专业数学建模实验[2]
数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
数学建模实验报告

数学建模实验报告一、实验目的和背景本次实验旨在运用数学建模方法,解决一个与实际生活相关的问题。
通过建立数学模型,分析问题,提出解决方案,并通过实验数据验证模型的可行性和准确性。
二、实验内容本次实验的题目是“公司送货员最优路径规划”。
公司有多名送货员需要在城市中进行货物的配送工作。
公司希望通过合理的路径规划,使得送货员能够在最短的时间内完成所有的配送任务。
在实验中,需要考虑的主要因素包括送货员之间的配送范围、道路交通状况、道路长度等。
三、实验步骤1.收集相关数据:收集城市道路网络的地理数据,包括道路长度、道路交通状况等信息。
2.确定目标函数和约束条件:由于目标是使得送货员在最短的时间内完成配送任务,因此可以将送货员的路径总长度作为目标函数,并设置配送时间限制作为约束条件。
3.建立数学模型:根据收集到的数据和确定的目标函数、约束条件,建立数学模型,将问题转化为一个最优化问题。
4.进行求解:使用数学建模常见的求解方法,如遗传算法、模拟退火算法等,对数学模型进行求解,得到最优的路径规划方案。
5.实验验证:将求解得到的路径规划方案应用于实际情境中,通过实践进行验证,观察实际效果与模型预测结果的一致性。
四、实验结果与分析通过对数学模型进行求解,得到了送货员的最优路径规划方案。
将该方案应用于实际情境中,观察实际效果与模型预测结果的一致性。
通过与其他非最优路径规划方案进行对比,可以发现,最优路径规划方案能够使得送货员在最短的时间内完成配送任务,提高工作效率。
五、结论和展望本次实验成功地运用了数学建模方法,解决了公司送货员最优路径规划问题。
通过建立数学模型,可以快速地得到最优的路径规划方案,提高了送货员的工作效率。
未来可以进一步改进模型,考虑更多实际情况,如车辆限行、路况实时变化等因素,提供更加精确和实用的路径规划方案。
总结:本次实验通过对公司送货员最优路径规划问题的建模和求解,展示了数学建模的应用价值和解决问题的能力。
数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模实验二:微分方程模型Matlab求解与分析

实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
数学建模的实验报告

数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。
2.熟悉掌握matlab软件的文件操作和命令环境。
3.掌握数据可视化的基本操作步骤。
4.通过matlab绘制二维图形以及三维图形。
二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。
即要求出二次多项式: y=a+b x2的系数。
2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。
数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。
2.利用Matlab进行编程求近似解。
二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
数学建模实验报告2

糖果问题题目:某糖果厂用原料A,B,C,加工成三种不同牌号的糖果甲,乙,丙。
已知各种糖果中A,B,C的含量、原料成本、各种原料的每月限制用量、三种牌号的单位加工费及销售如下表所示。
甲 乙 丙 原料成本/元kg 每月限制用量/kg A 》60% 》15% 2 2000 B 1.5 2500 C《20% 《60% 《50% 1 1200 加工费/元kg 0.5 0.4 0.3 售价3.42.852.25问该厂每月生产这三种牌号的糖果各多少千克,使该厂获利最大?是建立这个问题的先行规划模型。
问题分析:由于甲、乙、丙三种糖果中A,B,C 的含量是未知的,我们若只设生产三种牌号的糖果各x, y, z 千克,要解决问题还要设出A,B,C 三种原料在他们当中所占的百分比,如此下来,在建立线性规划模型列方程时,方程中会出现二次式,很不利于我们解决问题。
为此,我们就想怎么设变量才能把各个变量都统一起来,并且使方程都是线性的。
经过思考之后,我们可以假设每个品牌的糖果当中只含A,B,C 三种原料,设甲中A,B,C 的含量分别为x1,x2,x3 ,乙中A,B,C 的含量分别为y1,y2,y3 , 丙中A,B,C 的含量分别z1,z2,z3 ,那么由假设我们知道x=x1+x2+x3 ,y=y1+y2+y3 ,z=z1+z2+z3 ,在由表中的各个约束条件我们可列出如下方程:甲: 乙: 丙:60%20%aa b c ca b cX X X X X X X X ≥++≤++ 15%60%aa b cc a b c Y Y Y Y Y Y Y Y ≥++≤++ 50%a a b c Z Z Z Z ≤++有每月限制用量:200025001200a b c a b c a b c X X X Y Y Y Z Z Z ++≤++≤++≤利润函数:()()(,,)()(3.40.5)()(2.850.4)()(2.250.3)2.00,1.50,1.00,,,,13.40.5,2.250.4,2.250.3,,11,,a b c a b c a a c a a a b b b c c c Ta a a a ab b bc c c f X Y Z X X X Y Y Y Z Z Z X Y Z X Y Z X Y Z X Y Z X YX Y Z X Y Z =++-+++-+++--++⎛⎫ ⎪++ ⎪ ⎪++⎝⎭⎛⎫⎛⎫ ⎪ ⎪=---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()()()1,,1 2.00,1.50,1.001,,,,,,3.40.511,1,1,, 2.250.4,,1 2.00,1.50,1.002.250.31,,,,a b b b c c c a a a a a a b b b b b b c c c c c c Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭程序源代码:clear; x=[];A=[-0.4,0.6,0.6,0,0,0,0,0,0 -0.2,-0.2,0.8,0,0,0,0,0,0 0,0,0,-0.85,0.15,0.15,0,0,0 0,0,0,-0.6,-0.6,0.4,0,0,0 0,0,0,0,0,0,-0.5,-0.5,0.5 1,0,0,1,0,0,1,0,00,1,0,0,1,0,0,1,00,0,1,0,0,1,0,0,1];B=[0;0;0;0;0;2000;2500;1200];C=[0.9,1.4,1.9,0.45,0.95,1.45,-0.05,0.45,0.95];xl=[0;0;0;0;0;0;0;0;0];xu=[2000;2500;1200;2000;2500;1200;2000;2500;1200];x=linprog(-C,A,B,A,B,xl,xu);x运行结果:x =1.0e+003 *2.00050.66680.66680.00020.00010.00000.00010.53400.5336问题结果有上述分析,通过matlab命令,我们求得最优解为甲乙丙使用总量A 2000.5 0.2 0.1 2000.8B 666.8 0.1 534 1200.9C 666.8 0 533.6 1200.4此时的利润为4748.5元。
数学建模实践实验报告

数学建模实践实验报告
数学建模实践实验报告
高一三班潘某某&胡某某&傅某某
一、标题
——使用数学建模的方法测量生活中的实际距离
二、实际情景
使用自制的简易量角仪测量学校中启智楼四楼饮水机处与图书馆楼楼顶之间的距离。
三、提出问题
要测量哪些数据?
如何建立模型来计算?
怎样建立模型才能使计算更简便?
四、建立模型
在计算中我们需要建立3个模型,分别是操场到图书馆楼楼顶,操场到启智楼四楼饮水机处,与启智楼四楼饮水机处到图书馆楼顶,相应地求出图书馆楼顶的高度,启智楼四楼饮水机处的高度,从而算得二者之间的平面距离。
五、求解模型
图书馆楼
AB:BE=tan16?,AB=BEtan16?
AB:BF=?,AB=?
可解得,AB=,AC=
启智楼四楼饮水机处
AB:BE=?,AB=?
AB:BF=?,AB=?
可解得,AB=,AC=
启智楼四楼饮水机处与图书馆楼楼顶
AB=CE=
DE=CD-CE=
DE:sin20?=AD:sin90?,解得AD=
六、反思与分析
由于器材精确度的限制与当天的风力,我们只能大致地测量了几个角度,有些可能误差较大,计算时也只精确到十分位,但仍有部分参考价值,在日常生活中可作近似值使用。
感谢观看!。
数学建模实验报告

内江师范学院中学数学建模实验报告册编制数学建模组审定牟廉明专业:班级:级班学号:姓名:数学与信息科学学院2016年3月说明1.学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告;2.要求学生要认真做实验,主要是指不得迟到、早退和旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;若学生无故旷课,则本次实验成绩不合格;3.学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求和目的,不得抄袭他人的实验报告;4.实验成绩评定分为优秀、合格、不合格,实验只是对学生的动手能力进行考核,跟据所做的的情况酌情给分。
根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定。
实验名称:数学规划模型(实验一)指导教师:实验时数: 4 实验设备:安装了VC++、mathematica、matlab的计算机实验日期:年月日实验地点:实验目的:掌握优化问题的建模思想和方法,熟悉优化问题的软件实现。
实验准备:1.在开始本实验之前,请回顾教科书的相关内容;2.需要一台准备安装Windows XP Professional操作系统和装有数学软件的计算机。
实验内容及要求原料钢管每根17米,客户需求4米50根,6米20根,8米15根,如何下料最节省?若客户增加需求:5米10根,由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种,如何下料最节省?实验过程:摘要:生活中我们常常遇到对原材料进行加工、切割、裁剪的问题,将原材料加工成所需大小的过程,称为原料下料问题。
按工艺要求,确定下料方案,使用料最省,或利润最大是典型的优化问题。
以此次钢管下料问题我们采用数学中的线性规划模型.对模型进行了合理的理论证明和推导,然后借助于解决线性规划的专业软件Lingo 对题目所提供的数据进行计算从而得出最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学建模与数学实验》实验报告
实验2 水道测量
专业、班级 信息1002班 学号
201010010215
姓名 李云燕 课程编号 81010240
实验类型 验证性
学时
2
实验(上机)地点 教七楼数学实验中心 完成时间 2012年5月31日
任课教师
谷根代
评分
一、实验目的及要求
1.掌握数学软件Matlab 的基本用法和一些常用的规则,能用该软件进行编程; 2.能够借助数学软件进行二维和三维网格化数据绘图; 3.理解数据生成的基本方法。
二、借助数学软件,研究、解答以下问题
(一)依题“水道测量”所给数据和要求,讨论在下面假设情况下的模型。
假设:(1)海底光滑,无暗礁(因浅水海域);(2)每个给定的数据点对未知点的影响与它们之间距离的平方成反比。
【解】:根据假设条件海底无暗礁,所以很自然地想到绘制海底地形图,进一步处理得到比较光滑的海底地形曲面图。
根据海底地形的海拔高低以及不同船只的吃水深度,找到不同吨位船只的危险海域,达到很好的警示效果。
(1)、首先绘制出监测点在矩形区域对应的海域位置 (2)、根据水道水深的测量数据,绘制出海底地形图 (3)、对数据进行插值处理: 构造插值曲面
构造散乱数据插值曲面是指对散乱数据点作三角剖分,在网格的每个三角形上构造基于三角顶点插值的三角曲面片,并使各曲面片之间满足一定的连续性要求(工程中要求达到C 1连续)。
构造基于给定散乱数据点插值的曲面的方法有很多,文献[2]给出了一种简单快速且曲面片之间满足 C 1连续的局部三角五次多项式插值曲面片的方法。
根据实际需要,这里采用局部三角三次多项式插值曲面片的方法。
⑴ 三角三次插值曲面片
在如图2所示的三角形ABC 上定义三次多项式曲面:
j i j i ij
y x a
y x F ∑≤+=
3
),(
其中ij a 为待定系数,共10个。
⑵ 边界条件
为确定待定系数ij a ,需10个条件。
条件 1 三角形 ABC 的每个顶点坐标已知。
条件 2 显然,与三角形 ABC 的顶点 A 相连的点有 5 个,由这6个点可确定一个二次多项式插值曲面:
j
i j i ij
y
x b y x G ∑≤+=
2
),(
由此可计算出 A 点处的),(y x G x 与 ),(y x G y 。
将两者近似作为三次多项式插值曲面的一阶偏导数值。
类似可计算出三角形ABC 其它两个顶点处的一阶偏导数值。
条件 3 取三个顶点处沿n 的方向导数的平均值作为三角形ABC 重心处沿n
的方向导数,这
里
AC
AB AC AB n ⨯⨯=
这样由上述10个条件就可惟一确定ij a ,从而得到基于三角形ABC 的插值三次曲面片F(x,y)。
依此可构造出所有三角网格的曲面片。
由插值曲面片的构造过程可知,这些曲面片之间是满足C 连续的。
构造出插值曲面后,就可生成规则网格数据,从而可计算出水面任意点处的水深,判断出哪些水域是危险水域。
(二)依题“水道测量”所给数据和要求,在上面所给模型的基础上,进一步给出你的分析、假设、模型和结果,列出必要的程序清单等
【解】:
水道水深的测量数据
X 129.0 140.0 103.5 88.0 185.5 195.0 105.5 y 7.5 141.5 23.0 147.0 22.5 137.5 85.5 z 4 8 6 8 6 8 8 x 157.5 107.5 77.0 81.0 162.0 162.0 117.5 y -6.5 -81.0 3.0 56.5 -66.5 84.0 -33.5 z
9
9
8
8
9
4
9
其中(x, y )为测量点,z 为(x, y )处的水深(英尺)。
船的吨位可以用其吃水深度来反映, 分为 4英尺、4.5英尺、5英尺和 5.5英尺 4 档。
(1)、首先绘制出监测点在矩形区域对应的海域位置: 程序如下: x=[129.0 140.0 108.5 88.0 185.5 195.5 105.5 157.5 107.5 77.0 81.0 162.0 162.0 117.5] y=[7.5 141.5 28.0 147.0 22.5 137.5 85.5 -6.5 -81.0 3.0 56.5 -66.5 84.0 -38.5] plot(x,y,'o'); % 绘制测量点的位置 title('测量点图'); 如图所示:
(2)、根据水道水深的测量数据,绘制出海底地形图:
程序如下:
x=[129.0 140.0 108.5 88.0 185.5 195.5 105.5 157.5 107.5 77.0 81.0 162.0 162.0 117.5]
y=[7.5 141.5 28.0 147.0 22.5 137.5 85.5 -6.5 -81.0 3.0 56.5 -66.5 84.0 -38.5] z=[4 8 6 8 6 8 8 9 9 8 8 9 4 9]
a=input('输入要显示范围中x的最小值');
b=input('输入要显示范围中x的最大值');
c=input('输入要显示范围中y的最小值');
d=input('输入要显示范围中y的最大值');
s=(b-a)/25; t=(d-c)/20; xi=a:s:b; yi=[c:t:d]';
HI=griddata(x,y,z,xi,yi,'cubic'); %三角三次插值
mesh(xi,yi,HI);
view(-60,30); %改变观察视角
daspect([5 5 1])
axis tight
title('海底地形图');
结果:
输入要显示范围中x的最小值75
输入要显示范围中x的最大值200
输入要显示范围中y的最小值-50
输入要显示范围中y的最大值150
如图所示:
(3)、对数据进行插值处理:
程序如下:
x=[129.0 140.0 108.5 88.0 185.5 195.5 105.5 157.5 107.5 77.0 81.0 162.0 162.0 117.5];
y=[7.5 141.5 28.0 147.0 22.5 137.5 85.5 -6.5 -81.0 3.0 56.5 -66.5 84.0 -38.5];z=[4 8 6 8 6 8 8 9 9 8 8 9 4 9];
a=input('输入要显示范围中x的最小值');
b=input('输入要显示范围中x的最大值');
c=input('输入要显示范围中y的最小值');
d=input('输入要显示范围中y的最大值');
s=(b-a)/25; t=(d-c)/20; xi=a:s:b; yi=[c:t:d]';
HI=griddata(x,y,z,xi,yi,'cubic'); %三角三次插值
subplot(2,2,1);
surf(xi,yi,HI); %绘制海底地形曲面图
shading interp;light;lighting phong; %处理曲面图
view(-60,30);%改变观察视角
daspect([5 5 1])
axis tight
title('海底地形加强图');
subplot(2,2,2);
plot(x,y,'o');
hold on
e=4;
contour(xi,yi,HI,[e,e],'k'); %找出危险水域title('危险水域(吃水深度为4米)');
subplot(2,2,3);
plot(x,y,'o');
hold on
e=4.5;
contour(xi,yi,HI,[e,e],'k'); %找出危险水域title('危险水域(吃水深度为4.5米)');
subplot(2,2,4);
plot(x,y,'o');
hold on
e=5;
contour(xi,yi,HI,[e,e],'k'); %找出危险水域title('危险水域(吃水深度为5米)');
结果:
输入要显示范围中x的最小值75
输入要显示范围中x的最大值200
输入要显示范围中y的最小值-50
输入要显示范围中y的最大值150
如图所示:
三、本次实验的难点分析
本次实验的难点是插值方法的确定,需要合理的确定所选插值的方法,并且需要对常见的插值方法有一定的了解,其中有的部分是借用网上的东西。
四、参考文献
姜启源,谢金星,叶俊.数学模型(第三版),高等教育出版社,2003。