料的特点、合成方法、性能评价以及应用前景。
特点1. 高容量硅碳纳米负极材料的最大特点是具有高容量。
由于硅元素的特殊性质,硅碳纳米材料可实现比传统碳负极材料更高的容量。
这是因为硅具有较高的理论比容量,为4200mAh/g,远远超过了传统碳负极材料的372mAh/g。
因此,硅碳纳米负极材料成为提高电池储能密度的重要选择。
2. 优异的循环性能硅碳纳米负极材料具有优异的循环性能。
由于硅碳材料结构特殊,通过纳米化技术可以使硅颗粒与碳基负极材料充分结合,形成稳定的复合结构。
该结构能够缓解硅材料充放电过程中的体积膨胀和收缩,从而提高其循环稳定性和抗容量衰减能力。
3. 优秀的电导率硅碳纳米负极材料的电导率较高。
硅和碳的复合结构使得电子在硅碳颗粒之间容易传导,同时硅碳颗粒之间的间隙有利于锂离子的传输。
因此,硅碳纳米材料能够有效提高电池的充放电性能和功率输出能力。
合成方法硅碳纳米负极材料的合成方法多种多样,下面介绍两种常用的方法。
1. 溶液热解法溶液热解法是一种常用的合成方法。
首先,将硅源和碳源溶解在适当的有机溶剂中,形成一个混合溶液。
然后,将混合溶液转移到高温炉中,在一定的反应温度下进行热解。
最后,通过洗涤、离心等方法获取硅碳纳米材料。
2. 气相沉积法气相沉积法是另一种常用的合成方法。
该方法需要使用化学气相沉积设备,在适当的反应温度和气氛条件下进行。
通常,硅源和碳源会以气体的形式输入反应器中,然后在催化剂的作用下进行反应。
最终,硅碳纳米材料会在反应器壁上沉积形成。
性能评价硅碳纳米负极材料的性能评价主要包括容量、循环性能和电导率等方面。
1. 容量测试容量测试是评价硅碳纳米负极材料容量性能的重要指标。
常用的测试方法包括恒流充放电测试和循环伏安法。
碳、硅及磷酸钛锂纳米复合膜锂离子电池负极材料的研究

碳、硅及磷酸钛锂纳米复合膜锂离子电池负极材料的研究随着信息技术、手持式机械和电动汽车的迅猛发展,对高效能电源的需求急剧增长,高能量密度、高功率密度的锂离子电池已经成为目前发展最为迅速的领域之一。
一方面,随着化石类能源的不断消耗,以及人们环保意识的加强,传统能源消耗方式必将发生改变;另一方面,太阳能、风能等新型能源仍然存在很大的局限性,比如供能间歇式的问题。
所以,锂离子电池的发展是必然趋势。
锂离子电池是在锂电池的基础上发展起来的一类新型电池,在锂离子电池中采用可使锂离子嵌入和脱出的碳材料代替纯锂作为负极,锂离子电池具有安全性能高、循环寿命好、高比能量、高电压、等优点,在众多储能器件中优点突出。
提高锂离子电池的关键在于正负极材料,而正极材料的比容量很难提高,因此提升锂离子电池储能密度要在负极材料上着手。
硅作为负极材料,理论比容量高,自然界储量丰富,储锂电位低,是最具潜力的新一代锂离子电池负极材料,具有十分广阔的发展应用前景。
但需要解决硅在脱、嵌锂过程中的体积效应,以及低电导率问题,解决方法主要是纳米化和缓冲介质。
采用PVD法制备多层膜结构的碳、硅及磷酸钛锂复合薄膜,纳米硅层和碳缓冲层都可以有效缓解了硅在充放电过程中的体积膨胀,从而改善锂离子电池的循环效应,磷酸钛锂的引入能够增加硅的离子电导率,加快了活性物质活化。
实验发现,复合薄膜的循环性能欠佳,猜测是由于薄膜的结晶性不好引起的,因此对薄膜进行不同温度的热处理,发现薄膜的结晶性发生改变,循环性能能够得到很大改善。
1.1前言随着社会以及科技的进步,不论是基础工业,还是新兴科技产业,都对能源有着越来越大的需求,能源作为社会发展的重要动力,一直受到极高的重视,各类新型能源不断诞生,如风能、太阳能、地热能等。
考虑到持续长时间供电,以及石油天然气不可再生问题及对环境造成污染问题,对高能量密度高功率密度的锂离子电池的需求越来越迫切。
现如今,电动自行车、电脑、手机等各类电子产品在人们的生活当中愈发重要,因此对高储能设备的依赖性也越来越大,对二次电池的需求不断增加。
纳米硅碳负极材料研究报告

纳米硅碳负极材料研究报告0 引言自 1991 年 SONY 公司以石油焦炭为负极材料将锂离子电池推向商业化以来,因其出色的循环寿命、较高工作电压、高能量密度等特性,锂离子电池一经推出就受到人们的广泛关注,迅速成为能源储存装置中的明星。
近年来,随着新能源交通工具(如 EV 和 HEV)的发展,对锂离子电池提出了更高的要求。
作为锂离子电池关键部分的负极材料需要具备在 Ii 的嵌入过程中自由能变化小,反应高度可逆;在负极材料的固态结构中有高的扩散率;具有良好的电导率;优良的热力学稳定性以及与电解质良好的相容胜等。
研究者们通过开发具有新颖纳米结构的碳材料和非碳材料,来提高作为锂离子电池负极的嵌铿性能。
然而,这些新颖的材料,如 Sn, Si, Fe、石墨烯、碳纳米管,等,虽然其理论嵌1铿容量较高(Sn 和 Si 的理论嵌铿容量分别为 994mAh/g 和 4 200 mAh/g ,但由于制备工艺相当复杂,成本较高,而且在充放电过程中存在较大的体积变化和不可逆容量。
因此,若将其进行商业化应用还需要解决许多问题。
锂离子电池具有高电压、高能量、循环寿命长、无记忆效应等众多优点,已经在消费电子、电动土具、医疗电子等领域获得了少’一泛应用。
在纯电动汽车、混合动力汽车、电动自行车、轨道交通、航空航天、船舶舰艇等交通领域逐步获得推少’一。
同时,锉离子电池在大规模可再生能源接入、电网调峰调频、分布式储能、家庭储能、数据中心备用电源、通讯基站、土业节能、绿色建筑等能源领域也显示了较好的应用前景1 不同负极材料的特点评述天然石墨有六方和菱形两种层状品体结构同,具有储量大、成本低、安全无毒等优点。
在锉离子电池中,天然石墨粉末的颗粒外表面反应活性不均匀,品粒粒度较大,在充放电过程中表面品体结构容易被破坏,存在表面 SEI 膜覆盖不均匀,导致初始库仑效率低、倍率性能不好等缺点。
为了解决这些问题,可以采用颗粒球形化、表面氧化、表面氟化、表面包覆软碳、硬碳材料以及其它方式的表面修饰和微结构调整等技术对天然石墨进行改性处理。
清华大学硅碳负极方面的研究

清华大学关于硅碳复合负极材料方面的专利汇总清华大学化学工程系魏飞教授关于硅碳负极方面的专利在soopat或佰腾专利搜索只能检索到一篇(201510395054.7),且还未授权,其专利大致情况如下所示:该硅碳复合材料是一种核壳结构,其中以硅或其氧化物为核,石墨烯为壳的亚/微米颗粒,所得材料的粒径尺寸在0.05-15um之间,石墨烯的重量占核壳结构颗粒总重量的1-8wt%,且核壳结构的比表面积等于或小于原始硅或其氧化物颗粒的比表面积。
制备的复合材料宏观形貌为球形、棒状、片状、不规则多面体形状。
其制备方法包括如下步骤:1)在常温下,将含碳粘合剂(如直连、直链淀粉、葡萄糖、多羟基醇)溶于去离子水中,持续搅拌并缓慢加热至50-100℃,保持恒温1-6小时,得到粘性液体;2)将粒径为0.1um-10um的硅或其氧化物颗粒加入到步骤1)所制备的粘性液体中,搅拌得到固含量为30-60wt%悬浊液浆料;3)将步骤2)得到的浆料进行喷雾造粒,得到粒径分布在50-300um之间的多孔球形颗粒,即二级结构颗粒;4)将步骤3)得到的二级结构颗粒填充到流化床中,在惰性气氛中加热至反应温度700-1000℃,然后通入碳源(如甲烷、乙烷、乙烯、乙炔、甲苯、苯等),惰性气体和碳源的总空速为500-900 h-1,保持碳源与惰性气体的体积比在0.5-2之间,进行化学气相沉积,反应时间为20-60min,得到粒径尺寸为0.05-15um的石墨烯包覆的硅或其氧化物核壳结构。
清华大学材料系黄正宏教授有一篇关于硅碳负极方面的专利(200910082897.6)。
该专利的大致情况如下所示。
该复合负极材料由基体和均匀分布其中的颗粒组成,其中颗粒是一种具有纳米尺寸的核壳结构颗粒;所述纳米颗粒的核为纳米硅,壳为有机物热解得到的无定型碳,所述的基体是高压静电电纺制备的有机纤维热解碳化后得到的,为不规则多孔洞的无定型碳网络结构。
其大致步骤如下:1)在室温90℃的水浴中,利用机械搅拌或磁力搅拌,将无定型碳的有机前驱体均匀溶于溶剂中,形成透明的溶液;2)将纳米硅颗粒均匀分散于与步骤1)中的相同的溶剂中后,再与步骤1)中的溶液混合搅拌,使得纳米硅颗粒均匀地分布于有机前驱体中;3)将步骤2)中所得的悬浊液进行高压静电电纺,得到的产物在惰性气体保护下碳化,以1℃/min速度升温至溶剂沸点温度,保温0.5-3小时,使得溶剂完全挥发;继续以5-10℃/min速度升温至400-1000℃,保温0.5-5小时,随炉冷却,使得纳米硅粉被无定形碳包覆,且均匀分散于碳基体中。
硅碳负极材料的合成与性能表征

摘要Si具有理论容量高、工作电位适宜、储量高等优点,是一种理想的锂离子电池负极材料。
由于Si在锂脱/嵌时会产生显著的体积膨胀,导致电极材料结构崩塌、电池容量急速衰减,从而限制Si材料的规模化应用。
针对以上问题,本文将Si纳米颗粒与碳材料复合制备了Si/C负极材料,在控制充放电过程中体积膨胀效应的同时,进一步提高其电化学循环稳定性能。
本文研究内容和结果如下:(1)通过一步水热法合成了Si/C复合材料(M-Si/C),复合材料中Si颗粒的外层具有结构完整的碳包覆层,碳材料可显著降低Si在体积膨胀条件下的内应力,且避免其与电解液接触,在0.2A·g−1电流密度下循环100次后比容量具有510mAh·g−1,在200次循环后容量保持率在80%以上;(2)通过一步水热法得到Si/C多孔微球复合结构(P-Si/C),其中纳米Si颗粒像石榴籽一样均匀嵌入在碳球中,在0.5A·g−1电流密度下循环100次后比容量仍有530mAh·g−1,容量保持率为79.3%,即使将电流密度提升到1A·g−1,比容量也能稳定在420mAh·g−1;(3)利用滤纸作为碳骨架和葡萄糖的聚合作用制备了具有三维结构的Si/C复合材料(F/G/Si),在0.2A·g−1的电流密度下循环100次后仍然拥有422mAh·g−1放电比容量,并且在0.5A·g−1电流密度下的倍率比容量为400mAh·g−1。
关键词硅碳材料;电化学性能;微观结构;倍率性能;比容量AbstractSi, with advantages of high theoretical capacity, appropriate operating potential and high natural reserves, belongs to a new type of lithium ion battery cathode material. However, in practical applications, silicon produces distinct volume expansion when removing/embedding lithium, leading to a rapid decline in battery capacity, which hinders the commercialization of Si cathode. In view of the above problems, Si nanoparticles are compounded with a variety of carbon materials and Si/C anode materials are prepared in this paper. Through structural design, the electrode conductivity increases and the volume change level during charge and discharge reduces.The research contents and results of this paper are as follows:(1)The Si/C composite material (M-Si/C) is synthesized by one-step hydrothermal method. The outer layer of Si particles in the composite material has a structurally complete carbon coating. The carbon material could significantly reduces the internal stress of Si under the condition of volume expansion and avoids its contact with electrolyte. At the current density of 0.2A·g−1, the specific capacity is 510mAh·g−1 after 100 cycles, and the capacity retention rate is above 80% after 200 cycles.(2)The composite structure of Si/C porous microspheres (P-Si/C) is obtained by one-step hydrothermal method, in which the Si nanoparticles are evenly embedded in the carbon spheres like pomegranate seeds. At the current density of 0.5A·g−1, the specific capacity is still 530mAh·g−1after 100 cycles, with A capacity retention rate of 79.3%. Even if the current density increases to 1A·g−1, the reversible specific capacity could be reached to 420mAh·g−1 .(3)Using filter paper as carbon skeleton, Si/C composites (F/G/Si) with three-dimensional structure are prepared by the polymerization of glucose. At the current density of 0.2A·g-1, the circulating capacity could reach 422mAh·g−1embedded lithium capacity after 100 cycles, and the capacity could still be stable after 50 cycles.Key words Silicon carbon material; Electrochemical properties; Microstructure;Multiplier performance; Specific capacity of charge and discharge目 录摘要 (I)Abstract (III)第1章绪论 (1)1.1 引言 (1)1.2 锂离子电池介绍 (1)1.2.1 锂离子电池的工作原理 (1)1.2.2 锂离子电池的特点 (2)1.3 锂离子电池电极材料 (3)1.3.1 正极材料 (3)1.3.2 负极材料 (4)1.4 硅基材料 (6)1.4.1 硅纳米化 (6)1.4.2 硅氧化物 (7)1.4.3 硅基合金材料 (7)1.4.4 硅碳复合材料 (8)1.5 课题研究内容 (10)第2章实验原料及方法 (13)2.1 实验药品 (13)2.2 实验仪器 (13)2.3 材料表征 (14)2.4 材料电化学性能测试 (15)第3章DMF溶液对制备M-Si/C复合材料的性能影响 (17)3.1 M-Si/C复合材料制备 (17)3.2 M-Si/C复合材料结构表征 (17)3.3 M-Si/C复合材料电化学性能 (22)3.4 本章小结 (26)第4章石榴状结构P-Si/C微球的制备及其电化学性能研究 (29)4.1 P-Si/C复合材料制备 (29)4.2 P-Si/C复合材料结构表征 (29)4.3 P-Si/C复合材料电化学性能 (33)4.4 循环后的扫描电子显微镜测试结果分析 (36)4.5 本章小结 (36)第5章柔性电极F/G/Si复合材料的制备及其电化学性能研究 (37)5.1 柔性电极F/G/Si复合材料制备 (37)5.2 柔性电极F/G/Si复合材料表征 (37)5.3 柔性电极F/G/Si复合材料电化学性能 (42)5.4 本章小结 (46)结论 (48)参考文献 (50)致谢 (58)第1章绪论1.1 引言随着经济发展和能源需求的不断高涨,加剧了人们对化石燃料的过度使用。
纳米硅碳负极材料的粒度标准

纳米硅碳负极材料的粒度标准
纳米硅碳负极材料的粒度标准因应用领域和产品类型
而异。
一般来说,纳米硅碳负极材料的粒度范围在50-500nm 之间,但具体数值需要根据产品的应用场景和性能要求进行选择和调整。
在锂离子电池领域,纳米硅碳负极材料需要与正极材料相匹配,因此需要控制粒度大小和分布,以获得更好的电化学性能。
一般来说,较小的粒度能够提高材料的比表面积和反应活性,但过小的粒度可能导致材料粉化、易团聚等问题。
因此,纳米硅碳负极材料的粒度需要在保证电化学性能的同时,兼顾生产工艺和稳定性要求。
此外,不同类型和用途的纳米硅碳负极材料也有不同的粒度标准。
例如,一些硅碳复合材料需要将硅纳米颗粒分散在碳基质中,因此需要控制硅颗粒的大小和分布;而一些氧化亚硅碳复合材料则需要控制氧化亚硅纳米颗粒的大小和
分布。
总之,纳米硅碳负极材料的粒度标准需要根据具体的应用场景和性能要求进行选择和调整,以保证材料的性能和稳定性。
硅碳负极研究发展现状

(姜玉珍山东青岛青岛华世洁环保科技有限公司)锂离子电池以能量密度高、循环寿命长和对环境友好等优点正在逐步取代镍氢电池,成为最有前途的储能装置。
特别在最近几年,随着新能源汽车、便携式电子产品的高速发展,锂离子电池得到了更广泛的关注和更为深入的研究。
负极材料是锂离子电池的重要组成部分,它直接影响着电池的能量密度、循环寿命和安全性能等关键指标。
未来的锂离子电池负极材料必须向高容量方向发展,才能解决现有电池能量密度低的问题。
硅材料是一种具有超高比容量(理论容量4200 mAh/g)的负极材料,是传统碳系材料容量的十余倍,且放电平台与之相当,因此被视作下一代锂离子电池负极材料的首选。
然而,纯硅在充放电过程中会发生巨大的体积变化(体积膨胀率300%),导致其粉化,进而影响到电池的安全性。
另一方面,纯硅的电子导电率较低,很难提升锂离子电池的大电流充放电能力。
针对上述两方面问题,国内外学者展开了大量的研发工作,本文就硅碳负极的研究发展现状进行综述。
1、硅碳负极目前存在的主要问题在锂离子电池首次充电过程中,锂离子嵌入硅碳负极造成硅的体积膨胀,放电时,随着锂离子的脱出,硅碳负极体积收缩,硅的这种体积上的变化会产生大量的不可逆容量损失。
造成首次放电效率低。
随着充放电循环次数的增加,硅的体积膨胀会使得初次形成的SEI膜不断遭到破坏,同时体积膨胀会露出新鲜的负极表面,新鲜表面又会与电解液、锂离子反应再次形成SEI膜,如此循环往复,锂离子电池的容量不断降低,循环衰减严重,导致寿命降低。
此外,纳米级的硅粉价格较高,硅碳负极成本问题也是制约其发展的又一因素。
针对首次效率低、循环容量衰减严重的问题,专家学者们通过复合改性、纳米化等各种方式进行研究。
2、硅碳负极制备方法、静电纺丝吉林师范大学的曲超群等人通过静电纺丝制备出了硅碳负极粉料。
其过程为:将PVP溶于乙醇制备L的溶液,按照Si:PVP=1:5加入硅粉,磁力搅拌、超声分散均匀,以静电纺丝方式制备前驱体,所得纺丝前驱体在马弗炉中以5 ℃/min的速率升温至230℃预氧化30 min,然后置于通有氩气保护的管式炉中650℃烧结7 h随炉冷却后即得Si/C复合材料。
纳米硅颗粒负极材料制备及性能分析

纳米硅颗粒负极材料制备及性能分析纳米硅颗粒负极材料是一种新型的锂离子电池负极材料,具有高比容量、高能量密度、长循环寿命等特点,因此被广泛应用于电动汽车、智能手机等领域。
本文将介绍纳米硅颗粒负极材料的制备方法以及其性能分析。
一、纳米硅颗粒负极材料的制备方法1、溶胶凝胶法此法通常利用硅、硅烷(SiH4)或硅乙烷(SiH6)等为原料,将其溶于合适的溶剂(如乙醇、水等)中形成溶液,加入适量的催化剂(如HCl、NH3等),形成溶胶悬浮液。
将溶胶悬浮液放入恒温干燥箱中干燥,形成硅凝胶。
随后,将硅凝胶与适量的碳源(如蔗糖、麦芽糖等)一起放入炉中,在惰性气体(N2或Ar)下热解得到硅碳复合材料。
最后,将硅碳复合材料进行球磨处理,得到具有纳米级粒径的纳米硅颗粒。
2、高温焙烧法此法将硅粉末或硅源与适量的碳源混合均匀,然后在高温下热解制备纳米硅颗粒。
焙烧温度一般在1000℃左右,焙烧过程中碳源会发生氧化反应,生成CO和CO2,从而使硅粉末与碳源之间的反应进行下去。
最终得到纳米硅颗粒。
3、机械球磨法此法将硅粉末与碳源混合后放入球磨机中,进行机械球磨、振荡处理,反应生成纳米硅颗粒。
在球磨过程中,硅和碳源颗粒之间发生反应,形成硅碳化物,然后再通过球磨机的振荡作用,使硅碳化物颗粒分解成纳米硅颗粒。
二、纳米硅颗粒负极材料的性能分析1、高比容量纳米硅颗粒负极材料具有高比容量的特点,主要是由于纳米硅颗粒具有较大的比表面积。
在锂离子电池充放电过程中,锂离子可以在纳米硅颗粒表面和内部进行嵌入和脱嵌反应,从而实现高比容量。
2、高能量密度纳米硅颗粒负极材料可以实现高能量密度的储存,主要是由于利用纳米硅颗粒的高比容量和高放电电位进行锂离子的储存。
锂离子在纳米硅颗粒表面和内部进行嵌入和脱嵌反应,从而释放出较高的电压和电流,实现高能量密度的储存。
3、长循环寿命纳米硅颗粒负极材料具有较长的循环寿命,主要是由于其较高的充放电比容量和体积稳定性。
纳米硅颗粒可以在锂离子电池的充放电循环中保持稳定的体积和形态,从而不影响锂离子的传输和反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米硅碳负极材料研究报告
0引言
自1991年SONY公司以石油焦炭为负极材料将锂离子电池推向商业化以来,因其出色的循环寿命、较高工作电压、高能量密度等特性,锂离子电池一经推出就受到人们的广泛关注,迅速成为能源储存装置中的明星。
近年来,随着新能源交通工具(如EV和HEV)的发展,对锂离子电池提出了更高的要求。
作为锂离子电池关键部分的负极材料需要具备在Ii 的嵌入过程中自由能变化小,反应高度可逆;在负极材料的固态结构中有高的扩散率;具有良好的电导率;优良的热力学稳定性以及与电解质良好的相容胜等。
研究者们通过开发具有新颖纳米结构的碳材料和非碳材料,来提高作为锂离子电池负极的嵌铿性能。
然而,这些新颖的材料,如Sn, Si, Fe、石墨烯、碳纳米管,等,虽然其理论嵌铿容量较高(Sn和Si的理论嵌铿容量分别为994mAh/g和4 200 mAh/g ,但由于制备工艺相当复杂,成本较高,而且在充放电过程中存在较大的体积变化和不可逆容量。
因此,若将其进行商业化应用还需要解决许多问题。
锂离子电池具有高电压、高能量、循环寿命长、无记忆效应等众多优点,已经在消费电子、电动土具、医疗电子等领域获得了少’一泛应用。
在纯电动汽车、混合动力汽车、电动自行车、轨道交通、航空航天、船舶舰艇等交通领域逐步获得推少’一。
同时,锉离子电池在大规模可再生能源接入、电网调峰调频、分布式储能、家庭储能、数据中心备用电
源、通讯基站、土业节能、绿色建筑等能源领域也显示了较好的应用前景
1不同负极材料的特点评述
天然石墨有六方和菱形两种层状品体结构同,具有储量大、成本低、安全无毒等优点。
在锉离子电池中,天然石墨粉末的颗粒外表面反应活性不均匀,品粒粒度较大,在充放电过程中表面品体结构容易被破坏,存在表面SEI膜覆盖不均匀,导致初始库仑效率低、倍率性能不好等缺点。
为了解决这些问题,可以采用颗粒球形化、表面氧化、表面氟化、表面包覆软碳、硬碳材料以及其它方式的表面修饰和微结构调整等技术对天然石墨进行改性处理。
从成本和性能的综合考虑,目前土业界石墨改性主要使用碳包覆土艺处理。
商业化应用的改性天然石墨比容量为340~ 370 mA·h/g,首周库仑效率90%~93%,100% DOD循环寿命可达到1000次以上,基本可以满足消费类电子产品对小型电池的性能要求。
2硅碳负极材料应用前景
近年来,我国锂离子电池产业发展迅速,全球市场份额不断攀升,在大规模的锂离子电池产业投资的带动下,锂离子电池负极材料的需求不断上升。
硅负极相比石墨负极具有更高的质量能量密度和体积能量密度,采用硅负极材料的锉离子电池的质量能量密度可以提升8%以上,体积能量密度可以提升10%以上,同时每千瓦时电池的成本可以下降至少3%,因此硅负极材料将具有非常广阔的应用前景。
新能源汽车产业是全球汽车产业的发展方向,也是我国重要的新兴战略产业之一,未来10年将迎来全球汽车产业向新能源汽车转型和升级的战略机遇。
新能源汽车主要包括纯电动汽车、插电式混合动力汽车及燃料电池汽车。
其中,纯电动汽车完全使用动力电池驱动,对电池容量需求最大,要求锉离子电池容量平均为30 kW /h。
自2010年起,动力类锉离子电池受益于技术提升和成本降低,逐渐替代镍锅,镍氢电池,成为新能源汽车广泛使用的动力电池。
根据中国汽车工业协会统计,我国新能源汽车产量由2011年的8000辆左右增至2015年的34万辆,而销量则由2011年的8000辆左右增至2015年的33万辆,年均复合增长率均超过150% o在各种利好政策的影响下,2014
年至今我国新能源汽车产业迎来了爆发性的增长,将带动上游锉离子电池及负极材料市场规模的大幅提升,而纳米硅碳负极材料高能量密度的特点将颇具竞争优势。
同时,航空航天、船舶舰艇等领域也对锉离子电池提出了更高能量密度和功率密度的要求,而纳米硅碳材料也是现阶段最具有开发潜力的锉离子电池负极材料,其应用前景非常广阔。
3常见硅碳负极材料分类
目前比较常见的硅碳负极材料主要有以下几类:①碳包覆纳米硅;②氧化亚硅碳复合材料;
③硅纳米线;④变氧型氧化亚硅碳复合材料;⑤无定形硅合金,碳包覆纳米硅是以纳米硅为原材料,表面包覆碳层的结构。
其中硅材料的粒径为30~200 nm,碳层多采用沥青高温碳化处理后形成的软碳。
其单体容量一般为400~2000 mAh/g,成本较低,首效较高,但电池膨胀较大,长循环稳定性较差。
氧化亚硅碳复合材料是以氧化亚硅材料为核,这里的氧化亚硅一般是采用化学气相沉积法将2 ~10 nm的硅颗粒均匀分布在Si0:的基质中。
其单体容量一般为1300~1700 mAh/g。
由于硅材料颗粒更小、分散更加均匀且材料结构更加致密稳定,该材料膨胀较低,拥有非常好的长循环稳定性。
但是由于Si0:首周与锉发生不可逆反应,该材料的首效一般较低,且成本较高,一定程度上限制了其在全电池中的使用。
硅纳米线指的是通过特殊的工艺,制备出严格控制长径比的圆柱状纳米硅颗粒,再在颗粒表面包覆碳层。
这种结构的材料比容量和首效都较高,但是需要配合成熟的预理化技术才能满足SEI膜对锉的不断消耗以确保长循环稳定性,工艺上存在一定难度。
变氧型碳氧化亚硅碳复合材料指的是在碳包覆氧化亚硅的基础上,通过对原材料的特殊处理,改变原材料中氧元素的含量,从而达到提升材料首效或者改善材料循环性能的目的。
其单体容量一般为1300~1700 mAh/g。
该材料同时可以具有较高的首效和较好的长循环稳定性,是目前比较高端的硅碳材料之一。
3物理研发进展
在碳包覆纳米硅方面,由早期的结构逐渐转变为更加致密的核桃结构,面向不同的市场需求开发出了低容量和高容量两个方向。
其中,低容量材料主要通过掺混更多的石墨来缓解应变、抑制反弹,同时结合液相分散工艺和表面包覆软碳等措施,使材料与当前商业化的电池体系相容性更高。
如400 mAh/g的碳包覆纳米硅材料,首周效率可达91 % , 600周后容量保持80%(负载3 mAh/cm2,反弹后压实1.32 g/cm2,图1)。
在高容量材料方面,由于硅含量较高,其体积膨胀所带来的后续循环稳定性问题较大,项目组则是从原材料出发,制备了一种粒径更小(D50<100nm)的掺杂纳米硅作为原材料[6],并在此基础上开发出使表面包覆更加均匀且更加适合于规模化生产的气相包覆工艺,提升材料性能。
如500 mAh/g的碳包覆纳米硅材料,首周效率可达88%, 500周后容量保持80%(负载3 mAh/cm2,反弹后压实1.21/cm2。
在氧化亚硅碳复合材料方面,已经有较为成熟的软碳包覆工艺,在固相条件下对原材料表面进行高温热处理,可以有效提高材料首效、增加导电性、缓解膨胀。
目前,项目组已经可以制备扎匕次稳定性较高的碳包覆氧化亚硅材料,并且在合作单位取得了较好的测试结果反馈。
如420 mAh/g的碳包覆氧化亚硅材料,匹配正极锉镍锰酸铝(NCA),制备成3 A/h规格为20650的钢壳电池,在1 C充电、lOC放电的测试条件下,循环500周容量保持80%(图3)。
另外,为了解决氧化亚硅碳复合材料存在的首效较低的问题,开发了一种对原材料的新型处理工艺,可以降低氧化亚硅材料中氧元素的含量。
4发展现状及存在的问题
纳米硅在硅基负极材料中得到了广泛的认可,但仍存在比表面积较大、库仑效率较低等问题。
针对这些问题,化学所项目组研发出一种低成本、绿色无污染、灵活可控的大规模硅基负极材料制备工艺,通过纳微复合结构降低了材料的比表面积,提高了材料的首次库仑效率;且将纳米硅均匀分散在三维导电碳网络中,提升了材料的导电性,使其具有较好的倍率性能。
然而,在高压实密度和高质量负载的情况下,要实现优异的电化学性能依然富有挑战。
随着消费电子类产品的更新换代、新能源汽车产业的蓬勃发展、智能电网的迅速推少’一以及其它技术领域对高性能电池的旺盛需求,离子电池产业必将在未来10~20年持续高速发展。
这为我国锂离子电池负极材料产业的发展提供了很大的机遇,但同时也提出了甲高的要求。
在电化学性能方面,其它负极材料都还存在着不同程度的不足。
硬碳材料首周效率低,成本较高;软碳材料首周不可逆容量大,体积能量密度低;高容量的硅基负极材料首周效率、循环性能、倍率性能都还有待提高,体积膨胀问题也需要解决。
虽然已经通过各种改性处理方法不断完善这些负极材料的制备土艺,并逐渐开发了适合这些材料的电池,但是这些新材料的产业化程度和技术成熟度与石墨类碳材料相比还有一定距离,针对材料在各类电池中应用时的电化学反应、储锉机制、热力学、动力学、稳定性、界面反应等基础科学问题的深入研究,综合性能指标改进、材料匹配性、服役与失效机制等关键技术攻关、寻找创新的综合技术解决方案是下一阶段的主要任务。
5总结与展望
随着电动汽车、消费电子以及储能等领域对锉离子电池能量密度、功率密度等要求的不断提高,纳米硅碳负极材料在未来一段较长时间内将拥有广阔的应用前景。
目前硅碳负极材料的总产量尚不足锉电负极材料的1%,不过随着各大负极企业的扩产和新企业的崛起,预计硅碳材料在2018年底会正式大批量进入市场。
尽管目前对于硅颗粒嵌锉膨胀、SEI膜不断破裂生长消耗锉源和电解液等问题还没有非常完美的解决方法,然而经过国内外各大型企业和科研院所的多年努力,部分纳米硅碳负极材料已得到电芯企业的认可。
中国科学院掌握了硅碳负极材料早期的核心专利,在产业化方面也不落人后,相信随着各种新思路的涌现以及各种工艺路线的不断优化,一定会将纳米硅碳负极材料的优势更加合理地发挥出来。
【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。