平面向量的基本定理极坐标表示
平面向量的基本定理及坐标表示

课题 平面向量的基本定理及坐标表示1. 平面向量的基本定理:如果1e ,2e 是同一平面内两个 的向量,a 是这一平面内的任一向量,那么有且只有一对实数,21, 使 。
其中,不共线的这两个向量,1e 2e叫做表示这一平面内所有向量的基底。
注意:(1) 我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底1e ,2e 的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a,1e ,2e 唯一确定的数量2.两向量的夹角与垂直::我们规定:已知两个非零向量,a b ,作 OA ,a OB b ,则 叫做向量a 与b 的夹角。
如果, AOB 则 的取值范围是 。
当 时,表示a 与b 同向; 当 时,表示a 与b 反向; 当 时,表示a 与b 垂直。
记作:a b r r .在不共线的两个向量中,90 o ,即两向量垂直是一种重要的情形,把一个向量分解为_____________,叫做把向量正交分解。
3、向量的坐标表示:在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个_______作为基底。
对于平面内的任一个向量,由平面向量基本定理可知,有且只有一对实数x ,y 使得____________,这样,平面内的任一向量v a 都可由__________唯一确定,我们把有序数对________叫做向量的坐标,记作___________此式叫做向量的坐标表示,其中x 叫做v a 在x 轴上的坐标,y 叫做va 在y 轴上的坐标。
练习1、已知梯形ABCD 中,//AB DC ,且2AB CD ,E 、F 分别是DC 、AB 的中点,设AD a u u u r r ,AB b u u u r r 。
试用,a b r r 为基底表示DC u u u r BC u u u r 、.例2、已知O 是坐标原点,点A 在第一象限,43OA u u u r ,60xOA o ,求向量OA u u u r 的坐标.练习3、已知点A (2,2), B (-2,2), C (4,6) , D (-5,6), E (-2,-2), F (-5,-6)求向量u u u v u u v u u v AC BD EF 的坐标。
平面向量基本定理及向量坐标表示

平面向量基本定理及向量坐标表示一、平面向量基本定理平面向量基本定理是平面向量运算中的重要基石。
基本定理表明,一个平面向量可以通过两个非零平面向量的线性组合来表示。
设有平面向量 a 和 b,以及任意实数 k1 和 k2,则有:a和b,以及任意实数 k1 和 k2,则有:v = k1a + k2b = k1a + k2b其中,k1 和 k2 是实数,称为 a 和 b 的系数,v 是由 a 和 b 组成的平面向量。
a和b的系数,v是由a和b组成的平面向量。
这一定理的证明较为简单,可根据向量加法和数量乘法的定义进行推导。
二、向量坐标表示向量坐标表示是在向量运算中常用的表示方法。
它将向量转化为有序数对或有序三元组的形式,便于进行计算和研究。
以平面向量为例,设平面上有向量 v,其起点坐标为 (x1, y1),终点坐标为 (x2, y2)。
则向量 v 的坐标表示为:v,其起点坐标为(x1, y1),终点坐标为 (x2, y2)。
则向量v的坐标表示为:其中,Δx = x2 - x1,Δy = y2 - y1。
同样,可以进行类似的推导,将三维空间中的向量用坐标表示。
向量坐标表示可以便捷地进行向量的加法、减法和数量乘法等运算,是向量分析的基础。
三、小结本文介绍了平面向量基本定理及向量坐标表示。
平面向量基本定理表明一个平面向量可以通过两个非零平面向量的线性组合来表示。
向量坐标表示将向量转化为有序数对或有序三元组的形式,方便进行运算和研究。
了解和掌握平面向量基本定理和向量坐标表示,对于进一步学习和应用向量运算具有重要意义。
平面向量的基本定理及坐标表示(含解析)

归纳与技巧:平面向量的基本定理及坐标表示基础知识归纳一、平面向量基本定理及坐标表示 1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 3.平面向量的坐标表示(1)在平面直角坐标系中,分别取与x 轴,y 轴方向相同的两个单位向量i ,j 作为基底.对于平面内的一个向量a ,有且只有一对实数x ,y ,使a =x i +y j ,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ),其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标.(2)设OA =x i +y j ,则向量OA 的坐标(x ,y )就是终点A 的坐标,即若OA=(x ,y ),则A 点坐标为(x ,y ),反之亦成立.(O 是坐标原点)二、平面向量坐标运算1.向量加法、减法、数乘向量及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1).2.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.(2)设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1),|AB|=(x 2-x 1)2+(y 2-y 1)2.三、平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.若a ∥b ⇔x 1y 2-x 2y 1=0.基础题必做1. 若向量AB=(1,2),BC =(3,4),则AC =( )A .(4,6)B .(-4,-6)C .(-2,-2)D .(2,2)解析:选A ∵AC =AB +BC,∴AC =(1,2)+(3,4)=(4,6).2.已知向量a =(2,1),b =(x ,-2),若a ∥b ,则a +b 等于( ) A .(-2,-1) B .(2,1) C .(3,-1)D .(-3,1)解析:选A 由a ∥b 可得2×(-2)-1×x =0,故x =-4,所以a +b =(-2,-1).3.(教材习题改编)已知两点A (4,1),B (7,-3),则与AB同向的单位向量是( )A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫-35,45 C.⎝⎛⎭⎫-45,35D.⎝⎛⎭⎫45,-35 解析:选A ∵A (4,1),B (7,-3),∴AB=(3,-4),∴与AB 同向的单位向量为AB|AB |=⎝⎛⎭⎫35,-45. 4.在平行四边形ABCD 中,若AB =(1,3),AC =(2,5),则AD =________,BD=________.解析:AD =BC =AC -AB=(2,5)-(1,3)=(1,2), BD =AD -AB=(1,2)-(1,3)=(0,-1).答案:(1,2) (0,-1)5.梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别是CD ,AB 的中点,设AB =a ,AD =b .若MN =m a +n b ,则nm=________.解析:∵MN =MD +DA +AN =-14a -b +12a =14a -b ,∴m =14,n =-1.∴nm =-4.答案:-4解题方法归纳1.基底的不唯一性只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内任意向量a 都可被这个平面的一组基底e 1,e 2线性表示,且在基底确定后,这样的表示是唯 一的.2.向量坐标与点的坐标的区别要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向的信息也有大小的信息.平面向量基本定理及其应用典题导入[例1] 如图,在四边形ABCD 中,AC 和BD 相交于点O ,设AD =a ,AB =b ,若AB=2DC ,则AO =________(用向量a和b 表示).[自主解答] ∵AB =2DC ,∴△DOC ∽△BOA ,且OC OA =12,∴AO =23AC =23(AD +DC )=23⎝⎛⎭⎫a +12b =23a +13b . [答案] 23a +13b解题方法归纳用向量基本定理解决问题的一般思路是:先选择一组基底,再用该基底表示向量,也就是利用已知向量表示未知向量,其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算.以题试法1. 在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN =λAB+μAC ,则λ+μ的值为( )A.12B.13C.14D .1解析:选A 设CM =m CB =m (AB -AC )(0≤m ≤1),则AM =AC+CM =(1-m ) AC +m AB ,AN =12AM =m 2AB +1-m 2AC ,所以λ+μ=m 2+1-m 2=12.平面向量的坐标运算典题导入[例2] (1) 已知向量a =(3,1),b =(0,-2).若实数k 与向量c 满足a +2b =k c ,则c 可以是( )A .(3,-1)B .(-1,-3)C .(-3,-1)D .(-1, 3)(2)已知A (-2,4),B (3,-1),C (-3,-4).设AB=a ,BC =b ,CA =c .①求3a +b -3c ;②求满足a =m b +n c 的实数m ,n .[自主解答] (1)∵a =(3,1),b =(0,-2), ∴a +2b =(3,-3)=-3(-1,3).(2)由已知得a =(5,-5),b =(-6,-3),c =(1,8). ①3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24) =(6,-42).②∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1. [答案] (1)D本例中第(2)题增加条件CM =3c ,ON =2b ,求M ,N 的坐标及向量MN的坐标.解:∵CM =OM -OC=3c , ∴OM =3c +OC=(3,24)+(-3,-4)=(0,20).∴M (0,20).又∵CN =ON -OC=-2b , ∴ON =-2b +OC=(12,6)+(-3,-4)=(9,2),∴N (9,2).∴MN=(9,-18).解题方法归纳1.向量的坐标运算实现了向量运算代数化,将数与形结合起来,从而可使几何问题转化为数量运算.2.两个向量相等当且仅当它们的坐标对应相同.此时注意方程(组)思想的应用. [注意] 向量的坐标与点的坐标不同:向量平移后,其起点和终点的坐标都发生变化,但向量的坐标不变.以题试法2. 已知向量a =(6,4),b =(0,2),OC =a +λb ,O 为坐标原点,若点C 在函数y =sin ⎝⎛⎭⎫π12x 的图象上,则实数λ的值为________.解析:由题意得OC=(6,4)+λ(0,2)=(6,4+2λ),故点C 的坐标为(6,4+2λ),根据条件得4+2λ=sin 6π12=1,解得λ=-32.答案:-32平面向量共线的坐标表示典题导入[例3] 已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ) A.14 B.12 C .1D .2[自主解答] 可得a +λb =(1+λ,2),由(a +λb )∥c 得(1+λ)×4-3×2=0,所以λ=12.[答案] B在本例条件下,问是否存在非零常数λ,使a +λb 和a -λc 平行?若平行, 是同向还是反向?解:∵a +λb =(1+λ,2),a -λc =(1-3λ,2-4λ), 若(a +λb )∥(a -λc ),∴(1+λ)(2-4λ)-2(1-3λ)=0. ∴λ=1.∴a +λb =(2,2)与a -λc =(-2,-2)反向. 即存在λ=1使a +λb 与a -λc 平行且反向.解题方法归纳a ∥b 的充要条件有两种表达方式 (1)a ∥b (b ≠0)⇔a =λb (λ∈R );(2)设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.两种充要条件的表达形式不同.第(1)种是用线性关系的形式表示的,而且有前提条件b ≠0,而第(2)种无b ≠0限制.以题试法3.(1) 已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =( )A .-2B .2C .-12D.12解析:选C 由向量a =(2,3),b =(-1,2)得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1),因为m a +n b 与a -2b 共线,所以(2m -n )×(-1)-(3m +2n )×4=0,整理得m n =-12.(2) 已知a ,b 是不共线的向量,AB=λa +b ,AC =a +μb ,λ,μ∈R ,那么A ,B ,C三点共线的充要条件为( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1解析:选D ∵A ,B ,C 三点共线,∴存在实数t ,满足AB =t AC,即λa +b =t a +μt b ,又a ,b 是不共线的向量,∴⎩⎪⎨⎪⎧λ=t ,1=μt ,即λμ=1.1.在△ABC 中,点P 在BC 上,且BP =2PC ,点Q 是AC 的中点,若PA=(4,3),PQ=(1,5),则BC 等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)解析:选B BC =3PC =3(2PQ -PA )=6PQ-3PA =(6,30)-(12,9)=(-6,21).2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-2,-4) B .(-3,-6) C .(-4,-8)D .(-5,-10)解析:选C 由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2)⇒m =-4,从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8).3. 如图所示,向量OA =a ,OB =b ,OC=c ,A ,B ,C 在一条直线上,且AC =-3CB,则( )A .c =-12a +32bB .c =32a -12bC .c =-a +2bD .c =a +2b解析:选A ∵AC =-3CB ,∴OC -OA =-3(OB -OC). ∴OC =-12OA +32OB ,即c =-12a +32b .4.已知点A (2,1),B (0,2),C (-2,1),O (0,0).给出下面的结论:①直线OC 与直线BA 平行;②AB +BC=CA ;③OA +OC =OB ;④AC =OB -2OA.其中正确的结论的个数是( )A .1B .2C .3D .4解析:选C ∵OC =(-2,1),BA =(2,-1),∴OC ∥BA,又A ,B ,C ,O 不共线,∴OC ∥AB .①正确;∵AB +BC=AC ,∴②错误; ∵OA +OC =(0,2)=OB,∴③正确; ∵OB -2OA =(-4,0),AC=(-4,0),∴④正确.5. 已知平面直角坐标系内的两个向量a =(1,2),b =(m,3m -2),且平面内的任一向量c 都可以唯一的表示成c =λa +μb (λ、μ为实数),则m 的取值范围是( )A .(-∞,2)B .(2,+∞)C .(-∞,+∞)D .(-∞,2)∪(2,+∞)解析:选D 由题意知向量a ,b 不共线,故m ≠3m -22,解得m ≠2.6.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF=( )A.14a +12b B.23a +13b C.12a +14bD.13a +23b 解析:选B 由已知得DE =13EB ,又∵△DEF ∽△BEA ,∴DF =13AB .即DF =13DC .∴CF =23CD .∴CF =23CD =23(OD -OC)=23⎝⎛⎭⎫12b -12a =13b -13a . ∴AF =AC +CF =a +13b -13a =23a +13b .7. 已知向量a =⎝⎛⎭⎫8,x2,b =(x,1),其中x >0,若(a -2b )∥(2a +b ),则x =________. 解析:a -2b =⎝⎛⎭⎫8-2x ,x2-2,2a +b =(16+x ,x +1), 由题意得(8-2x )·(x +1)=⎝⎛⎭⎫x 2-2·(16+x ),整理得x 2=16,又x >0,所以x =4. 答案:48. P ={a |a =(-1,1)+m (1,2),m ∈R },Q ={b |b =(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q 等于________.解析:P 中,a =(-1+m,1+2m ),Q 中,b =(1+2n ,-2+3n ).则⎩⎪⎨⎪⎧ -1+m =1+2n ,1+2m =-2+3n .得⎩⎪⎨⎪⎧m =-12,n =-7. 此时a =b =(-13,-23). 答案:{}(-13,-23)9.已知向量OA =(1,-3),OB =(2,-1),OC=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB ,AC不共线.∵AB =OB-OA =(2,-1)-(1,-3)=(1,2), AC =OC -OA=(k +1,k -2)-(1,-3)=(k ,k +1),∴1×(k +1)-2k ≠0,解得k ≠1. 答案:k ≠110.已知A (1,1),B (3,-1),C (a ,b ). (1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC =2AB,求点C 的坐标.解:(1)由已知得AB=(2,-2),AC =(a -1,b -1),∵A ,B ,C 三点共线,∴AB ∥AC.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC =2AB ,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3). 11.已知a =(1,0),b =(2,1).求: (1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向? 解:(1)因为a =(1,0),b =(2,1),所以a +3b =(7,3), 故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3), 因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13.此时k a -b =(k -2,-1)=⎝⎛⎭⎫-73,-1, a +3b =(7,3),则a +3b =-3(k a -b ), 即此时向量a +3b 与k a -b 方向相反.12.已知O 为坐标原点,A (0,2),B (4,6),OM =t 1OA +t 2AB.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点都共线.解:(1) OM =t 1OA +t 2AB=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)当t 1=1时,由(1)知OM=(4t 2,4t 2+2).∵AB =OB-OA =(4,4),AM =OM -OA =(4t 2,4t 2)=t 2(4,4)=t 2AB,∴不论t 2为何实数,A ,B ,M 三点共线.1.如图,在平行四边形ABCD 中,O 是对角线AC ,BD 的交点,N 是线段OD 的中点,AN 的延长线与CD 交于点E ,则下列说法错误..的是( ) A .AC =AB +ADB .BD =AD -ABC .AO =12AB +12ADD .AE =53AB +AD解析:选D 由向量减法的三角形法则知,BD =AD -AB,排除B ;由向量加法的平行四边形法则知,AC =AB +AD ,AO =12AC =12AB +12AD,排除A 、C.2. 在△ABC 中,点D 在线段BC 的延长线上,且BC =3CD,点O 在线段CD 上(与点C 、D 不重合),若AO =x AB+(1-x ) AC ,则x 的取值范围是( )A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫0,13 C.⎝⎛⎭⎫-12,0D.⎝⎛⎭⎫-13,0 解析:选D 依题意,设BO =λBC ,其中1<λ<43,则有AO =AB +BO =AB +λBC =AB +λ(AC -AB )=(1-λ) AB+λAC .又AO =x AB +(1-x ) AC ,且AB ,AC 不共线,于是有x =1-λ∈⎝⎛⎭⎫-13,0,即x 的取值范围是⎝⎛⎭⎫-13,0. 3. 已知P 为△ABC 内一点,且3AP +4BP +5CP =0.延长AP 交BC 于点D ,若AB=a ,AC =b ,用a ,b 表示向量AP ,AD .解:∵BP =AP -AB =AP -a ,CP =AP -AC =AP-b ,又3AP +4BP+5CP =0,∴3AP +4(AP -a )+5(AP-b )=0,化简,得AP =13a +512b .设AD =t AP (t ∈R ),则AD =13t a +512t b .①又设BD=k BC (k ∈R ), 由BC =AC -AB=b -a ,得 BD =k (b -a ).而AD =AB +BD =a +BD , ∴AD=a +k (b -a )=(1-k )a +k b .②由①②,得⎩⎨⎧ 13t =1-k ,512t =k ,解得t =43. 代入①,有AD =49a +59b .1.已知向量a =(3,1),b =(sin α-m ,cos α),且a ∥b ,则实数m 的最小值为( )A .-2B .-1C .- 2D .-3 解析:选A ∵a ∥b ,∴3cos α-sin α+m =0.∴m =sin α-3cos α=2sin ⎝⎛⎭⎫α-π3≥-2. 2.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2) 解析:选D ∵a 在基底p ,q 下的坐标为(-2,2),即a =-2p +2q =(2,4). 令a =x m +y n =(-x +y ,x +2y ),故⎩⎪⎨⎪⎧ -x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2. 3.如图,已知平行四边形ABCD 的顶点A (0,0),B (4,1),C (6,8).(1)求顶点D 的坐标;(2)若DE =2EC ,F 为AD 的中点,求AE 与BF 的交点I 的坐标.解:(1)设点D (x ,y ),因为AD =BC ,所以(x ,y )=(6,8)-(4,1)=(2,7),所以顶点D 的坐标为(2,7).(2)设点I (x ,y ),则有F 点坐标为⎝⎛⎭⎫1,72,由于 DE =2EC ,故(x E -2,y E -7)=2(6-x E,8-y E )⇒E ⎝⎛⎭⎫143,233,由于BF =⎝⎛⎭⎫-3,52, BI =(x -4,y -1),BF ∥BI ⇒52(x -4)=-3(y -1),又AE ∥AI ⇒233x =143y ,联立方程组可得x =74,y =238, 则点I 的坐标为⎝⎛⎭⎫74,238.。
高考数学一轮复习第2讲 平面向量的基本定理及坐标表示

第2讲 平面向量的基本定理及坐标表示1.平面向量的基本定理如果e 1,e 201不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a 02λ1e 1+λ2e 2.2.平面向量的坐标表示03x 轴、y 轴正方向相同的两个单位向量i ,j 作为基底,对任一向量a ,有唯一一对实数x ,y ,使得a =x i +y j 04(x ,y )叫做向量a 的直角坐标,记作a =(x ,y ),显然i 05(1,0),j 06(0,1),0=07(0,0).3.平面向量的坐标运算 (1)设a =(x 1,y 1),b =(x 2,y 2), 则a +b 08(x 1+x 2,y 1+y 2), a -b 09(x 1-x 2,y 1-y 2), λa 10(λx 1,λy 1). (2)设A (x 1,y 1),B (x 2,y 2), 则AB →11(x 2-x 1,y 2-y 1), |AB→|12 错误!. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔a =λb (λ∈R )⇔13x 1y 2-x 2y 1=0.1.平面向量一组基底是两个不共线向量,平面向量基底可以有无穷多组. 2.当且仅当x 2y 2≠0时,a ∥b 与x1x2=y1y2等价,即两个不平行于坐标轴的共线向量的对应坐标成比例.3.若a 与b 不共线,且λa +μb =0,则λ=μ=0.4.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝ ⎛⎭⎪⎪⎫x1+x22,y1+y22. 5.已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝ ⎛⎭⎪⎪⎫x1+x2+x33,y1+y2+y33. 6.A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点共线的充要条件为(x 2-x 1)(y 3-y 1)-(x 3-x 1)(y 2-y 1)=0,或(x 2-x 1)(y 3-y 2)=(x 3-x 2)(y 2-y 1),或(x 3-x 1)(y 3-y 2)=(x 3-x 2)(y 3-y 1).1.已知向量a =(2,4),b =(-1,1),则2a +b 等于( ) A .(5,7) B .(5,9) C .(3,7) D .(3,9)答案 D解析 2a +b =2(2,4)+(-1,1)=(3,9),故选D.2.设向量a =(x,1),b =(4,x ),若a ,b 方向相反,则实数x 的值是( ) A .0 B .±2 C .2D .-2答案 D解析 由题意可得a ∥b ,所以x 2=4,解得x =-2或2,又因为a ,b 方向相反,所以x =-2.故选D.3.下列各组向量中,可以作为基底的是( ) A .e 1=(0,0),e 2=(1,-2) B .e 1=(-1,2),e 2=(5,7) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎪⎫12,-34答案 B解析 两个不共线的非零向量构成一个基底,A 中向量e 1为零向量,C ,D 中两向量共线,B 中e 1≠0,e 2≠0,且e 1与e 2不共线.故选B.4.设向量a =(-1,2),向量b 是与a 方向相同的单位向量,则b =( ) A .(1,-2) B .⎝ ⎛⎭⎪⎪⎫-55,255 C.⎝ ⎛⎭⎪⎪⎫-15,25 D .⎝ ⎛⎭⎪⎪⎫55,-255 答案 B解析 因为向量b 是与a 方向相同的单位向量,所以b =a|a|=错误!(-1,2)=错误!(-1,2)=⎝⎛⎭⎪⎪⎫-55,255.故选B. 5.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.6.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =________.答案 -12解析 由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得2m -n 4=3m +2n -1,所以m n =-12.考向一 平面向量基本定理的应用例1 (1)如图,点A ,B ,C ,P 均在正方形网格的格点上.若AP →=λAB →+μAC →(λ,μ∈R ),则λ+2μ=( )A .1B .32C .43D .2答案 B解析 设在正方形网格上方向为水平向右,长度为一格的向量为i ,方向为竖直向上,长度为一格的向量为j ,∴AB→=-2i +2j ,AC →=4i ,AP →=i +j ,∵AP →=λAB →+μAC →(λ,μ∈R ),即i +j =λ(-2i +2j )+μ×4i ,i +j =(4μ-2λ)i +2λj ,∴⎩⎪⎨⎪⎧4μ-2λ=1,2λ=1,解得⎩⎪⎨⎪⎧λ=12,μ=12,∴λ+2μ=32.故选B.(2) 如图,以向量OA →=a ,OB →=b 为邻边作平行四边形OADB ,BM →=13BC →,CN →=13CD →,用a ,b 表示OM →,ON →,MN →.解 ∵BA →=OA →-OB →=a -b ,BM →=16BA →=16a -16b ,∴OM →=OB →+BM →=b +⎝ ⎛⎭⎪⎪⎫16a -16b =16a +56b .∵OD →=a +b ,∴ON →=OC →+13CD →=12OD →+16OD →=23OD →=23a +23b ,∴MN →=ON →-OM →=23a +23b -16a -56b =12a -16b .综上,OM →=16a +56b ,ON →=23a +23b ,MN →=12a -16b .应用平面向量基本定理表示向量的方法应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加法、减法或数乘运算,基本方法有两种:(1)运用向量的线性运算法则对待求向量不断进行化简,直至用基底表示为止. (2)将向量用含参数的基底表示,然后列方程或方程组,利用基底表示向量的唯一性求解.1.(2020·北京市朝阳区一模)如图,在△ABC 中,点D ,E 满足BC→=2BD→,CA →=3CE →.若DE →=x AB →+y AC →(x ,y ∈R ),则x +y =( )A .-12B .-13C.12 D .13答案 B解析 △ABC 中,点D ,E 满足BC →=2BD →,CA →=3CE →.DE →=DC →+CE →=12BC →+13CA→=12(AC →-AB →)-13AC →=-12AB →+16AC →,又DE →=x AB →+y AC →(x ,y ∈R ),∴⎩⎪⎨⎪⎧x =-12,y =16,∴x +y =-12+16=-13.故选B.2.(2020·青岛市高三上学期期末)在△ABC 中,AB →+AC →=2AD →,AE →+2DE →=0,若EB→=x AB →+y AC →,则( ) A .y =2x B .y =-2x C .x =2y D .x =-2y答案 D解析 如图所示,∵AB→+AC →=2AD →,∴点D 为边BC 的中点.∵AE →+2DE →=0,∴AE →=-2DE →,∴DE →=-13AD →=-16(AB →+AC →).又DB →=12CB →=12(AB →-AC →),∴EB →=DB →-DE →=12(AB →-AC →)+16(AB →+AC →)=23AB →-13AC →.又EB →=x AB →+y AC →,∴x =23,y =-13,即x =-2y .故选D.考向二 平面向量的坐标运算例2 (1)若向量AB →=DC →=(2,0),AD →=(1,1),则AC →+BC →等于( ) A .(3,1) B .(4,2) C .(5,3)D .(4,3)答案 B解析 AC→=AD →+DC →=(3,1),又BD →=AD →-AB →=(-1,1),则BC →=BD →+DC →=(1,1),所以AC→+BC →=(4,2).(2)(2020·辽宁省辽南协作校二模)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =( )A.⎝ ⎛⎭⎪⎪⎫133,83 B .⎝ ⎛⎭⎪⎪⎫-133,-83C.⎝ ⎛⎭⎪⎪⎫133,43 D .⎝ ⎛⎭⎪⎪⎫-133,-43答案 D解析 ∵a -2b +3c =0,∴c =-13(a -2b )=-13(5+4×2,-2+2×3)=⎝⎛⎭⎪⎪⎫-133,-43.故选D. (3)(2020·天津和平区模拟) 如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA→=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A.65B .85C .2D .83答案 B解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD=2,∴C (2,0),A (0,2),B (1,2),E (0,1),∴CA→=(-2,2),CE →=(-2,1),DB →=(1,2),∵CA →=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2),∴⎩⎪⎨⎪⎧-2λ+μ=-2,λ+2μ=2,解得λ=65,μ=25,则λ+μ=85.故选B.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解,并注意方程思想的应用.3.若向量a =(2,1),b =(-1,2),c =⎝⎛⎭⎪⎪⎫0,52,则c 可用向量a ,b 表示为( )A .c =12a +bB .c =-12a -bC .c =32a +12bD .c =32a -12b答案 A解析设c =x a +y b ,易知⎩⎪⎨⎪⎧ 0=2x -y ,52=x +2y ,∴⎩⎪⎨⎪⎧x =12,y =1.∴c =12a +b .故选A.4.已知OB 是平行四边形OABC 的一条对角线,O 为坐标原点,OA →=(2,4),OB →=(1,3),若点E 满足OC→=3EC →,则点E 的坐标为( )A.⎝ ⎛⎭⎪⎪⎫-23,-23B .⎝ ⎛⎭⎪⎪⎫-13,-13C.⎝ ⎛⎭⎪⎪⎫13,13 D .⎝ ⎛⎭⎪⎪⎫23,23答案 A解析 解法一:易知OC→=OB →-OA →=(-1,-1),则C (-1,-1),设E (x ,y ),则3EC→=3(-1-x ,-1-y )=(-3-3x ,-3-3y ), 由OC →=3EC →,知⎩⎪⎨⎪⎧-3-3x =-1,-3-3y =-1,所以⎩⎪⎨⎪⎧x =-23,y =-23,所以点E 的坐标为⎝ ⎛⎭⎪⎪⎫-23,-23.解法二:易知OC→=OB →-OA →=(-1,-1),由OC →=3EC →得OC →=3(OC →-OE →),所以OE→=23OC→=⎝⎛⎭⎪⎪⎫-23,-23,所以点E的坐标为⎝⎛⎭⎪⎪⎫-23,-23.考向三平面向量共线的坐标表示例3(1)(2020·山东省菏泽市一模)已知向量a,b满足a=(1,2),a+b=(1+m,1),若a∥b,则m=()A.2 B.-2C.12D.-12答案 D解析b=(a+b)-a=(1+m,1)-(1,2)=(m,-1).因为a∥b,所以2m+1=0,解得m=-12.故选D.(2)(2021·海口市海南中学高三月考)已知向量a=(1,1),点A(3,0),点B为直线y=2x上的一个动点,若AB→∥a,则点B的坐标为________.答案(-3,-6)解析由题意,设B(x,2x),则AB→=(x-3,2x),∵AB→∥a,∴x-3-2x=0,解得x =-3,∴B(-3,-6).利用两向量共线解题的技巧(1)一般地,在求与一个已知向量a共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa即可得到所求的向量.(2)如果已知两向量共线,求某些参数的取值时,那么利用“若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2=x2y1”解题比较方便.5.已知点A(4,0),B(4,4),C(2,6),则AC与OB的交点P的坐标为________.答案(3,3)解析 解法一:由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA→=(4λ-4,4λ). 又AC→=OC →-OA →=(-2,6), 由AP→与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).解法二:设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).6.(2020·长郡中学高三适应性考试)已知向量AC →=(1,sin α-1),BA →=(3,1),BD →=(2,cos α),若B ,C ,D 三点共线,则tan(2021π-α)=________.答案 -2解析 ∵B ,C ,D 三点共线, ∴BD→=x BC →=x (BA →+AC →), 即(2,cos α)=x (4,sin α),则⎩⎪⎨⎪⎧2=4x ,cosα=xsinα,得x =12,即cos α=12sin α,得tan α=2,则tan(2021π-α)=tan(-α)=-tan α=-2.一、单项选择题1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b =( ) A .(-3,4) B .(3,4) C .(3,-4) D .(-3,-4)答案 A解析 由a +b =(-1,5),a -b =(5,-3),得2b =(-1,5)-(5,-3)=(-6,8),所以b =12(-6,8)=(-3,4).2.(2021·山东聊城月考)已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD 交于点O ,则CO→的坐标为( ) A.⎝ ⎛⎭⎪⎪⎫-12,5 B .⎝ ⎛⎭⎪⎪⎫12,5C.⎝ ⎛⎭⎪⎪⎫12,-5 D .⎝ ⎛⎭⎪⎪⎫-12,-5答案 D解析 因为AC →=AB →+AD →=(-2,3)+(3,7)=(1,10),所以OC →=12AC →=⎝ ⎛⎭⎪⎪⎫12,5,所以CO →=⎝ ⎛⎭⎪⎪⎫-12,-5.3. 如图,在梯形ABCD 中,DC →=14AB →,BE →=2EC→,且AE →=r AB →+s AD →,则2r +3s =( )A.1 B.2 C.3 D.4 答案 C解析根据题图,由题意可得AE→=AB→+BE→=AB→+23BC→=AB→+23(BA→+AD→+DC→)=13AB→+23(AD→+DC→)=13AB→+23⎝⎛⎭⎪⎪⎫AD→+14AB→=12AB→+23AD→.因为AE→=r AB→+s AD→,所以r=12,s=23,则2r+3s=1+2=3.4.已知向量a=(-1,2),b=(3,m),m∈R,则“m=-6”是“a∥(a+b)”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 A解析由题意得a+b=(2,2+m),由a∥(a+b),得-1×(2+m)=2×2,所以m=-6,则“m=-6”是“a∥(a+b)”的充要条件.5.已知向量a=(2,1),b=(3,4),c=(1,m),若实数λ满足a+b=λc,则λ+m等于()A.5 B.6C.7 D.8答案 B解析由平面向量的坐标运算法则可得a+b=(5,5),λc=(λ,λm),据此有⎩⎪⎨⎪⎧λ=5,λm=5,解得λ=5,m =1,所以λ+m =6.6.(2020·青岛模拟)已知向量a =(1+cos x,2),b =(sin x,1),x ∈⎝ ⎛⎭⎪⎪⎫0,π2,若a ∥b ,则sin x =( )A.45B .35C .25D .255答案 A解析 根据题意,向量a =(1+cos x,2),b =(sin x,1),若a ∥b ,则2sin x =1+cos x ,变形可得cos x =2sin x -1,又sin 2x +cos 2x =1,则有sin 2x +(2sin x -1)2=1,变形可得,5sin 2x -4sin x =0,解得sin x =0或sin x =45,又x ∈⎝⎛⎭⎪⎪⎫0,π2,则sin x =45.故选A.7. (2020·黑龙江省大庆一中三模)“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,比毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD 中,△ABC 满足“勾3股4弦5”,且AB =3,E 为AD 上一点,BE ⊥AC .若BA→=λBE →+μAC →,则λ+μ的值为( )A .-925 B .725C .1625D .1答案 B解析 由题意建立如图所示平面直角坐标系,因为AB =3,BC =4,则B (0,0),A (0,3),C (4,0),BA→=(0,3),AC →=(4,-3),设BE →=(a,3),因为BE ⊥AC ,所以AC →·BE →=4a -9=0,解得a =94.由BA →=λBE →+μAC →,得(0,3)=λ⎝ ⎛⎭⎪⎪⎫94,3+μ(4,-3),所以⎩⎪⎨⎪⎧94λ+4μ=0,3λ-3μ=3,解得⎩⎪⎨⎪⎧λ=1625,μ=-925,所以λ+μ=725,故选B.8. 如图,扇形的半径为1,圆心角∠BAC =150°,点P 在弧BC 上运动,AP →=λAB →+μAC→,则3λ-μ的最小值是( )A .0B .3C .2D .-1答案 D解析 以A 为原点,AB 所在直线为x 轴,建立如图所示平面直角坐标系,则A (0,0),B (1,0),C (cos150°,sin150°)=⎝ ⎛⎭⎪⎪⎫-32,12,设P (cos θ,sin θ)(0°≤θ≤150°),因为AP →=λAB →+μAC →,所以(cos θ,sin θ)=λ(1,0)+μ⎝⎛⎭⎪⎪⎫-32,12,于是⎩⎪⎨⎪⎧λ-32μ=cosθ,12μ=sinθ,解得λ=cos θ+3sin θ,μ=2sin θ,那么3λ-μ=sin θ+3cos θ=2sin(θ+60°),因为0°≤θ≤150°,所以60°≤θ+60°≤210°,故sin(θ+60°)≥-12,因此3λ-μ的最小值为-1.故选D.二、多项选择题9.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则可作为这个平行四边形所在平面的一组基底的向量组是( )A.AD →与AB →B .DA →与BC → C.CA →与DC →D .OD→与OB → 答案 AC解析 平面内任意两个不共线的向量都可以作为基底,如图,对于A ,AD →与AB →不共线,可作为基底;对于B ,DA→与BC →为共线向量,不可作为基底;对于C ,CA →与DC→是两个不共线的向量,可作为基底;对于D ,OD →与OB →在同一直线上,是共线向量,不可作为基底.10.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(m +1,m -2),若点A ,B ,C 能构成三角形,则实数m 可以是( )A .-2B .12C .1D .-1答案 ABD解析 各选项代入验证,若A ,B ,C 三点不共线即可构成三角形.因为AB →=OB →-OA→=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(m +1,m -2)-(1,-3)=(m ,m +1).假设A ,B ,C 三点共线,则1×(m +1)-2m =0,即m =1.所以只要m ≠1,则A ,B ,C 三点可构成三角形,故选ABD.11.(2021·广东湛江高三模拟)若点D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC→=a ,CA →=b ,则下列结论正确的是( ) A.AD →=-12a -bB .BE →=a +12bC.CF →=-12a +12bD .EF →=12a答案 ABC解析如图,在△ABC中,AD→=AC→+CD→=-CA→+12CB→=-b-12a,故A正确;BE→=BC→+CE→=a+12b,故B正确;AB→=AC→+CB→=-b-a,CF→=CA→+12AB→=b+12×(-b-a)=-12a+12b,故C正确;EF→=12CB→=-12a,故D不正确.故选ABC.12. (2020·山东潍坊高三模拟)如图所示,点A,B,C是圆O上的三点,线段OC 与线段AB交于圆内一点P,若AP→=λAB→,OC→=μOA→+3μOB→,则()A.P为线段OC的中点时,μ=1 2B.P为线段OC的中点时,μ=1 3C.无论μ取何值,恒有λ=3 4D.存在μ∈R,λ=1 2答案AC解析OP→=OA→+AP→=OA→+λAB→=OA→+λ(OB→-OA→)=(1-λ)OA→+λOB→,因为OP→与OC →共线,所以1-λμ=λ3μ,解得λ=34,故C 正确,D 错误;当P 为OC 的中点时,则OP →=12OC →,则1-λ=12μ,λ=12×3μ,解得μ=12,故A 正确,B 错误.故选AC.三、填空题13.(2020·哈尔滨六中二模)已知向量a =(log 2x,1),b =(log 23,-1),若a ∥b ,则x =________.答案13解析 因为a ∥b ,所以-log 2x =log 23,所以log 2x +log 23=0,所以log 2(3x )=0,所以3x =1,所以x =13.14.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.答案 (2,4)解析 因为在梯形ABCD 中,DC =2AB ,AB ∥CD ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC→=(4,2)-(x ,y )=(4-x,2-y ), AB→=(2,1)-(1,2)=(1,-1), 所以(4-x,2-y )=2(1,-1), 即(4-x,2-y )=(2,-2), 所以⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).15. 向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.答案 4解析 以向量a 和b 的交点为坐标原点建立如图所示的平面直角坐标系,设每个小正方形的边长为1个单位,则A (1,-1),B (6,2),C (5,-1),所以a =AO→=(-1,1),b =OB→=(6,2),c =BC →=(-1,-3). 由c =λa +μb 可得⎩⎪⎨⎪⎧ -1=-λ+6μ,-3=λ+2μ,解得⎩⎪⎨⎪⎧ λ=-2,μ=-12,所以λμ=4.16.(2020·济南市高三上学期期末)平行四边形ABCD 中,M 为CD 的中点,点N 满足BN→=2NC →,若AB →=λAM →+μAN →,则λ+μ的值为________. 答案 12解析 因为M 为CD 的中点,点N 满足BN→=2NC →, 所以DM →=12DC →,BN →=23BC →. 又因为AB→=λAM →+μAN →, 所以AB→=λ(AD →+DM →)+μ(AB →+BN →) =λ⎝ ⎛⎭⎪⎪⎫AD →+12DC →+μ⎝⎛⎭⎪⎪⎫AB →+23BC → =λAD →+λ2DC →+μAB →+2μ3BC →.① 又因为在平行四边形ABCD 中,AB→=DC →,AD →=BC →, 所以①整理得,AB →=λAD →+λ2AB →+μAB →+2μ3AD →, 即⎝ ⎛⎭⎪⎪⎫1-λ2-μAB →=⎝ ⎛⎭⎪⎪⎫λ+2μ3AD →. 又因为AB→,AD →不共线,由平面向量基本定理得 ⎩⎪⎨⎪⎧ 1-λ2-μ=0,λ+2μ3=0,解得⎩⎪⎨⎪⎧ λ=-1,μ=32,所以λ+μ=12.。
平面向量基本定理及坐标表示

平面向量基本定理及坐标表示1.平面向量基本定理如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底。
2。
平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=错误!。
(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标。
②设A(x1,y1),B(x2,y2),则错误!=(x2-x1,y2-y1),|错误!|=错误!。
3。
平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0。
a∥b⇔x1y2-x2y1=0.1。
判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内的任何两个向量都可以作为一组基底.(×)(2)在△ABC中,向量错误!,错误!的夹角为∠ABC.(×)(3)若a,b不共线,且λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2。
(√)(4)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.(√)(5)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可表示成错误!=错误!.(×) (6)已知向量a=(1-sinθ,1),b=(错误!,1+sinθ),若a∥b,则θ等于45°。
(×) 2。
已知点A(6,2),B(1,14),则与错误!共线的单位向量为________.答案(-错误!,错误!)或(错误!,-错误!)解析因为点A(6,2),B(1,14),所以错误!=(-5,12),|错误!|=13,与错误!共线的单位向量为±错误!=±错误!(-5,12)=±(-错误!,错误!).3。
平面向量的基本定理和坐标表

04 平面向量的应用
向量在物理中的应用
01
02
03
力的合成与分解
通过向量加法和减法,可 以表示和计算物体受到的 合力或分力。
速度和加速度
在运动学中,速度和加速 度可以用向量表示,从而 描述物体在平面或空间中 的运动状态。
力的矩
矩是一个向量,表示力对 物体转动效果的量度,可 以用向量表示。
向量在解析几何中的应用
向量的模
向量的模是指向量的大小或长度,用符号 $|overrightarrow{a}|$ 表示。
向量的模的计算公式为 $|overrightarrow{a}| = sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$。
向量的模具有一些重要的性质,如 $|overrightarrow{a} + overrightarrow{b}| leq |overrightarrow{a}| + |overrightarrow{b}|$, 这是向量的三角不等式。
三角形法则
总结词
三角形法则是指向量加法可以通过三角形法则来表示,即向量加法可以通过作一个三角形来表示。
详细描述
三角形法则指出,对于任意两个向量$overset{longrightarrow}{a}$和$overset{longrightarrow}{b}$,可以作 一个三角形,其中$overset{longrightarrow}{a}$和$overset{longrightarrow}{b}$分别是三角形的两个边,而 这两个边的和就是三角形的第三边,即$overset{longrightarrow}{a} + overset{longrightarrow}{b}$。
向量加法的性质
平面向量的基本定理及坐标表示

第17页 共 44 页
1 而CM OM OC (m )a nb, CB OB OC 4 1 m 1 1 n 4 b a a b,因为C、M、B三点共线, 所以 , 1 4 4 1 4 即4m n 1. 1 m 1 m 2 n 1 3 7 由 , 解得 .所以OM a b. 7 7 4m n 1 n 3 7
第21页 共 44 页
同理可求N 9, 2 ,因此MN (9, 18). 所求M 0, 20 , N 9, 2 , MN (9, 18).
第22页 共 44 页
[反思感悟]由A、B、C三点坐标易求得 CA 、 CB坐标,再根据向
(2)求满足a=mb+nc的实数m,n; (3)若(a+kc)∥(2b-a),求k; (4)若(d-c)∥(a+b),且|d-c|=1,求d.
第25页 共 44 页
[分析](1)直接用向量加减法的坐标运算公式. (2)借助于向量相等的条件,建立关于m,n的方程组.
(3)利用向量共线的充要条件,建立关于实数k的充要条件.
答案:B
第10页 共 44 页
2.已知a=(-2,3),b=(1,5),则3a+b等于() A.(-5,14) B.(5,14)
C.(7,4)
D.(5,9)
解析:3a+b=3(-2,3)+(1,5)=(-6,9)+(1,5)=(-5,14). 答案:A
第11页 共 44 页
3.设a=(1,-2),b=(-3,4),c=(3,2),则(a+2b)·c=() A.(-15,12) B.0
高三数学向量基本定理及坐标表示

CBO BO C1ab, 5
又因为A,M,D三点共线,
所以
m
1 5
n
1 1
5
即5m+n=1.
解得 m2n1, 5mn1,
m1, 9
n4,
9
所以 OM1a4b
99
变式1-1
【例1】(2010·株洲模拟)在如图所示的平行四边形ABCD中,
AB=a,AD=b,AN=3NC,M为BC的中点,则MN=
.
解: MN=MC+C12 N=
x1y2-x2y1=0
a= λb
基础达标
1. (原创题)若向量a=(1,1),b=(-1,1),c=(4,2),则向量2a+3b-
c的坐标1为( )
A
A. (-3,4)2 B. (3,4) C. (1,5) D. (3,-5)
解析:2a+3b-12
c=2(1,1)+3(-1,1)-1 2
(4,2)=(2,2)+
②设 OAxiy,j 则__向 ___量 __O _A _的 __坐 __标 __( ___x , y ) 就是终点A的坐
标,即若 OA(x,y,) 则A点坐标为____(x_,__y_) ,反之亦成立
(O是坐标原点).
2. 平面向量的坐标运算 (1)加法、减法、数乘运算
向量 a
b
a+b
a-b
C=
2
1 4
b-
(a+b1)=- 1 a+
4
4
b.
解:∵G是△ABO的重心,
∴OG=2 OC=1 (OA+OB1)= (a+b),
3
3
3
∴GP=OP-OG=m1 a- (a+b)=(1 m- )1 a- b,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
个性化教学辅导教案学科:数学任课教师:刘兴峰授课日期:年月日(星期)姓名任泳琪年级高一性别女授课时间段总课时第课教学课题平面向量线性运算教学目标知识点:方法:难点重点课堂教学过程课前检查作业完成情况:优□良□中□差□过程第一教学环节:检查作业第二教学环节:知识点、考点的讲述第三教学环节:课堂练习第四教学环节:布置作业课堂检测测试题(累计不超过20分钟)_______道;成绩_______;教学需:加快□;保持□;放慢□;增加内容□课后巩固作业_____题; 巩固复习____________________ ; 预习布置_____________________签字教学组长签字:教研主任签字: 总监签字:学生签字:学习管理师签字:课后备注学生的课堂表现:很积极□比较积极□一般□不积极□需要配合学管:家长:一、目标认知学习目标:1.了解平面向量的基本定理及其意义;2.掌握平面向量的正交分解及其坐标表示;3.会用坐标表示平面向量的加法、减法与数乘运算;4.理解用坐标表示的平面向量共线的条件.重点:平面向量基本定理与平面向量的坐标运算.难点:平面向量基本定理的理解与应用,向量的坐标表示的理解及运算的准确性.二、知识要点梳理知识点一:平面向量基本定理如果是同一平面内两个不共线的向量,那么对于这个平面内任一向量,有且只有一对实数,使,称为的线性组合.①其中叫做表示这一平面内所有向量的基底;②平面内任一向量都可以沿两个不共线向量的方向分解为两个向量的和,并且这种分解是唯一的.这说明如果且,那么.③当基底是两个互相垂直的单位向量时,就建立了平面直角坐标系,因此平面向量基本定理实际上是平面向量坐标表示的基础.要点诠释:平面向量基本定理的作用:平面向量基本定理是建立向量坐标的基础,它保证了向量与坐标是一一对应的,在应用时,构成两个基底的向量是不共线向量.知识点二:向量坐标与点坐标的关系当向量起点在原点时,定义向量坐标为终点坐标,即若A(x,y),则=(x,y).要点诠释:当向量起点不在原点时,向量坐标为终点坐标减去起点坐标,即若A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1).知识点三:平面向量的坐标运算运 算坐标语言 加法与减法记=(x 1,y 1),=(x 2,y 2)=(x 1+x 2,y 1+y 2),=(x 2-x 1,y 2-y 1) 实数与向量的乘积记=(x ,y),则=(x ,y)知识点四:平面向量平行(共线)的坐标表示设非零向量,则∥(x 1,y 1)=(x 2,y 2),即,或x 1y 2-x 2y 1=0.要点诠释:若,则∥不能表示成因为分母有可能为0.三、规律方法指导1.用向量证明几何问题的一般思路:先选择一组基底,并运用平面向量基本定理将条件和结论表示成向量的形式,再通过向量的运算来证明.2.三点共线的判断方法判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定,即已知=(x 2-x 1,y 2-y 1),=(x 3-x 1,y 3-y 1)若则A ,B ,C 三点共线.四:例题讲解:1.下列向量组中可以为基底的是( ) (A ) )2,1()0,0(21==e e (B ))7,5()2,1(21=-=e e(C ) )10,6()5,3(21==e e (D ))43,21()3,2(21-=-=e e2.已知点)1,1(-P ,)5,2(Q ,点R 在直线PQ 上,且QR PR 5-=,则点R 的坐标为 ( )A .)4,1(-B .⎪⎭⎫⎝⎛29,23 C .⎪⎭⎫ ⎝⎛313,23 D .⎪⎭⎫ ⎝⎛213,411 3.已知)1,(),3,1(-=-=x b a 且a ∥b ,则x 等于 。
4.已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=_____.CB D 1OAD 3D 2 yx5.已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 的值为 .6.已知A(1,2) 、B(5,4) 、C(x ,3) 、D(-3,y) 且AB =CD ,则x 、y 的值分别为 7.a =(3,4) . | b |=15. 且a . b 同向. 则b = .8.12e e ,不共线,当k = 时,1212k k =+=+a e e b e e ,共线. 9.已知||5,(1,2),==a b 若a ∥b 且方向相反, 则a 的坐标是________. 10.已知AB C D 的顶点)1,2(-A ,)3,1(-B ,)4,3(C ,求顶点D 的坐标11.如图,已知ABC ∆,)8,7(A ,)5,3(B ,)3,4(C , M ,N ,D 分别是AB ,AC ,BC 的中点,且MN 与AD 交于F ,求−→−DF 。
ABFNMDC平面向量的基本定理及坐标表示练习题一、选择题1.已知向量OC =(2,2),)si n 2,co s 2(αα=CA ,则向量OA 的模的取值范围是( ) A.[1,3] B.[1,23] C.[3,2] D.[23,2]2.设)3,4(=a ,a 在b 上的投影为225,b 在x 轴上的投影为2,且14||≤b ,则b 为( ) A.(2,14) B.(2,72-) C.(-2,72) D.(2,8)3.直角坐标系xoy 中,j i ,分别是与x,y 轴正方向同向的单位向量,在直角三角形ABC 中,j k i AC j i AB +=+=3,2,则k 的可能值的个数是( ) A.1 B.2 C.3 D.44.与向量)5,12(=d 平行的单位向量为 ( )A .)5,1312(B .)135,1312(--C .)135,1312(或)135,1312(--D .)135,1312(±±5.在矩形ABCD 中,BC BF AB AE 21,21==,设),,(b AD a AB 0),0,(==当DE EF ⊥时,||||b a 的值为( )A.2B.3C.2D.36.如果21,e e 是平面α内所有向量的一组基底,那么下列命题正确的是( ) A.若实数21,λλ使02211=+e e λλ,则021=+λλ;B .空间任一向量a 都可以表示为2211e e a λλ+=,其中R ∈21,λλ; C. 2211e e λλ+不一定在平面α内,R ∈21,λλ;D.对于平面α内任一向量a ,使2211e e a λλ+=的实数21,λλ有无数对. 7.已知向量)2,1(),3,2(-==b a ,若b n a m +与b a 2-共线,则nm等于( ) A.21- B.2 C.21D.-28.已知A,B,C 是平面上不共线三点,O 是三角形ABC 的外心,动点P 满足])21()1()1[(31OC OB OA OP λλλ++-+-=)0(≠∈λλ且R ,则P 的轨迹一定通过三角形ABC 的( )A.内心B.垂心C.重心D.AB 边的中点9.设k ∈R ,下列向量中,与向量)1,1(-=Q 一定不平行的向量是( ) A .),(k k b =B .),(k k c --=C .)1,1(22++=k k dD .)1,1(22--=k k e10.定义平面向量的一种新型乘法运算:已知平面内两个向量),(),,(222111y x P y x P ==),(),(),(12212121221121y x y x y y x x y x y x P P +-=⊗=⊗, 若0≠OM (O 为指标原点),且N OM 0)1,1(=⊗,则MON ∠等于( )A.π43 B.4π C.2π D.3π二、填空题11.已知向量)7,()3,1(),1,3(k c b a ===,,若=-k b c a 则,//)(12.设向量)3,2(),2,1(==b a ,若向量b a +λ与向量)7,4(--=c 共线,则λ= 13.已知点A(2,3),B(5,4),C(7,10),若),(,R AC AB AP ∈+=λλ则当点P 在第三象限时,λ的取值范围是14.在四边形ABCD 中,)1,1(==DC AB ,BD BD BC BC BA BA ||3||1||1=+,四边形ABCD的面积为15.已知□ABCD 中,A (0,0),B (5,0),D (2,4),对角线AC 、BD 交于M ,则DM 的坐标为 三、解答题16.已知A,B,C 三点的坐标分别为(-1,0),,3,-1),(1,2),并且BC BF AC AE 31,31==,求证:AB EF //.D 三点共线,求k 的值.18.已知向量R t c b a ∈-==-=),1,3(),1,2(),2,3(. (1)求||b t a +的最小值及相应的t 的值; (2)若b t a -与c 共线,求实数t.19.在四边形ABCD 中,)3,2(),,(),1,6(--===cd y x BC AB . (1)若DA BC //,求x,y 间的关系式;(2)若DA BC //,且BD AC ⊥,求x,y 的值及四边形ABCD 的面积.20.已知向量),(y x u =,与向量)2,(x y y v -=的对应关系记作)(u f v =.(2)若)0,1((baf和;)f1,1(==b),a,用坐标表示)((3)求使)qppcf=的向量c的坐标.q,)((是常数,()21.已知ABCD为正方形,BE∥AC,AC=CE,EC的延长线交BA的延长线于F,求证:AF=AE.。