北师大版 七年级数学下册 第4章 三角形 课时同步检测练习 习题合集(含答案解析)
北师大版七年级数学下册第四章同步测试题及答案

∴∠BAC=180°﹣∠ABC﹣∠ACB=60°.
∵AE平分∠BAC,
∴∠BAE= ∠BAC=30°.
(2)∵∠CAE=∠BAE=30°,∠ACB=80°,
∴∠AEB=∠CAE+∠ACB=110°,
∵AD是BC边上的高,
∴∠ADE=90°,
∴∠DAE=∠AEB﹣∠ADE=20°.
13.解:(1)∵a+b=4,a2+b2=8,
∴(a+b)2=a2+2ab+b2=8+2ab=16,
∴ab=4,
(a﹣b)2=(a+b)2﹣4ab=16﹣16=0;
(2)∵a、b、c是△ABC的三边,
∴a+b>c,b+c>a,a+c>b,
∴|a+b﹣c|﹣|c﹣a+b|﹣|b﹣c﹣a|+|b﹣a﹣c|
(第10题图)
三.解答题(共8小题)
11.(1)下列图中具有稳定性是(填序号)
(2)对不具稳定性的图形,请适当地添加线段,使之具有稳定性.
(3)图5所示的多边形共条对角线.
(第11题图)
12.小辉用7根木条钉成一个七边形的木架,他为了使该木架稳固,想在其中加上四根木条,请你在图1、2、3中画出你的三种想法,并说明加上木条后使该木架稳固所用的数学道理.
(第12题图)
13.如图1,直线AM⊥AN,AB平分∠MAN,过点B作BC⊥BA交AN于点C;动点E、D同时从A点出发,其中动点E以2m/s的速度沿射线AN方向运动,动点D以1m/s的速度运动;已知AC=6cm,设动点D,E的运动时间为t.
(1)当点D在射线AM上运动时满足S△ADB:S△BEC=2:1,试求点D,E的运动时间t的值;
(常考题)北师大版初中数学七年级数学下册第四单元《三角形》检测题(包含答案解析)

一、选择题1.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .1 2.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .6 3.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52αC .2αD .32α 4.如图,AC 与DB 相交于E ,且BE CE =,如果添加一个条件还不能判定ABE △≌DCE ,则添加的这个条件是( ).A .AC DB = B .A D ∠=∠C .B C ∠=∠D .AB DC = 5.如图,12AB =,CA AB ⊥于A ,DB AB ⊥于B ,且4AC cm =,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P ,Q 两点同时出发,运动______分钟后CAP 与PQB △全等( )A .4或6B .4C .6D .56.已知图中的两个三角形全等,则∠α等于( )A .50°B .60°C .70°D .80° 7.如图,已知∠ABC =∠DEF ,AB =DE ,添加以下条件,不能判定△ABC ≌△DEF 的是( )A .∠A =∠DB .∠ACB =∠DFEC .AC =DFD .BE =CF 8.如图,AE ∥DF ,AE =DF .添加下列的一个选项后.仍然不能证明△ACE ≌△DBF 的是( )A .AB =CDB .EC =BF C .∠E =∠FD .EC ∥BF 9.已知三角形的一边长为8,则它的另两边长分别可以是( )A .2,9B .17,29C .3,12D .4,4 10.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45°11.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒ 12.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB ∠∠='''的依据是( )A .S .S .SB .S .A .SC .A .S .AD .A .A .S二、填空题13.如图,ACE DBF ≌,//AE DF ,8AD =,2BC =,则AB =______.14.如图,在△ABC 中,∠BAC =100°,AD ⊥BC 于D 点,AE 平分∠BAC 交BC 于点E .若∠C =26°,则∠DAE 的度数为_____.15.已知ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别为边AB 、AC 上的动点,且90EDF ∠=︒,连接EF ,下列说法正确的是______.(写出所有正确结论的序号)①270BEF CFE ∠+∠=︒;②ED FD =;③EF FC =;④12ABC AEDF S S =四边形16.如图所示,在等腰Rt ABC 中,90ACB ∠=︒,点D 为射线CB 上的动点,AE AD =,且,AE AD BE ⊥与AC 所在的直线交于点P ,若3AC PC =,则BD CD=_______.17.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.18.有两根小棒分别长2厘米和4厘米.要围成一个等腰三角形,第三根小棒的长度应该是____厘米.19.如图,在△ABC 中,点D 在边BC 上,已知点E ,F 分别是AD ,CE 边上的中点,且△BEF 的面积为6,则△ABC 的面积等于_____.20.如图,在长方形网格中,每个小长方形的长为2,宽为1,A ,B 两点在网格格点上,若点C 也在网格格点上,以A ,B ,C 为顶点的三角形的面积为2,则满足条件的点C 有______个.三、解答题21.如图,已知:AD =AB ,AE =AC ,AD ⊥AB ,AE ⊥AC .猜想线段CD 与BE 之间的数量关系与位置关系,并证明你的猜想.22.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上(不与点B ,C 重合),过点C 作CE ⊥AD ,垂足为点E ,交AB 于点F ,连接DF .(1)请直接写出∠CAD 与∠BCF 的数量关系;(2)若点D 是BC 中点,在图2中画出图形,猜想线段AD ,CF ,FD 之间的数量关系,并证明你的猜想.23.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于点E ,若70C ∠=︒,24B ∠=︒,求P ∠的度数.24.在Rt ABC △中,90C ∠=︒,8cm AC =,6cm BC =,点D 在AC 上,且6cm AD =,过点A 作射线AE AC ⊥(AE 与BC 在AC 同侧),若点P 从点A 出发,沿射线AE 匀速运动,运动速度为1cm/s ,设点P 运动时间为t 秒.连结PD 、BD .(1)如图①,当PD BD ⊥时,求证:PDA DBC △≌△;(2)如图②,当PD AB ⊥于点F 时,求此时t 的值.25.如图,AD 是ABC 的角平分线,AB AC >,求证:AB AC BD CD ->-.26.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 2.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x ,∵三角形两边的长分别是1和4,∴4-1<x <4+1,即3<x <5.故选:B .【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.【详解】解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.4.D解析:D【分析】根据全等三角形的判定定理,对每个选项分别分析、解答出即可.【详解】根据题意:BE=CE ,∠AEB=∠DEC ,∴只需要添加对顶角的邻边,即AE=DE (由AC=BD 也可以得到),或任意一组对应角,即∠A=∠D ,∠B=∠C ,∴选项A 、B 、C 可以判定,选项D 不能判定,故选:D .【点睛】此题考查全等三角形的判定定理,熟记判定定理并熟练应用是解题的关键.解析:B【分析】分当△CPA≌△PQB时和当△CPA≌△PQB时,两种情况进行讨论,求得BQ和BP的长,分别求得P和Q运动的时间,若时间相同即可,满足全等,若不等,则不能成立.【详解】解:当△CPA≌△PQB时,BP=AC=4(米),则BQ=AP=AB-BP=12-4=8(米),A的运动时间是:4÷1=4(分钟),Q的运动时间是:8÷2=4(分钟),则当t=4分钟时,两个三角形全等;当△CPA≌△QPB时,BQ=AC=4(米),AP=BP=12AB=6(米),则P运动的时间是:6÷1=6(分钟),Q运动的时间是:4÷2=2(分钟),故不能成立.总之,运动4分钟后,△CPA与△PQB全等,故选B.【点睛】本题考查了全等三角形的判定,注意分△CPA≌△PQB和△CPA≌△QPB两种情况讨论是关键.6.C解析:C【分析】利用全等三角形的性质及三角形内角和可求得答案.【详解】解:如图,∵两三角形全等,∴∠2=60°,∠1=52°,∴∠α=180°-50°-60°=70°,故选:C.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.解析:C【分析】根据全等三角形的判定方法一一判断即可;【详解】A、根据ASA,可以推出△ABC≌△DEF,本选项不符合题意.B、根据AAS,可以推出△ABC≌△DEF,本选项不符合题意.C、SSA,不能判定三角形全等,本选项符合题意.D、根据SAS,可以推出△ABC≌△DEF,本选项不符合题意.故选:C.【点睛】本题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法;8.B解析:B【分析】结合题目条件,依据三角形全等的判定定理逐一判断即可.【详解】∵AE∥DF,∴∠A=∠D,A、根据SAS,可以推出△ACE≌△DBF,本选项不符合题意.B、SSA不能判定三角形全等,本选项符合题意.C、根据ASA,可以推出△ACE≌△DBF,本选项不符合题意.D、根据AAS,可以推出△ACE≌△DBF,本选项不符合题意.故选:B.【点睛】本题考查了三角形全等的判定,熟记三角形全等的判定定理是解题的关键.9.A解析:A【分析】根据三角形三边关系判断即可;【详解】+=>8,9279211-=<8,故A正确;-=>8,故B错误;172946+=>8,29171212315+=>8,1239-=>8,故C 错误;448+=,故D 错误;故答案选A .【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.10.A解析:A【分析】 根据已知ACB ≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB ≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A .【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键. 11.C解析:C【分析】先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.12.A解析:A【分析】利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【详解】解:易得OC=O C',OD=O′D',CD=C′D',∴△OCD≌△O′C′D′,∴∠A′O′B′=∠AOB,所以利用的条件为SSS,故选:A.【点睛】本题考查了全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点,熟练掌握三角形全等的性质是解题的关键.二、填空题13.3【分析】根据全等三角形对应边相等可得AC=BD再求出AB=CD然后代入数据进行计算即可得解【详解】解:∵△ACE≌△DBF∴AC=DB∴AC-BC=BD-BC 即AB=CD∵AD=8BC=2∴AB=解析:3【分析】根据全等三角形对应边相等可得AC=BD,再求出AB=CD,然后代入数据进行计算即可得解.【详解】解:∵△ACE≌△DBF,∴AC=DB,∴AC-BC=BD-BC,即AB=CD,∵AD=8,BC=2,∴AB=12(AD-BC)=12×(8-2)=3.故答案为:3.【点睛】本题考查了全等三角形的性质,根据全等三角形对应顶点的字母写在对应位置上确定出对应边,然后求出AB=CD是解题的关键.14.14°【分析】利用垂直的定义得到∠ADC=90°再根据三角形内角和计算出∠CAD=64°接着利用角平分线的定义得到∠CAE=50°然后计算∠CAD﹣∠CAE 即可【详解】解:∵AD⊥BC∴∠ADC=9解析:14°【分析】利用垂直的定义得到∠ADC=90°,再根据三角形内角和计算出∠CAD=64°,接着利用角平分线的定义得到∠CAE=50°,然后计算∠CAD﹣∠CAE即可.【详解】解:∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°﹣∠C=64°,∵AE平分∠BAC,∴∠CAE=12∠BAC=12×100°=50°,∴∠DAE=∠CAD﹣∠CAE=64°﹣50°=14°.故答案为14°.【点睛】本题考查了三角形内角和定理、角平分线的定义、垂线的定义,解题关键是熟练运用相关性质求角.15.①②④【分析】根据补角的性质计算可得①;连接D证明根据三角形全等的性质判断可得后面的结果;【详解】;故①正确;连接AD∵∴又∵点为的中点∴即又∵∴又∵∴在△BED和△AFD中∴∴ED=FD;故②正确解析:①②④【分析】根据补角的性质计算可得①;连接D,证明BED AFD≅△△,根据三角形全等的性质判断可得后面的结果;【详解】()()∠+∠=∠-∠+∠-∠BEF CFE AEB AEF AFC AFE,()()AEB AFC AEF AFE=∠+∠-∠+∠,()360180A=︒-︒-∠,36090270=︒-︒=︒;故①正确;连接AD,∵90BAC ∠=︒,AB AC =,∴90B C ∠=∠=︒,又∵点D 为BC 的中点,∴BD AD =,90BDA ∠=︒,45DAC ∠=︒,即EBD DAF ∠=∠,又∵90EDF ∠=︒,∴90EDA ADF ,又∵90BDA BDE EDA ∠=∠+∠=︒,∴BDE ADF ∠=∠,在△BED 和△AFD 中,EBD DAF BD ADBDE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴BED AFD ≅△△,∴ED=FD ;故②正确;∵BED AFD ≅△△,∴△△BED ADF S S =, 则四边形△△△△△△12AEDF AED ADF AED BED ABD ABC S S S S S S S =+=+==, 故④正确;当点E 移动到点A 时,此时点F 与点C 重合,很明显此时EF=AC ,FC=0,即≠EF FC ; 故③错误;故答案为①②④.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键. 16.或2【分析】分两种情况:(1)当点D 位于CB 延长线上时如图:过点E 作AP 延长线的垂线于点M 可证可得由等腰三角形的性质可得AC=BC 根据线段的和差关系可证的结论;(2)当点D 位于CB 之间时如图过点E 作解析:25或2 【分析】 分两种情况:(1)当点D 位于CB 延长线上时,如图:过点E 作AP 延长线的垂线于点M ,可证ADC △AEM ≌△,EMP △BCP ≌△,可得,AM CD PC PM ==,由等腰三角形的性质可得AC=BC ,根据线段的和差关系可证的结论;(2)当点D 位于CB 之间时,如图过点E 作AP 的垂线于点N ,可证ADC △AEN ≌△,ENP △BCP ≌△,可得,AN CD PC PN ==,由等腰三角形的性质可得AC=BC ,根据线段的和差关系可证的结论;【详解】(1)当点D 位于CB 延长线上时,如图:过点E 作AP 延长线的垂线于点M ,ABC 为等腰直角三角形AC BC ∴=90BCP ACD AME ∴∠=∠=∠=︒90ADC DAC ∴∠+∠=︒AE AD ⊥90DAE ∴∠=︒90DAC EAM ∴∠+∠=︒ADC EAM ∴∠=∠AD AE =∴在ADC 和AEM △中ADC EAMACD AMEAD AE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EAM∴CD MA =,AC EM =EM BC ∴=BPC EPM ∠=∠∴在BCP 和EMP 中BPC EPM BC EM ⎪∠=∠⎨⎪=⎩∴EMP △BCP ≌△PC PM ∴=CD AM =,3AC PC =,AC BC =∴设PC PM x ==3AC BC x ∴==5CD AM x ∴==CD BD BC =+2BD x ∴= 2255BD x CD x ∴== (2)当点D 位于CB 之间时,如图:过点E 作AP 的垂线于点N ,ABC 为等腰直角三角形AC BC ∴=90ACD ANE ∴∠=∠=︒90ADC DAC ∴∠+∠=︒AE AD ⊥90DAE ∴∠=︒90DAC EAN ∴∠+∠=︒ADC EAN ∴∠=∠AD AE =∴在ADC 和AEN △中ADC EAN ACD ANE AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EAN∴CD NA =,AC EN =EN BC ∴=∴在BCP 和ENP 中BCP ENP BPC EPN BC EN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ENP △BCP ≌△PC PN ∴=CD AN =,3AC PC =,AC BC =∴设PC PN x ==3AC BC x ∴==CD AN x ∴==CD BC BD =-2BD x ∴=22BD x CD x∴== 故答案为:25或2. 【点睛】本题主要考查了全等三角形的判定和性质,解题关键是利用三角形全等和线段的和差得出所求线段之间的关系,同时运用分类讨论的思想.17.【分析】延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 交CE 于点N 根据平行的性质得由得再根据三角形的外角的性质得即可求出和的数量关系【详解】解:如图延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 解析:1483E G ∠=︒-∠【分析】延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,根据平行的性质得G BAG GCD ∠=∠+∠,由3BAF BAG ∠=∠,3DCE DCG ∠=∠,得333G BAG DCG ∠=∠+∠,再根据三角形的外角的性质得E EMA EAF BAF ∠+∠=∠-∠,即可求出E ∠和G ∠的数量关系.【详解】解:如图,延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,∵//AB CD ,∴////BH GN CD ,∴BAG AGN ∠=∠,NGC GCD ∠=∠,EMA ECD ∠=∠,∵G AGN NGC ∠=∠+∠,∴G BAG GCD ∠=∠+∠,∵3BAF BAG ∠=∠,3DCE DCG ∠=∠,∴333G BAG DCG ∠=∠+∠,∵EAB E EMA ∠=∠+∠,EAB EAF BAF ∠=∠-∠,∴E EMA EAF BAF ∠+∠=∠-∠,∴E ECD EAF BAF ∠+∠=∠-∠,∴31483E DCG BAG ∠+∠=︒-∠,∴()14833E BAG DCG ∠=︒-∠+∠,∴1483E G ∠=︒-∠.故答案是:1483E G ∠=︒-∠.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是通过平行线的性质和三角形外角的性质找到角与角之间的数量关系.18.4【分析】根据三角形三边关系:三角形的任意两边之和大于第三边任意两边之差小于第三边即可得出结果【详解】解:∵要围成一个等腰三角形∴有两种可能:224和2442+2=4所以224舍掉∴第三根小棒的长度解析:4【分析】根据三角形三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边即可得出结果.【详解】解:∵要围成一个等腰三角形,∴有两种可能:2、2、4和2、4、4,2+2=4,所以2、2、4舍掉,∴第三根小棒的长度为4,故答案为:4【点睛】本题主要考查的三角形三边关系,掌握三角形的三边关系是解题的关键.19.24【分析】由EF分别为ADCE的中点可得BECEBF分别为△ABD△ACD△BEC的中线根据中线的性质可知将相应三角形分成面积相等的两部分据此即可解答【详解】解:∵由于EF分别为ADCE的中点∴S解析:24【分析】由E、F分别为AD、CE的中点可得BE、CE、BF分别为△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,据此即可解答.【详解】解:∵由于E、F分别为AD、CE的中点,∴S△ABE=S△DBE,S△DCE=S△AEC,S△BEF=S△BCF,∴S△BEC=2S△BEF=12,∴S△ABC=2S△BEC=24.故答案为:24.【点睛】本题考查了三角形中线的性质,属于常考题型,熟知三角形的中线将相应的三角形分成面积相等的两部分是解题的关键.20.4【分析】尝试在网格中寻找符合条件的点总共有16个点可以依次尝试一遍【详解】根据题意遍历网络中的所有点发现符合条件的点C点如下图:故答案为:4【点睛】本题考查在格点中找寻符合要求的点此类题型我们需要解析:4【分析】尝试在网格中寻找符合条件的点,总共有16个点,可以依次尝试一遍.【详解】根据题意,遍历网络中的所有点,发现符合条件的点C点如下图:故答案为:4.【点睛】本题考查在格点中找寻符合要求的点,此类题型,我们需要大胆尝试.三、解答题21.CD =BE ,CD ⊥BE ,证明见解析【分析】证明△ACD ≌△AEB ,根据全等三角形的性质得到CD =BE ,∠ADC =∠ABE ,根据三角形内角和定理得出∠BFD =∠BAD =90°,证明结论.【详解】解:猜想:CD =BE ,CD ⊥BE ,理由如下:∵AD ⊥AB ,AE ⊥AC ,∴∠DAB =∠EAC =90°.∴∠DAB +∠BAC =∠EAC +∠BAC ,即∠CAD =∠EAB ,在△ACD 和△AEB 中,AD AB CAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△AEB (SAS ),∴CD =BE ,∠ADC =∠ABE ,∵∠AGD =∠FGB ,∴∠BFD =∠BAD =90°,即CD ⊥BE .【点睛】本题考查的是三角形全等的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.22.(1)∠BCF =∠CAD ;(2)AD =CF +DF ,证明见解析【分析】(1)由余角的性质可求解;(2)过点B 作BG ∥AC 交CF 的延长线于G ,由“ASA ”可证△ACD ≌△CBG ,可得CD =BG ,AD =CG ,由“SAS ”可证△BDF ≌△BGF ,可得DF =GF ,可得结论.【详解】解:(1)∠BCF =∠CAD ,理由如下:∵CE ⊥AD ,∴∠CED =∠ACD =90°,∴∠CAD +∠ADC =90°=∠ADC +∠BCF ,∴∠CAD =∠BCF ;(2)如图所示:猜想:AD =CF +DF ,理由如下:过点B 作BG ∥AC 交CF 的延长线于G ,则∠ACB +∠CBG =180°,∴∠CBG =∠ACD =90°,在△ACD 和△CBG 中,∵CAD BCF AC BC ACD CBG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACD ≌△CBG (ASA ),∴CD =BG ,AD =CG ,∵D 是BC 的中点,∴CD =BG =BD ,∵AC =BC ,∠ACB =90°,∴∠CBA =∠CAB ,∴∠CBA =45°,∴∠FBG =∠CBG ﹣∠CBA =90°﹣45°=45°,∴∠FBG =∠FBD ,在△BDF 和△BGF 中,BF BF FBD FBG BD BG =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△BGF (SAS ),∴DF =GF ,∵AD =CG =CF +FG ,∴AD =CF +DF .【点睛】本题主要考查余角的性质,全等三角形的判定和性质,添加合适的辅助线,构造全等三角形,是解题的关键.23.23°【分析】在△ABC 中,利用三角形内角和定理可求出∠BAC 的度数,结合角平分线的定义可得出∠CAD 的度数,在△ACD 中,利用三角形外角定理可求出∠CDP 的度数,结合PE BC ⊥即90PED ∠=︒及三角形外角定理,从而得出P CDP PED ∠=∠-∠即可求得∠P 的度数.【详解】解:在ABC 中,70C ∠=︒,24B ∠=︒,∴180702486BAC ∠=︒-︒-︒=︒,∵AD 平分BAC ∠,∴43CAD ∠=︒,∴4370113CDP CAD C ∠=∠+∠=︒+︒=︒,∵PE BC ⊥,即90PED ∠=︒,∴1139023P CDP PED ∠=∠-∠=︒-︒=︒.【点睛】本题考查了三角形外角定理、角平分线的定义,利用三角形外角定理及角平分线的定义,求出∠CDP 的度数是解题的关键.24.(1)见解析;(2)8秒【分析】(1)根据垂直及角之间的关系证明出PDA CBD ∠=∠,又有90PAD C ∠=∠=︒,=6AD BC =,根据三角形全等的判定定理则可证明PDA DBC △≌△.(2)根据垂直及角之间的关系证明APF DAF ∠=∠,又因为90PAD C ∠=∠=︒,AD BC =,则可证明PAD ACB △≌△,所以8cm AP AC ==,即t=8秒.【详解】(1)证明:PD BD ⊥,90PDB ∴∠=︒,即90BDC PDA ∠+∠=︒又90C ∠=︒,90BDC CBD ∠+∠=︒ PDA CBD ∴∠=∠又AE AC ⊥,90PAD ∴∠=︒90PAD C ∴∠=∠=︒又6cm BC =,6cm AD =AD BC ∴= 在PAD △和DCB 中PAD C AD CBPDA DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩()PDA DBC ASA ∴△≌△(2)PD AB ⊥,90AFD AFP ∴∠=∠=︒,即90PAF APF ∠+∠=︒又AE AC ⊥, 90PAF DAF ∴∠+∠=︒APF DAF ∴∠=∠又90PAD C ∠=∠=︒,AD BC =在APD △和CAB △中APD CAB PAD C AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()PAD ACB AAS ∴△≌△8cm AP AC ∴==即8t =秒.【点睛】本题主要考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用角之间的关系是解题关键.25.见解析【分析】在 AB 上取 AE = AC ,然后证明ADC ≌()SAS ADE △,根据全等三角形对应边相等得到DC DE =,再根据三角形的任意两边之差小于第三边证明即可.【详解】证明:如解图,在AB 上截取AE AC =,连接DE ,∵ AD 是ABC 的角平分线,∴ CAD EAD ∠=∠.在ADC 和ADE 中,,,,AC AE CAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴ ADC ≌()SAS ADE △.∴ DC DE =.∵在BDE 中,BE BD ED >-,∵ AB AE BE -=,∴ AB AC BD CD ->-.【点睛】本题主要考查全等三角形的判定和全等三角形对应边相等的性质以及三角形的三边关系,作辅助线构造全等三角形是解题的关键.26.(1)AC CE ⊥,见解析;(2)成立,理由见解析;(3)成立,理由见解析【分析】(1)先用HL 判断出Rt Rt ABC CDE ≌△△,得出A DCE ∠=∠,进而判断出90DCE ACB ∠+∠=︒,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.【详解】解:(1)AC CE ⊥理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒在Rt ABC △和Rt CDE △中AC CE BC DE =⎧⎨=⎩∴()Rt Rt HL ABC CDE △△≌, ∴A DCE ∠=∠∵90B ∠=︒,∴90A ACB ∠+∠=︒,∴()18090ACE DCE ACB ∠=︒-∠+∠=︒,∴AC CE ⊥;(2)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒,在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵90B ∠=︒,∴190B A AC ∠+∠=︒,∴2190DC E AC B ∠+∠=︒,在12C FC 中,()122118090C FC DC E AC B ∠=︒-∠+∠=︒,∴12AC C E ⊥;(3)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴190ABC D ∠=∠=︒在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵190ABC ∠=︒,∴190B A AC ∠+∠=︒,在12C FC 中,()2112180=90C FC DC E AC B ∠=︒-∠+∠︒,∴12AC C E .【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出12Rt Rt ABC C DE ≌△△是解本题的关键.。
(常考题)北师大版初中数学七年级数学下册第四单元《三角形》检测题(含答案解析)

一、选择题1.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( ) ①13∠=∠;②180BAE CAD ∠+∠=︒; ③若//BC AD ,则230∠=︒; ④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个2.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD ⊥,现添加以下条件,不能判定ABC ABD △≌△的是( )A .ACB ADB ∠=∠ B .AB BD =C .AC AD = D .CAB DAB ∠=∠3.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B .2C .22D .104.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA 5.已知三角形的一边长为8,则它的另两边长分别可以是( )A .4,4B .17,29C .3,12D .2,96.如图,AB DE =,A D ∠=∠,要说明ABC DEF △≌△,需添加的条件不能是( )A .//AB DE B .//AC DF C .AC DE ⊥D .AC DF =7.直角ABC 、DEF 如图放置,其中90ACB DFE ∠=∠=︒,AB DE =且AB DE ⊥.若DF a =,BC b =,CF c =.则AE 的长为( )A .a c +B .b c +C .a b c +-D .a b c -+8.如图,若DEF ABC ≅,点B 、E 、C 、F 在同一条直线上,9BF =,5EC =,则CF 的长为( )A .1B .2C .2.5D .3 9.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( )A .4、5、6B .3、4、5C .2、3、4D .1、2、310.下列条件不能判定两个直角三角形全等的是( ) A .两条直角边对应相等 B .斜边和一锐角对应相等 C .斜边和一直角边对应相等D .两个锐角对应相等11.如图,ABC ADE ≅,BC 的延长线交DA 于F ,交DE 于G ,∠D =25°,∠E =105°,∠DAC =16°,则∠DGB 的度数为( )A .66°B .56°C .50°D .45°12.如图,已知AC ⊥BD ,垂足为O ,AO = CO ,AB = CD ,则可得到△AOB ≌△COD ,理由是( )A .HLB .SASC .ASAD .SSS二、填空题13.如图,已知AC DB =,添加一个条件________,可以得到ABC DCB △≌△.14.如图,在ABC 和DEF 中,点B F C E ,,,在同一直线上,,//BF CE AB DE =,请添加一个条件,使ABC DEF ≅,这个添加的条件可以是________.15.己知三角形的三边长分别为2,x ﹣1,3,则三角形周长y 的取值范围是__. 16.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于点O ,若∠AOD =70°,则∠AOF =______度.17.等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_______________cm . 18.如图,在△ABC 中,点D 在边BC 上,已知点E ,F 分别是AD ,CE 边上的中点,且△BEF 的面积为6,则△ABC 的面积等于_____.19.已知三角形ABC 的三边长分别是,,a b c ,化简a b c b a c +----的结果是_________________;20.如图,在AOB ∠的两边上,分别取OM=ON ,在分别过点M 、N 作OA 、OB 的垂线,交点P ,画射线OP ,则OP 平分AOB ∠的依据是____________三、解答题21.如图,将两块含45°角的大小不同的直角三角板△COD 和△AOB 如图①摆放,连结AC ,BD .(1)如图①,猜想线段AC 与BD 存在怎样的数量关系和位置关系,请写出结论并证明; (2)将图①中的△COD 绕点O 顺时针旋转一定的角度(如图②),连结AC ,BD ,其他条件不变,线段AC 与BD 还存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD 绕点O 逆时针旋转一定的角度(如图③),连结AC ,BD ,其他条件不变,线段AC 与BD 存在怎样的关系?请直接写出结论.22.如图1,在ABC 中,过点B 作BD AB ⊥,且BD AB =,连接CD .(问题原型)(1)若90ACB ∠=︒,且8AC BC ==,过点D 作的BCD △的BC 边上的高DE ,易证ABC BDE △≌△,从而得到BCD △的面积为______.(变式探究)(2)如图2,若90ACB ∠=︒,BC a =,用含a 的代数式表示BCD △的面积,并说明理由.(拓展应用)(3)如图3,若AB AC =,8BC =,则BCD △的面积为______.23.已知△ABC 和△ADE 均为等腰三角形,且∠BAC =∠DAE ,AB =AC ,AD =AE . (1)如图1,点E 在BC 上,求证:BC =BD+BE ;(2)如图2,点E 在CB 的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.(3)如图3,点E 在BC 的延长线上,直接写出线段BC 、CD 、CE 三者之间的关系.24.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由; (2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数.25.如图,在△ABC 中,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF .写出两个结论(∠BAD =∠CAD 和DE =DF 除外),并选择一个结论进行证明. (1)____________; (2)____________.26.如图,Rt ABC 与Rt DEF △的顶点A ,F ,C ,D 共线,AB 与EF 交于点G ,BC 与DE 相交于点H ,90B E ∠=∠=︒,AF CD =,AB DE =.(1)求证:Rt ABC Rt DEF ≌; (2)若1GF =,求线段HC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒, 再利用三角形的外角的性质求解4∠, 从而可判断④. 【详解】 解:90BAC DAE ∠=∠=︒, 122390∴∠+∠=∠+∠=︒, 13∴∠=∠,故①符合题意,19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒, 故②符合题意;//,BC AD180C CAD ∴∠+∠=︒, 45C ∠=︒, 135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒, 故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,, 30BAE ∴∠=︒, 如图,记,AB DE 交于,G60E ∠=︒,180306090AGE ∴∠=︒-︒-︒=︒,45,B C ∠=∠=︒4904545.AGE B ∴∠=∠-∠=︒-︒=︒ 4.C ∴∠=∠ 故④符合题意,综上:符合题意的有①②④. 故选:.C 【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.2.B解析:B 【分析】根据已知条件可得∠ABC=∠ABD=90°,AB=AB ,结合全等三角形的判定定理依次对各个选项判断. 【详解】解:∵AB CD ⊥, ∴∠ABC=∠ABD=90°, ∵AB=AB ,∴若添加ACB ADB ∠=∠,可借助AAS 证明ABC ABD △≌△,A 选项不符合题意; 若添加AB BD =,无法证明ABC ABD △≌△,B 选项符合题意;若添加AC AD =,可借助HL 证明ABC ABD △≌△,C 选项不符合题意; 若添加CAB DAB ∠=∠,可借助ASA 证明ABC ABD △≌△,D 选项不符合题意; 故选:B . 【点睛】本题考查全等三角形的判定.熟练掌握全等三角形的判定定理,并能结合题上已知条件选取合适的定理是解题关键.3.B解析:B 【分析】根据已知条件可以得出∠E=∠ADC=90︒,进而得出∆CEB ≅∆ADC ,就可以得出BE=DC ,进而求出DE 的值. 【详解】∵BE ⊥CE ,AD ⊥CE , ∴∠E=∠ADC=90︒, ∴∠EBC+∠BCE=90︒, ∵∠BCE+∠ACD=90︒, ∴∠EBC=∠DCA ,在∆CEB 和∆ADC 中,∠E=∠ADC ,∠EBC=∠DCA ,BC=AC , ∴∆CEB ≅∆ADC(AAS), ∴BE=DC=1,CE=AD=3, ∴DE=EC-CD=3-1=2, 故选:B . 【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解决问题的关键.4.A解析:A 【分析】利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥, ∴90PMO PNO ∠=∠=. ∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠, 故选:A . 【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.5.D解析:D 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”进行判断即可. 【详解】A 、∵4+4=8,∴构不成三角形;B 、29−17=12>8,∴构不成三角形;C 、∵12−3=9>8,∴构不成三角形;D 、9−2=7<8,9+2=11>8,∴能够构成三角形, 故选:D . 【点睛】此题考查了三角形的三边关系,熟练掌握三角形三边关系“任意两边之和大于第三边,任意两边之差小于三边”是解题的关键.6.C解析:C 【分析】直接根据三角形证明全等的条件进行判断即可; 【详解】A 、∵AB ∥DE ,∴∠ABC=∠DEC ,∴根据ASA 即可判定三角形全等,故此选项不符合题意;B 、∵AC ∥DF ,∴∠DFE=∠ACB ,∴根据AAS 即可判定三角形全等,故此选项不符合题意; C 、AC ⊥DE ,不符合三角形全等的证明条件,故此选项符合题意;D 、∵AC=DF ,∴根据SAS 即可判定三角形全等,故此选项不符合题意; 故选:C . 【点睛】本题考查了三角形证明全等所需添加的条件,正确掌握知识点是解题的关键;7.C解析:C 【分析】先利用AAS 证明ABC DEF ≅,再根据全等三角形的性质进行线段和差计算即可. 【详解】 解:90ACB ∠=︒,DE AB ⊥,90A B ∴∠+∠=︒,90A E ∠+∠=︒,B E ∴∠=∠,在ABC 与DEF 中90B E ACB DFE AB DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ABC DEF AAS ∴≅△△;AC DF =∴,BC EF =,∵DF a =,BC b =,CF c =,AE AC EF CF =+-, ∴AE a b c =+- 故选C . 【点睛】本题主要考查了全等三角形的判定与全等三角形的性质,确定用AAS 定理进行证明是关键.8.B解析:B 【分析】根据全等三角形的对应边相等得到BE=CF ,计算即可. 【详解】解:∵△DEF ≌△ABC , ∴BC=EF , ∴BE+EC=CF+EC , ∴BE=CF ,又∵BF=BE+EC+CF=9,EC=5 ∵CF=12(BF-EC)=12(9-5)=2. 故选:B . 【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.9.D解析:D 【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可. 【详解】D 、4+5>6,能组成三角形,故此选项错误; B 、3+4>5,能组成三角形,故此选项错误; A 、2+3>4,能组成三角形,故此选项错误; D 、1+2=3,不能组成三角形,故此选项正确; 故选:D . 【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.D解析:D【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【详解】解:A 、可以利用边角边判定两三角形全等,故本选项不合题意;B 、可以利用角角边判定两三角形全等,故本选项不合题意;C 、根据斜边直角边定理判定两三角形全等,故本选项不合题意;D 、三个角对应相等不能证明两三角形全等,故本选项符合题意;故选:D .【点睛】本题考查了直角三角形全等的判定方法;本题主要利用三角形全等的判定,运用好有一对相等的直角这一隐含条件是解题的关键.11.A解析:A【分析】先根据全等三角形的性质可得105ACB E ∠=∠=︒,再根据三角形的外角性质可得AFC ∠的度数,然后根据对顶角相等可得DFG ∠的度数,最后根据三角形的内角和定理即可得.【详解】ABC ADE ≅,105E ∠=︒,105ACB E ∴∠=∠=︒,ACB DAC AFC ∠=∠+∠,16DAC ∠=︒,10516AFC ︒=︒+∴∠,解得89AFC ∠=︒,89DFG AFC ∴∠=∠=︒,在DFG 中,180GB F D D D G ∠∠=+∠+︒,25D ∠=︒,2518089DGB ∴∠+︒+=︒︒,解得66DGB ∠=︒,故选:A .【点睛】本题考查了全等三角形的性质、三角形的外角性质、三角形的内角和定理、对顶角相等,熟练掌握全等三角形的性质是解题关键.12.A解析:A【分析】根据三角形全等的判定定理进行判断.【详解】A. AC⊥BD,垂足为O,AO=CO,AB=CD,所以由HL可得到△AOB≌△COD,所以A正确;B.错误;C.错误;D.错误.【点睛】本题考查了三角形全等的判定定理,熟练掌握定理是本题解题的关键.二、填空题13.(答案不唯一)【分析】要使△ABC≌△DCB由于BC是公共边若补充一组边相等则可用SSS判定其全等;【详解】解:添加AB=DC∵AC=BDBC=BCAB=DC∴△ABC≌△DCB(SSS)∴加一个适=(答案不唯一)解析:AB DC【分析】要使△ABC≌△DCB,由于BC是公共边,若补充一组边相等,则可用SSS判定其全等;【详解】解:添加AB=DC,∵ AC=BD,BC=BC,AB=DC,∴△ABC≌△DCB(SSS),∴加一个适当的条件是AB=DC,故答案为:AB=DC.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,根据已知图形以及判定方法选择添加的条件是正确解答本题的关键.14.(答案不唯一)【分析】根据等式的性质可得BC=EF根据平行线的性质可得再添加AB=DE可利用SAS判定【详解】添加AB=DE∵BF=CE∴BF+FC=CE+FC即BC=EF∵AB//DE∴∠B=∠E=(答案不唯一)解析:AB DE【分析】∠=∠,再添加AB=DE可利用SAS 根据等式的性质可得BC=EF,根据平行线的性质可得B E≅.判定ABC DEF【详解】添加AB=DE,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB//DE,∴∠B =∠E ,在△ABC 和△DEF 中AB ED B E BC EF =⎧⎪∠=∠⎨⎪=⎩, ∴ABC DEF ≅ (SAS ),故答案为AB DE =(答案不唯一)【点睛】 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL15.6<y <10【详解】根据三角形的三边关系得3-2<x-1<2+3解得:1<x-1<5所以三角形周长y 的取值范围:1+2+3<y <2+3+5即6<y <10故答案为6<y <10【点睛】本题考查三角形三边解析:6<y <10【详解】根据三角形的三边关系,得3-2<x-1<2+3,解得:1<x-1<5,所以三角形周长y 的取值范围:1+2+3<y <2+3+5,即6<y <10,故答案为6<y <10.【点睛】本题考查三角形三边的关系,解决此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.16.145【分析】由已知角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小从而得到∠AOF 的值【详解】解:∵∵OE 平分∠AOC ∴∵OF ⊥OE 于点O ∴∠EOF =90°∴∠AOF =∠AOE+∠EOF =55解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°,故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.17.26或22【分析】因为等腰三角形的底边和腰不确定6cm可以为底边也可以为腰长故分两种情况:当6cm为腰时底边为10cm先判断三边能否构成三角形若能求出此时的周长;当6cm为底边时10cm为腰长先判断解析:26或22【分析】因为等腰三角形的底边和腰不确定,6cm可以为底边也可以为腰长,故分两种情况:当6cm为腰时,底边为10cm,先判断三边能否构成三角形,若能,求出此时的周长;当6cm 为底边时,10cm为腰长,先判断三边能否构成三角形,若能,求出此时的周长.【详解】解:若6cm为等腰三角形的腰长,则10cm为底边的长,6cm,6cm,10cm可以构成三角形,此时等腰三角形的周长=6+6+10=22(cm);若10cm为等腰三角形的腰长,则6cm为底边的长,10cm,10cm,6cm可以构成三角形,此时等腰三角形的周长=10+6+10=26(cm);则等腰三角形的周长为26cm或22cm.故答案为:26或22.【点睛】本题考查了等腰三角形的定义和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.18.24【分析】由EF分别为ADCE的中点可得BECEBF分别为△ABD△ACD△BEC的中线根据中线的性质可知将相应三角形分成面积相等的两部分据此即可解答【详解】解:∵由于EF分别为ADCE的中点∴S解析:24【分析】由E、F分别为AD、CE的中点可得BE、CE、BF分别为△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,据此即可解答.【详解】解:∵由于E、F分别为AD、CE的中点,∴S△ABE=S△DBE,S△DCE=S△AEC,S△BEF=S△BCF,∴S△BEC=2S△BEF=12,∴S△ABC=2S△BEC=24.故答案为:24.【点睛】本题考查了三角形中线的性质,属于常考题型,熟知三角形的中线将相应的三角形分成面积相等的两部分是解题的关键.19.【分析】先根据三角形的三边关系定理可得再根据绝对值运算整式的加减即可得【详解】由三角形的三边关系定理得:则故答案为:【点睛】本题考查了三角形的三边关系定理绝对值运算整式的加减熟练掌握三角形的三边关系 解析:22b c -【分析】先根据三角形的三边关系定理可得,a b c a c b +>+>,再根据绝对值运算、整式的加减即可得.【详解】由三角形的三边关系定理得:,a b c a c b +>+>,0,0a b c b a c ∴+->--<, 则()a b c b a c a b c a c b +----=+--+-,a b c a c b =+---+,22b c =-,故答案为:22b c -.【点睛】本题考查了三角形的三边关系定理、绝对值运算、整式的加减,熟练掌握三角形的三边关系定理是解题关键.20.全等三角形判定(斜边和直角边对应相等)【分析】利用判定方法HL 证明Rt △OMP 和Rt △ONP 全等进而得出答案【详解】解:在Rt △OMP 和Rt △ONP 中∴Rt △OMP ≌Rt △ONP (HL )∴∠MOP =解析:全等三角形判定(斜边和直角边对应相等HL )【分析】利用判定方法“HL”证明Rt △OMP 和Rt △ONP 全等,进而得出答案.【详解】解:在Rt △OMP 和Rt △ONP 中,OM ON OP OP⎧⎨⎩==, ∴Rt △OMP ≌Rt △ONP (HL ),∴∠MOP =∠NOP ,∴OP 是∠AOB 的平分线.故答案为HL【点睛】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定三、解答题21.(1)AC=BD ,AC ⊥BD ,证明见解析;(2)存在,AC=BD ,AC ⊥BD ,证明见解析;(3)AC=BD ,AC ⊥BD【分析】(1)延长BD交AC于点E.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠ADE=∠BDO,可证∠AED=∠BOD=90º即可;(2)延长BD交AC于点F,交AO于点G.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AGF=∠BGO,可得∠AFG=∠BOG=90º即可;(3)BD交AC于点H,AO于M,可证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AMH=∠BMO,可得∠AHM=∠BOH=90º即可.【详解】(1)AC=BD,AC⊥BD,证明:延长BD交AC于点E.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠COA=∠BOD=90º,∴△AOC≌△BOD(SAS),∴AC=BD,∴∠OAC=∠OBD,∵∠ADE=∠BDO,∴∠AED=∠BOD=90º,∴AC⊥BD;(2)存在,证明:延长BD交AC于点F,交AO于点G.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC-∠DOA,∠BOD=∠BOA-∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AGF=∠BGO,∴∠AFG=∠BOG=90º,∴AC⊥BD;(3)AC=BD,AC⊥BD.证明:BD交AC于点H,AO于M,∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC+∠DOA,∠BOD=∠BOA+∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AMH=∠BMO,∴∠AHM=∠BOH=90º,∴AC⊥BD.【点睛】本题考查三角形旋转变换中对应相等的位置与数量关系,掌握三角形全等的证明方法,及其角度计算是解题关键.22.(1)32;(2)212BCD S a =△,理由见解析;(3)16. 【分析】(1)如图1中,由AAS 定理可证△ABC ≌△BDE ,就有DE=BC=8.进而由三角形的面积公式得出结论;(2)如图2中,过点D 作BC 的垂线,与BC 的延长线交于点E ,由AAS 定理可证得△ABC ≌△BDE ,就有DE=BC=a .进而由三角形的面积公式得出结论.(3)如图3中,过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E ,由等腰三角形的性质可以得出BF=12BC ,由条件可以得出△AFB ≌△BED 就可以得出BF=DE ,由三角形的面积公式就可以得出结论.【详解】解:(1)∵在ABC 中,90ACB ∠=︒,过点B 作BD AB ⊥且过点D 作的BCD △的BC 边上的高DE ,∴90DEB ACB ABD ∠=∠=∠=︒∴90ABC DBE ∠+∠=︒∵90DBE BDE ∠+∠=︒∴ABC BDE ∠=∠.在Rt ABC △与Rt BDE △中,ACB DEB ABC BDE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()Rt Rt ABC BDE AAS ≌△△,8DE CB == ∴18823212BCD S CB DE ⋅⨯=⨯==△ 故答案为:32(2)212BCD S a =△ 理由:过点D 作DE CB ⊥延长线于点E∴90DEB ACB ∠=∠=︒∵BD AB ⊥,1290∠+∠=︒∵290A ∠+∠=︒∴1A ∠=∠. 在Rt ABC △与Rt BDE △中,1ACB DEB A AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()Rt Rt ABC BDE AAS ≌△△,DE CB a ==∴21122BCD S CB DE a =⋅=△ (3)如图3中,∵AB AC = ∴BF=12BC=12×8=4. 过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E ,∴∠AFB=∠E=90°,∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD.在△AFB和△BED中,AFB EFAB EBD AB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFB≌△BED(AAS),∴BF=DE=4.∵S△BCD=12BC•DE,∴S△BCD=184162⨯⨯=∴△BCD的面积为16.故答案为:16【点睛】本题考查了直角三角形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形的面积公式的运用,解答时证明三角形全等是关键.23.(1)见解析;(2)(1)的结论不成立,成立的结论是BC=BD﹣BE,证明见解析;(3)BC=CD-CE【分析】(1)证得∠DAB=∠EAC,证明△DAB≌△EAC(SAS),由全等三角形的性质得出BD=CE,则可得出结论;(2)证明△DAB≌△EAC(SAS),得出BD=CE,则成立的结论是BC=BD-BE;(3)证明△DAC≌△EAB(SAS),得出BE=CD,则成立的结论是BC=BD-BE.【详解】解:(1)证明:∵∠BAC=DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=BE+CE=BD+BE;(2)解:(1)的结论不成立,成立的结论是BC =BD ﹣BE证明:∵∠BAC =∠DAE ,∴∠BAC+∠EAB =∠DAE+∠EAB ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =CE ﹣BE =BD ﹣BE(3)∵∠BAC =∠DAE ,∴∠BAC+∠EAC =∠DAE+∠EAC ,即∠BAE =∠DAC ,又∵AB =AC ,AD =AE ,∴△BAE ≌△CAD (SAS ),∴BE =CD ,∴BC =CD ﹣CE【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键. 24.(1)添加一个角有关的条件为BAC EDA ∠=∠,使得ABC DEA ≌,理由见解析;(2)BAE ∠的度数为135︒.【分析】(1)根据已知条件,选择SAS 原理,可确定添加的角;(2)利用三角形全等,∠B 的度数,可求∠BAC+∠DAE ,问题可解.【详解】(1)添加一个角方面的条件为BAC EDA ∠=∠,使得ABC DEA ≌.在ABC 和DEA △中∵AB DE =,BAC EDA ∠=∠,AC DA =,∴()SAS ABC DEA ≌△△; (2)在(1)的条件下∵ABC DEA ≌,∴ACB DAE ∠=∠,若65CAD ∠=︒,110B ∠=︒,则18070ACB BAC B ∠+∠=︒-∠=︒,∴70DAE BAC ACB BAC ∠+∠=∠+∠=︒,∴7065135BAE DAE BAC CAD ∠=∠+∠+∠=︒+︒=︒,即BAE ∠的度数为135︒.【点睛】本题考查了三角形全等,熟练掌握全等三角形判定原理和性质是解题的关键.25.(1)∠ADE=∠ADF ;证明见解析;(2)AE=AF ;证明见解析.【分析】(1)∠ADE=∠ADF ,根据DE ⊥AB ,DF ⊥AC 及AD 为∠BAC 的角平分线,即可证得∠ADE=∠ADF;(2)AE=AF,根据(1)可知证明△AED≌△AFD,即可证得AE=AF.【详解】(1)结论1:∠ADE=∠ADF,证明如下:∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90︒,∵AD为∠BAC的角平分线,∴∠EAD=∠FAD,∴∠ADE=∠ADF;(2)结论2:AE=AF,证明如下:由(1)可知:△AED≌△AFD,∴AE=AF.【点睛】本题考查全等三角形的性质和判定,解题的关键是灵活运用全等三角形的判定和性质解决问题.26.(1)见详解;(2)1【分析】(1)先证明AC=DF,再根据HL证明Rt ABC Rt DEF≌;(2)先证明∠AFG=∠DCH,从而证明∆AFG≅∆DCH,进而即可求解.【详解】(1)∵AF CD=,∴AF+CF=CD+CF,即AC=DF,在Rt ABC与Rt DEF△中,∵AC DF AB DE=⎧⎨=⎩,∴Rt ABC≅Rt DEF△(HL);(2)∵Rt ABC≅Rt DEF△,∴∠A=∠D,∠EFD=∠BCA,∵∠AFG=180°-∠EFD,∠DCH=180°-∠BCA,∴∠AFG=∠DCH,又∵AF CD=,∴∆AFG≅∆DCH,∴HC=GF =1.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握HL和ASA证明三角形全等,是解题的关键.。
北师大版七年级数学下册第四章(4.1认识三角形)同步测试试题(含答案)

北师大版七年级数学下册第四章(4.1认识三角形)同步测试题(时间:100分钟满分:100分)一、选择题(每小题3分,共30分)1.两根长度分别为5 cm,9 cm的钢条,下面为第三根的长,则可组成一个三角形框架的是(C)A.3 cmB.4 cmC.9 cmD.14 cm2.如图,△ABC中AB边上的高线是(D)A.线段AGB.线段BDC.线段BED.线段CF3.如图,在△ABC中,AD,AE,AF分别是三角形的高线,角平分线及中线,那么下列结论错误的是(C)A.AD⊥BCB.BF=CFC.BE=ECD.∠BAE=∠CAE4.不一定在三角形内部的线段是(C)A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的高和中线5.已知在△ABC中,∠A=20°,∠B=∠C,那么△ABC是(A)A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能6.一副三角板,如图所示叠放在一起,则图中∠α的度数是(A)A.75°B.60°C.65°D.55°7.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有(B)A.2对B.3对C.4对D.6对8.已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为(D)A.2a+2b-2cB.2a+2bC.2cD.09.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于(A)A.40°B.20°C.55°D.30°10.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的平分线交于点D1,∠ABD1与∠ACD1的平分线交于点D2,依此类推,∠ABD4与∠ACD4的平分线交于点D5,则∠BD5C的度数是(B)A.24°B.25°C.30°D.36°二、填空题(每小题4分,共20分)11.一个三角形有3条高,3条中线,3条角平分线.12.如图,当BD=DC时,AD是△ABC的中线;当∠BAD=∠CAD时,AD是△ABC的角平分线.13.如图,∠BAC=90°,AD⊥BC,∠BAD=30°,则∠C=30°.14.已知等腰三角形的周长为29,一边长为7,则此等腰三角形的腰长为11.15.如图,△ABC三边的中线AD,BE,CF的交点是点G.若S△ABC=12,则图中阴影部分面积是4.提示:设△AFG,△BFG,△BDG,△CDG,△CEG,△AEG的面积分别为S1,S2,S3,S4,S5,S6,根据中线平分三角形面积可得:S1=S2,S3=S4,S5=S6,S1=S3,S3=S6,所以S1=S2=S3=S4=S5=S6=2.故阴影部分的面积为4.三、解答题(共50分)16.(8分)如图,在△ABC中,∠ABC是钝角,请画出:(1)∠ABC的平分线;(2)AC边上的中线;(3)BC边上的高.解:如图所示,BD即为∠ABC的平分线,BE即为AC边上的中线,AF即为BC边上的高.17.(8分)在新农村建设中,张爷爷想把一块三角形的花卉园(如图)分成面积相等的四部分,然后分别种上不同的花卉,便于培植与管理.请你帮张爷爷设计三种不同的方案.解:如图所示.18.(10分)如图,AD ,CE 是△ABC 的两条高.已知AD =10,CE =9,AB =12. (1)求△ABC 的面积; (2)求BC 的长.解:(1)S △ABC =12AB·CE=12×12×9=54.(2)因为S △ABC =12BC·AD,所以12×10×BC=54.所以BC =545.19.(12分)等腰三角形的两边长满足|a -4|+|b -9|=0,求这个等腰三角形的周长. 解:因为|a -4|+|b -9|=0,所以a -4=0,b -9=0,解得a =4,b =9. 若a 为腰长,则另一腰长为4,因为4+4=8<9,所以不符合三角形的三边关系; 若b 为腰长,则这个等腰三角形的周长为9+9+4=22. 综上所述,这个等腰三角形的周长为22.20.(12分)如图,在△ABC 中,∠B<∠C,AD ,AE 分别是△ABC 的高和角平分线. (1)若∠B=30°,∠C=50°,试确定∠DAE 的度数; (2)试写出∠DAE,∠B,∠C 的数量关系,并说明理由.解:(1)因为∠B=30°,∠C=50°, 所以∠BAC=180°-∠B-∠C=100°. 又因为AE 是△ABC 的角平分线, 所以∠BAE=12∠BAC=50°.因为AD 是△ABC 的高,所以∠BAD=90°-∠B=90°-30°=60°. 所以∠DAE=∠BAD-∠BAE=60°-50°=10°. (2)∠DAE=12(∠C-∠B),理由如下:因为AD 是△ABC 的高, 所以∠DAC=90°-∠C. 因为AE 是△ABC 的角平分线, 所以∠EAC=12∠BAC.因为∠B AC =180°-∠B-∠C, 所以∠DAE=∠EAC-∠DAC =12∠BAC-(90°-∠C)=12(180°-∠B-∠C)-90°+∠C=12(∠C-∠B).。
北师大版七年级下册数学第四章三角形 测试题及答案

北师大版七年级下册数学第四章三角形测试卷一、单选题1.图中三角形的个数是( )A.8 B.9 C.10 D.112.下面四个图形中,线段BE是⊿ABC的高的图是()A.B.C.D.3.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,6cm4.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.钝角三角形C.锐角三角形D.不确定5.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是( )A.3个B.4个C.5个D.6个6.下面说法正确的个数有()①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=12∠C,那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.A.3个B.4个C.5个D.6个7.在△ABC中,∠B、∠C的平分线相交于点P,设∠A=x°,用x的代数式表示∠BPC的度数,正确的是()A.90+12x B.90+12x C.90+2x D.90+x8.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.180°C.160°D.120°9.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个B.2个C.3个D.4个10.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有( )A.1个B.2个C.3个D.4个二、填空题11.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD=_________.12.如图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是__.13.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是_________度.14.如图,∠1=_____.15.若三角形三个内角度数的比为2:3:4,则相应的外角比是_____________.16.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度.17.如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a 的取值范围是________________18.如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是_____________.19.如图,ABC 中,100A ∠=,BI 、CI 分别平分ABC ∠,ACB ∠,则BIC ∠=________,若BM 、CM 分别平分ABC ∠,ACB ∠的外角平分线,则M ∠=________.20.如图△ABC 中,AD 是BC 上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是________.三、解答题21.小华从点A 出发向前走10m ,向右转36°然后继续向前走10m ,再向右转36°,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回到点A 时共走多少米?若不能,写出理由.22.一个零件的形状如图,按规定∠A=90º ,∠ C=25º,∠B=25º,检验已量得∠BDC=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.23.如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,(1)若∠ABC=30°,∠ACB=50°,求∠DAE的度数(2)写出∠DAE与∠C-∠B的数量关系,并证明你的结论24.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E, ∠A=35°, ∠D=50°,求∠ACD的度数.参考答案1.B【解析】试题解析:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.故选B.2.A【解析】分析:根据三角形的高的定义,过顶点向对边作垂线,顶点与垂足之间的线段为三角形的高,观察各选项直接选择答案即可.解答:解:根据三角形高线的定义,只有A选项符合.故选A.3.B【解析】【分析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】解:A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<11,不能够组成三角形;D、2+3<5,不能组成三角形.故选:B.【点睛】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.4.B【解析】【分析】此题依据三角形的外角性质,即三角形的外角与它相邻的内角互为邻补角,可判断出此三角形有一内角为钝角,从而得出这个三角形是钝角三角形的结论.【详解】因为三角形的一个外角与它相邻的内角和为180°,而题中说这个外角小于它相邻的内角,所以可知与它相邻的这个内角是一个大于90°的角即钝角,则这个三角形就是一个钝角三角形.故选:B.【点睛】本题主要考查三角形的外角性质,解题的关键是熟练掌握三角形的外角与它相邻的内角互为邻补角.5.A【解析】【分析】由“直角三角形的两锐角互余”,结合题目条件,得∠C=∠BDF=∠BAD=∠ADE.【详解】解:∵AD是斜边BC上的高,DE⊥AC,DF⊥AB,∴∠C+∠B=90°,∠BDF+∠B=90°,∠BAD+∠B=90°,∴∠C=∠BDF=∠BAD,∵∠DAC+∠C=90°,∠DAC+∠ADE=90°,∴∠C=∠ADE,∴图中与∠C(除之C外)相等的角的个数是3,故选A.【点睛】本题的关键是利用已知条件得出等角的余角相等,利用平行线的性质得出角相等.6.C【解析】试题分析:①∵三角形三个内角的比是1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小题正确;②∵三角形的一个外角与它相邻的一个内角的和是180°,∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;③∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;④∵∠A=∠B=1∠C,2∴设∠A=∠B=x,则∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小题正确;⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,∴三角形一个内角也等于另外两个内角的和,∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.故选D.考点:1.三角形内角和定理;2.三角形的外角性质.7.A【解析】分析:根据三角形内角和定理可求得∠ABC+∠ACB的度数,再根据角平分线的定义可求得∠PBC+∠PCB的度数,最后根据三角形内角和定理即可求解.详解:如图:∵∠A=x°,∴∠ABC+∠ACB=180°−x°,∵∠B,∠C的平分线相交于点P,∴∠PBC+∠PCB=12(180°−x°),∴∠BPC=180°−12(180°−x°)=90°+12x°,故选A.点睛:本题考查了三角形内角和定理.8.B【解析】【分析】本题考查了角度的计算问题,因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【详解】解:设∠AOD=x,∠AOC=90︒+x,∠BOD=90︒-x,所以∠AOC+∠BOD=90︒+x+90︒-x=180︒.故选B.【点睛】在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.9.C【解析】解:能够构成三角形三边的组合有13cm、10cm、5cm和13cm、10cm、7cm和10cm、5cm、7cm共3种,故选C.10.C【解析】【分析】分析所给的命题是否正确,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】∵三条线段组成的封闭图形叫三角形,∴①不正确;∵三角形相邻两边组成的角叫三角形的内角,∴②正确;∵三角形的角平分线是线段,∴③不正确;∵三角形的高所在的直线交于一点,这一点可以是三角形的直角顶点,∴④不正确.∵任何一个三角形都有三条高、三条中线、三条角平分线,∴⑤正确;∵三角形的三条角平分线交于一点,这个点叫三角形的内心,∴⑥正确;综上,可得正确的命题有3个:②、⑤,⑥.故选C.【点睛】主要主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.90.【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和即可求解.【详解】∠BCD是三角形ABC的外角,所以603090.BCD A B ∠=∠+∠=+=故答案为90.【点睛】考查三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.12.三角形具有稳定性【解析】【分析】用木条固定矩形门框,即是分割为两个三角形,故可用三角形的稳定性解释.【详解】解:加上木条后矩形门框分割为两个三角形,而三角形具有稳定性.故答案为三角形具有稳定性.【点睛】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.13.135°【解析】【分析】看图得△DEB 为等腰直角三角形的三角板,得∠EDB 的度数,由∠ADB 为平角,进而求出∠ADE 的度数.【详解】∵∠EDB=45°,∠ADB=180°,∴∠ADE=135°.【点睛】本题考察三角板的类型判断和角度计算,解题的关键为正确判断三角板的类型和知道三角板各个角的度数.14.120°【解析】∵∠2=180°-140°=40°,∴∠1=80°+40°=80°+∠2=120°.15.7:6:5【解析】【分析】三角形三个内角度数的比为2:3:4,三个角的和是180度,因而设一个角是2x度,则另外两角分别是3x度,4x度,就可以列出方程,求出三个角的度数.根据外角与相邻的内角互补,求出三个外角的度数,从而求出相应的外角比.【详解】解:设一个角是2x度,则另外两角分别是3x度,4x度,根据题意,得:2x+3x+4x=180,解得x=20,因而三个角分别是:40度,60度,80度.则相应的外角的度数是:140度,120度,100度,则相应的外角比是7:6:5.故答案为7:6:5【点睛】已知几个数据的和与比值,求这几个数,可以设参数方程求解,这类题目的解法是需要熟记的内容.16.74°【解析】【详解】试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∴∠ACE=12∠ACB=35°. ∵CD ⊥AB 于D , ∴∠CDA=90°, ∠ACD=180°﹣∠A ﹣∠CDA=50°.∴∠ECD=∠ACD ﹣∠ACE=15°. ∵DF ⊥CE , ∴∠CFD=90°, ∴∠CDF=180°﹣∠CFD ﹣∠DCF=75°.考点:三角形内角和定理.17.a>5【解析】因为−2<2<5,所以a−2< a+2< a+5,所以由三角形三边关系可得a−2+a+2>a+5,解得a>5.18.72°、72°、36°【解析】【分析】此题先根据已知三角形的一个外角等于与它相邻的内角的4倍,互为邻补角的两个角和为180°,从而求出这个外角与它相邻的内角的度数为144°、36°.又知这个外角还等于与它不相邻的一个内角的2倍,所以可以得到这两个与它不相邻的内角分别为:72°、72°,则这个三角形各角的度数分别是36°,72°,72°.【详解】∵三角形的一个外角等于与它相邻的内角的4倍,∴可设这一内角为x ,则它的外角为4x ,∴有4180x x +=,则36,4144.x x ==又∵这个外角还等于与它不相邻的一个内角的2倍,∴这两个与它不相邻的内角分别为:72°、72°. ∴这个三角形各角的度数分别是72°、72°、36°. 故答案为72°、72°、36°. 【点睛】考查三角形的外角性质以及三角形内角和定理,比较基础,难度不大.19.140 40【分析】首先根据三角形内角和求出∠ABC+∠ACB的度数,再根据角平分线的性质得到∠IBC=1 2∠ABC,∠ICB=12∠ACB,求出∠IBC+∠ICB的度数,再次根据三角形内角和求出∠I的度数即可;根据∠ABC+∠ACB的度数,算出∠DBC+∠ECB的度数,然后再利用角平分线的性质得到∠1=12∠DBC,∠2=12ECB,可得到∠1+∠2的度数,最后再利用三角形内角和定理计算出∠M的度数.【详解】∵∠A=100°.∵∠ABC+∠ACB=180°﹣100°=80°.∵BI、CI分别平分∠ABC,∠ACB,∴∠IBC=12∠ABC,∠ICB=12∠ACB,∴∠IBC+∠ICB=1 2∠ABC+12∠ACB=12(∠ABC+∠ACB)=12×80°=40°,∴∠I=180°﹣(∠IBC+∠ICB)=180°﹣40°=140°;∵∠ABC+∠ACB=80°,∴∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB)=360°﹣80°=280°.∵BM、CM分别平分∠ABC,∠ACB的外角平分线,∴∠1=12∠DBC,∠2=12ECB,∴∠1+∠2=12×280°=140°,∴∠M=180°﹣∠1﹣∠2=40°.故答案为:140°;40°.【点睛】本题主要考查了三角形内角和定理,以及角平分线的性质,关键是根据三角形内角和定理计算出∠ABC+∠ACB的度数.20.6【详解】三角形的中线将三角形分成面积相等的两部分,则△ABD 的面积=12△ABC 的面积=12,△ABE 的面积=12△ABD 的面积=6.考点:中线的性质21.可以走回到A 点,共走100米【解析】试题分析:他要想回到原点需要走成正多边形,根据多边形的外角和定理求出多边形的边数,从而求出路程.试题解析:解:根据题意可知,360°÷36°=10,所以他需要转10次才会回到起点,它需要经过10×10=100m 才能回到原地. 所以小华能回到点A .当他走回到点A 时,共走100m .22.零件不合格.理由见解析.【解析】【分析】根据三角形外角的性质求出∠BDC 的度数,与测量所得的度数对比即可得出结论.【详解】如图,∠CDE 是△ADC 的外角,∠BDE 是△ABD 的外角,∵∠CDE =∠C +∠CAD ,∠BDE =∠B +∠DAB ,∴∠BDC =∠CDE +∠BDE =∠C +∠CAD +∠B +∠DAB ,即252590140,BDC B C A ∠=∠+∠+∠=++=检验已量得150BDC ∠=,就判断这个零件不合格.【点睛】考查三角形外角的性质,作出辅助线,求出∠BDC 的度数是解题的关键.23.(1)10°;(2)∠DAE=12(∠C-∠B),证明见解析.【解析】【分析】(1)利用三角形内角和定理求得∠BAC=100°,根据角平分线定义可知∠EAC=12∠BAC,再利用三角形内角和先求出∠DAC,再求得∠DAE;(2)按照(1)中思路,进行推导即可解决问题. 【详解】(1)解:∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AE平分∠BAC,∴∠EAC=12∠BAC=50°∵AD是高,∴∠ADC=90°,∴∠DAC=180°-∠ADC-∠C=180°-90°-50°=40°∴∠DAE=∠EAC-∠DAC=50°-40°=10°(2)解:∠BAC=180°-∠B-∠C,∵AE平分∠BAC,∴∠EAC=12∠BAC=12(180°-∠B-∠C)∵AD是高,∴∠ADC=90°,∴∠DAC=180°-∠ADC-∠C=180°-90°-∠C=90°-∠C,∴∠DAE=∠EAC-∠DAC=12(180°-∠B-∠C)-(90°-∠C)=12(∠C-∠B)【点睛】本题主要考查三角形内角和定理的运用,还涉及了角平分线定义,熟练掌握以上知识点是解题关键.24.83°.【解析】试题分析:由DF⊥AB,在Rt△BDF中可求得∠B;再由∠ACD=∠A+∠B可求得.试题解析:∵DF⊥AB,∴∠B+∠D=90°,∴∠B=90°-∠D=90°-42°=48°,∴∠ACD=∠A+∠B=35°+48°=83°.。
北师大版七年级数学下册第四章同步测试题及答案

3.如图,△ABC中,AD平分∠BAC,DE平分∠ADC,∠B=45°,∠C=35°,则∠AED=( )
(第3题图)
A.80°B.82.5°C.90°D.85°
4.若三角形的三条高的交点在这个三角形的内部,那么这个三角形是( )
A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形
∴∠4=∠ABC.
∵∠1+∠ABC+∠=180°,
∴ ∠4+∠4+∠4=180°,
∴∠4=72°.
15.解:如图,延长BC交AD于点E.
∵∠ADC=30°,∠BCD=142°,
∴∠DEC=∠BCD﹣∠ADC=142°﹣30°=112°.
∵∠BAD=90°,
∴∠B=∠DEC﹣∠BAD=112°﹣90°=22°.
3.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为( )
A. B. C. D.
4.下列命题中:
(1)形状相同的两个三角形是全等形;
(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;
(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( )
5.要组成一个三角形,三条线段的长度可以是( )
A.1,2,3B.3,4,5
C.4,6,11D.1.5,2.5,4.5
二.填空题(共5小题)
6.如图,图中的三角形共有个,∠C的对边是.
(第6题图)
7.如图所示:在△AEC中,AE边上的高是.
(第7题图)
8.如图,在△ABC中,BC⊥AC,CD是AB边上的高,若AB=10cm,BC=6cm,AC=8cm,那么CD=.
北师大版七年级下数学第4章三角形单元测试(含答案)

第 4 章三角形一、选择题1. 以下说法正确的选项是()A.全等三角形是指形状同样的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等 D. 全部等边三角形是全等三角形2. 已知某三角形的两边长是 6 和 4,则此三角形的第三边长的取值能够是()A. 2 B . 9 C.10 D.113. 以下各组图形中,必定是全等图形的是()A.两个周长相等的等腰三角形 B.两个面积相等的长方形C.两个斜边相等的直角三角形4. 以下各组长度的三条线段能构成三角形的是()A. 1cm, 2cm,3cmB.1cm, 1cm, 2cm D.两个周长相等的圆C. 1cm, 2cm,2cm D. 1cm, 3cm,5cm5. 画△ ABC的边AB上的高,以下画法中,正确的选项是()A.B.C.D.6. 有长为 2cm、 3cm、 4cm、 6cm的四根木棒,选此中的 3 根作为三角形的边,能够围成的三角形的个数是A. 1个B. 2 个C. 3个 D. 4 个7. 在如下图的长方形网格中,每个小长方形的长为2,宽为 1, A、B 两点在网格格点上,若点 C 也在网格格点上,以A、 B、 C 为极点的三角形面积为2,则知足条件的点 C的个数是()A. 2B.3C. 4D. 58. 如下图,∠1+∠2+∠ 3+∠ 4 的度数为()A. 100°B. 180°C. 360°D.没法确立9.如图,把△ ABC纸片沿 DE折叠,当点 A落在四边形 BCDE内部时,则∠ A 与∠ 1+∠ 2 之间有一种数目关系一直保持不变,请试着找一找这个规律,这个规律是()A. ∠A=∠ 1+∠2B. 2∠A=∠ 1+∠2 C. 3∠ A=2∠ 1+∠ 2 D. 3∠ A=2 (∠ 1+∠ 2)10. 将一副直角三角尺按如下图摆放,则图中锐角∠α的度数是()A. 45°B. 60°C. 70°D. 75°11. 长为l 的一根绳,恰巧可围成两个全等三角形,则此中一个三角形的最长边x 的取值范围为()A. B.C.D.12. 我国的纸伞工艺十分奇妙。
北师大版七年级数学下册第四章三角形同步练习试题(含解析)

北师大版七年级数学下册第四章三角形同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为了估算河的宽度,我们可以在河的对岸选定一个目标点A ,再在河的这一边选定点B 和F ,使AB BF ⊥,并在垂线BF 上取两点C 、D ,使BC CD =,再作出BF 的垂线DE ,使点A 、C 、E 在同一条直线上,因此证得ABC EDC △△≌,进而可得AB DE =,即测得DE 的长就是AB 的长,则ABC EDC △△≌的理论依据是( )A .SASB .HLC .ASAD .AAA2、如果一个三角形的两边长分别为5cm 和8cm ,则第三边长可能是( )A .2cmB .3cmC .12cmD .13cm3、如图,在△ABC 与△AEF 中,AB =AE ,BC =EF ,∠ABC =∠AEF ,∠EAB =40°,AB 交EF 于点D ,连接EB .下列结论:①∠FAC =40°;②AF =AC ;③∠EFB =40°;④AD =AC ,正确的个数为( )A.1个B.2个C.3个D.4个4、如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,则OC的长为()A.3 B.4 C.5 D.65、在下列长度的各组线段中,能组成三角形的是()A.2,4,7 B.1,4,9 C.3,4,5 D.5,6,126、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为()A.12 B.10 C.8 D.67、如图,D为∠BAC的外角平分线上一点,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,且满足∠FDE=∠BDC,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有()A.1个B.2个C.3个D.4个8、下列长度的三条线段能组成三角形的是()A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 119、如图,ABN≌ACM△,B和C∠是对应角,AB和AC是对应边,则下列结论中一定成立的是()A.BAM MAN=∠=∠B.AM CNC.BAM ABM=∠=∠D.AM AN10、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于()A.180°B.210°C.360°D.270°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BD AC⊥于点E,BD,CE交于点F,请你添加一个条件:______(只添加一⊥于点D,CE AB△≌ACE个即可),使得ABD2、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.3、如图,在ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且ABC的面积等于24cm2,则阴影部分图形面积等于_____cm24、如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△BEF=2cm2,则S△ABC=__________.5、已知三角形的三边分别为n,5,7,则n的范围是 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,M是线段AB上的一点,ED是过点M的一条线段,连接AE、BD,过点B作BF∥AE交ED于点F,且EM=FM.(1)求证:AE=BF.(2)连接AC,若∠AEC=90°,∠CAE=∠DBF,CD=4,求EM的长.2、如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a−t)2+|b−t|=0(t>0).(1)证明:OB =OC ;(2)如图1,连接AB ,过A 作AD ⊥AB 交y 轴于D ,在射线AD 上截取AE =AB ,连接CE ,F 是CE 的中点,连接AF ,OA ,当点A 在第一象限内运动(AD 不过点C )时,证明:∠OAF 的大小不变;(3)如图2,B ′与B 关于y 轴对称,M 在线段BC 上,N 在CB ′的延长线上,且BM =NB ′,连接MN 交x 轴于点T ,过T 作TQ ⊥MN 交y 轴于点Q ,当t =2时,求点Q 的坐标.3、如图,四边形ABCD 中,90BCD BAD ∠=∠=︒,AB AD =,AG CD ⊥于点G .(1)如图1,求证:AG CG =;(2)如图2,延长AB 交DC 的延长线于点F ,点E 在DG 上,连接AE ,且2AEF F ∠=∠,求证:FG AE EG =+;(3)如图3,在(2)的条件下,点H 在CB 的延长线上,连接EH ,EH 交AG 于点N ,连接CN ,且=CN AE ,当5BH =,9EF =时,求NG 的长.4、如图所示,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC ,CE 交BA 于点D ,CE 交BF 于点M . 求证:(1)EC =BF ;(2)EC ⊥BF .5、已知,∠A=∠D,BC平分∠ABD,求证:AC=DC.-参考答案-一、单选题1、C【分析】根据题意及全等三角形的判定定理可直接进行求解.【详解】解:∵AB BF⊥,DE BF⊥,∴90ABC EDC∠=∠=︒,在ABC和EDC△中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ABC EDC △△≌(ASA ),∴AB DE =;故选C .【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.2、C【分析】根据两边之和大于第三边,两边之差小于第三边可求得结果【详解】解:设第三边长为c ,由题可知8-5<<8+5c ,即3<<13c , 所以第三边可能的结果为12cm故选C【点睛】本题主要考查了三角形的性质中三角形的三边关系知识点3、C【分析】由“SAS ”可证△ABC ≌△AEF ,由全等三角形的性质依次判断可求解.【详解】解:在△ABC 和△AEF 中,AB AE ABC AEF BC EF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△AEF (SAS ),∴AF =AC ,∠EAF =∠BAC ,∠AFE =∠C ,故②正确,∴∠BAE =∠FAC =40°,故①正确,∵∠AFB =∠C +∠FAC =∠AFE +∠EFB ,∴∠EFB =∠FAC =40°,故③正确,无法证明AD =AC ,故④错误,故选:C .【点睛】本题考查全等三角形的判定与性质,是重要考点,掌握相关知识是解题关键.4、C【分析】证明△AOB ≌△COD 推出OB =OD ,OA =OC ,即可解决问题.【详解】解:∵∠AOC =∠BOD ,∴∠AOC +∠COB =∠BOD +∠COB ,即∠AOB =∠COD ,∵∠A =∠C ,CD =AB ,∴△AOB ≌△COD (AAS ),∴OA =OC ,OB =OD ,∵AD =8,OB =3,∴OC=AO=AD-OD=AD-OB=5.故选C.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.5、C【分析】根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可.【详解】解:A、∵247+<,∴不能构成三角形;B、∵149+<,∴不能构成三角形;C、∵345+>,∴能构成三角形;D、∵5612+<,∴不能构成三角形.故选:C.【点睛】本题主要考查运用三角形三边关系判定三条线段能否构成三角形的情况,理解构成三角形的三边关系是解题关键.6、A【分析】利用角相等和边相等证明ABE ECD ∆∆≌,利用全等三角形的性质以及边的关系,即可求出BE 的长度.【详解】解:由题意可知:∠ABE =∠AED =∠ECD =90°,1809090AEB DEC ∴∠+∠=︒-︒=︒,90A AEB ∠+∠=︒,A DEC ∴∠=∠,在ABE ∆和ECD ∆中,ABE ECD A DEC AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABE ECD AAS ∴∆∆≌,8CE AB ∴==,12BE BC CE ∴=-=,故选:A .【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.7、D【分析】利用AAS 证明△CDE ≌△BDF ,可判断①④正确;再利用HL 证明Rt△ADE ≌Rt△ADF ,可判断②正确;由∠BAC =∠EDF ,∠FDE =∠BDC ,可判断③正确.【详解】解:∵AD 平分∠CAF ,DE ⊥AC ,DF ⊥AB ,∴DE =DF ,∠DFB =∠DEC =90°,∵∠FDE =∠BDC ,∴∠FDB =∠EDC ,在△CDE 与△BDF 中,FDB CDE DFB DEC DF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CDE ≌△BDF (AAS ),故①正确;∴CE =BF ,在Rt△ADE 与Rt△ADF 中,AD AD DE BF =⎧⎨=⎩, ∴Rt△ADE ≌Rt△ADF (HL ),∴AE =AF ,∴CE =AB +AF =AB +AE ,故②正确;∵∠DFA =∠DEA =90°,∴∠EDF +∠FAE =180°,∵∠BAC +∠FAE =180°,∴∠FDE =∠BAC ,∵∠FDE =∠BDC ,∴∠BDC =∠BAC ,故③正确;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正确故选:D.【点睛】本题主要考查了全等三角形的判定及性质,外角的性质等,熟悉掌握全等三角形的判定方法,灵活寻找条件是解题的关键.8、C【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D .∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C .【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.9、D【分析】根据全等三角形的性质求解即可.【详解】解:∵ABN ≌ACM △,B 和C ∠是对应角,AB 和AC 是对应边,∴BAN CAM ∠=∠,AM AN =,∴BAM CAN =∠∠,∴选项A 、B 、C 错误,D 正确,故选:D .【点睛】本题考查全等三角形的性质,熟练掌握全等三角形的性质是解答的关键.10、B【分析】已知90C ∠=︒,得到2390∠+∠=︒,根据外角性质,得到1D α∠=∠+∠,4F β∠=∠+∠,再将两式相加,等量代换,即可得解;【详解】解:如图所示,∵90C ∠=︒,∴2390∠+∠=︒,∵1D α∠=∠+∠,4F β∠=∠+∠,∴14D F αβ∠+∠=∠+∠+∠+∠,∵12∠=∠,34∠=∠,∴1423D F D F ∠+∠+∠+∠=∠+∠+∠+∠,∵30D ∠=︒,90F ∠=︒,∴23233090210D F ∠+∠+∠+∠=∠+∠+︒+︒=︒;故选D .【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.二、填空题1、AB AC =(答案不唯一)【分析】由题意依据全等三角形的判定条件进行分析即可得出答案.【详解】解:∵BD AC ⊥于点D ,CE AB ⊥于点E ,∴90AEC ADB ︒∠=∠=,∵A A∠=∠,△≌ACE(AAS).∴当AB AC=时,ABD故答案为:AB AC=.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.2、30°【分析】根据三角形的外角的性质,即可求解.【详解】解:∵ACD A B∠=∠+∠,∴B ACD A∠=∠-∠,∵∠ACD=75°,∠A=45°,∴30∠=︒.B故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.3、6【分析】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.【详解】解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,而高相等,∴S△BEF=12S△BEC,∵E是AD的中点,∴S△BDE=12S△ABD,S△CDE=12S△ACD,∴S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即阴影部分的面积为6cm2.故答案为6.【点睛】本题考查了三角形面积的等积变换:若两个三角形的高(或底)相等,面积之比等于底边(高)之比.4、8cm2【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E点为AD的中点得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.【详解】解:∵F点为CE的中点,∴S△CFB=S△EFB=2cm2,∴S△CEB=4cm2,∵D点为BC的中点,S△BCE=2cm2,∴S△BDE=12∵E点为AD的中点,∴S△ABD=2S△BDE=4cm2,∴S△ABC=2S△ABD=8cm2.故答案为:8cm2.【点睛】本题考查了三角形的中线,根据三角形的中线等分三角形的面积是解本题的关键.5、2<n<12【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求第三边长的范围.【详解】解:由三角形三边关系定理得:7﹣5<n<7+5,即2<n<12故n的范围是2<n<12.故答案为:2<n<12.【点睛】本题考查的是三角形三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.三、解答题1、(1)见解析;(2)2【分析】(1)根据平行线的性质和全等三角形的判定证明△AME≌△BMF即可证得结论;(2)由△AME≌△BMF证得AE=BF,EM=FM,∠BFM=∠AEC=90°,根据全等三角形的判定证明△AEC≌△BFD,则有EC=FD,即EF=CD=4,即可求解.【详解】解:(1)∵BF∥AE,∴∠EAM=∠FBM,又∠AME=∠BMF,EM=FM,∴△AME≌△BMF(ASA),∴AE=BF;(2)∵△AME≌△BMF,∴AE=BF,EM=FM,∠BFM=∠AEC=90°,∴∠AEC=∠BFD=90°,又∠CAE=∠DBF,∴△AEC≌△BFD(ASA),∴EC=FD,即EF=CD=4,EF=2.∴EM= 12【点睛】本题考查平行线的性质、全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答的关键.2、(1)见解析(2)见解析(3)点Q坐标为(0,2 ).【分析】(1)利用绝对值以及平方的非负性求出B、C的坐标,利用坐标表示边长,即可证明结论.(2)延长AF 至点G ,使GF AF =,连接GC 、GO ,利用条件先证明GCF AEF ∆∆≌,再根据全等三角形性质,进一步证明GCO ABO ∆∆≌,最后综合条件得到GAO ∆为等腰直角三角形,进而得到∠OAF 为45︒,是个定值,即可证得结论成立.(3)先连接MQ 、NQ 、BQ 、'B Q ,过M 作MH CN ∥交x 轴于H ,利用平行关系和边相等证明'NTB MTH ∆∆≌,然后通过全等三角形性质进一步证明'NQB MQB ∆∆≌,再根据角与角之间的关系,求出'90BQB ∠=︒ ,得到'BBQ ∆为等腰直角三角形,最后利用等腰三角形的性质,即可求出点Q 坐标.【详解】(1)证明:(a −t )2+|b −t |=0(t >0), 00a t b t ∴-=-=,,即a b t ==, 点B 坐标为(a ,0),点C 坐标为(0,b ), OB OC t ∴==,故结论得证.(2)解:如图所示:延长AF 至点G ,使GF AF =,连接GC 、GO ,F 是CE 的中点,CF EF ∴=,在GCF ∆和AEF ∆中,CF EF CFG EFA FG AF =⎧⎪∠=∠⎨⎪=⎩()GCF AEF SAS ∴∆∆≌,CG AE ∴=GCF AEF ,GC AD ∴∥,GCD CDA ,AB AE =,GC AB ,AD AB ⊥,OB OC ⊥,90COB BAD ,180ABO ADO ,180ADO ADC , ADC ABO , GCD CDA ,GCD ABO ,在GCO ∆与ABO ∆中,GC AB GCO ABO OC OB =⎧⎪∠=∠⎨⎪=⎩()GCO ABO SAS ∴∆∆≌.GO AO ,GOC AOB , 90AOB AOC ,90GOC AOC,∴∆为等腰直角三角形.GAOOAF,故∠OAF的大小不变.45(3)解:连接MQ、NQ、BQ、'B Q,过M作MH CN∥交x轴于H.如下图所示:'B和B关于y轴对称,C在y轴上.'∴=,CB CB''∴∠=∠,CBB CB B∥,MH CN''∴∠=∠=∠,MHB CB B CBB∴=.MH BM'=,BM B N'MH B N ∴=,MH CN ∥,'NBT MHT ∴∠=∠,在'NTB ∆和MTH ∆中,NB T MHT B TN MTH B N MH ∠=∠⎧⎪∠=='∠'⎨'⎪⎩'()NTB MTH AAS ∴∆∆≌.TN MT ∴=,又TQ MN ⊥,MQ NQ ∴=, CQ 垂直平分'BB ,'BQ BQ ∴=,在'NQB ∆和MQB ∆中,B Q BQ NQ MQ B N BM ''=⎧⎪=⎨⎪=⎩'()NQB MQB SSS ∴∆∆≌.'BQN BQM ∴∠=∠,'QNB QMB ∠=∠.'180QNB QMC QMB QMC ∴∠+∠=∠+∠=︒,故180NQM NCM ∠+∠=︒.18090NQM NCM ∴∠=︒-∠=︒,'90BQB NQM ∠=∠=︒.∴'BBQ ∆为等腰直角三角形.'12OQ BB OB t ∴===. 故点Q 坐标为(0,2-).【点睛】本题主要是考查了对称点的坐标关系以及利用坐标求解几何图形,熟练掌握垂直平分线、平行线以及等腰三角形、全等三角形的判定和性质,是解决本题的关系.3、(1)见解析;(2)见解析;(3)2【分析】(1)过点B 作BQ AG ⊥于点Q ,根据AAS 证明△ABQ DAG ≅∆得AG BQ =,再证明四边形BCGQ 是矩形得BQ =CG ,从而得出结论;(2) 在GF 上截取GH =GE ,连接AH ,证明AH =FH ,GE =GH 即可;(3) 过点A 作AP HC ⊥于点P ,在FC 上截取MG GE =,连接,,AM AC AH ,证明()Rt AGE Rt CGN HL ∆≅∆得GN GE MG ==,可证明AC 是EH 的垂直平分线,再证明()Rt APH Rt AGM HL ∆≅∆和△()ABH ADM SAS ≅∆得5BH MD ==可求出4ME =,从而可得结论.【详解】解:(1)证明:过点B 作BQ AG ⊥于点Q ,如图1∵AG CD ⊥90AQB BAD ︒∴∠==∠ABQ BAQ DAG BAQ ∴∠+∠=∠+∠ABQ DAG ∴∠=∠又AB AD =,90AQB AGD ︒∠=∠=∴△()ABQ DAG AAS ≅∆B AG Q ∴=,,BC CD AG CD BQ AG ⊥⊥⊥∴四边形BCGQ 是矩形BQ CG ∴=CG AG ∴=;(2)在GF 上截取GH =GE ,连接AH ,如图2,,HG GE AG GF =⊥AH AE ∴=AEH AHE ∴∠=∠2AEF F ∠=∠2AHE F ∴∠=∠又AHE F FAH ∠=∠+∠F FAH ∴∠=∠FH AH ∴=AE FH ∴=FG FH HG AE EG ∴=+=+(3)过点A 作AP HC ⊥于点P ,在FC 上截取MG GE =,连接,,AM AC AH ,如图3,由(1)、(2)知,AP CG AG ==,,AM AE FM F FAM==∠=∠∵EF FG GE FM ME =+=+∴9AM ME =+∵,CN AE AG CG ==∴()Rt AGE Rt CGN HL ∆≅∆∴GN GE MG ==∴∠45GNE GEN ︒=∠=∵BC FD ⊥∴∠45CHE CEH ︒=∠=∴CH CE =∵AG CG =∴∠45ACG CAG ︒=∠=∴45ACG ACH ∠=∠=︒∴AC 是EH 的垂直平分线,∴AH AE =∴AH AM =又∵AG AP =∴()Rt APH Rt AGM HL ∆≅∆∴∠HAP MAG =∠∴∠90HAM PAG ︒=∠=∵∠F FAM =∠,90,90FAM MAD F D ∠+∠=︒∠+∠=︒∴∠MAD D =∠∴AM MD =∵,,AP CH HC FD AG FD ⊥⊥⊥∴90PAG ∠=︒∴90MAG PAM ∠+∠=︒∵∠HAP MAG =∠∴90PAH MAP ∠+∠=︒,即90HAM ∠=︒∴90HAB BAM ∠+∠=︒∵90BAD ∠=︒,即90BAM MAD ∠+∠=︒∴HAB MAD ∠=∠在ABH ∆和ADM ∆中,{AA =AA∠AAA =∠AAA AA =AA∴△()ABH ADM SAS ≅∆∴5BH MD ==∴5AM FM ==∴4ME =∴2GN GE MG ===【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.4、(1)见解析;(2)见解析【详解】(1)先利用SAS 证明△ABF ≌△AEC 即可得到EC =BF ;(2)根据(1)中的全等推得∠AEC =∠ABF ,根据∠BAE =90°,∠AEC +∠ADE =90°,再根据对顶角相等,等量代换后,推得∠BMD =90°.【解答】证明:(1)∵AE ⊥AB ,AF ⊥AC ,∴∠BAE =∠CAF =90°,∴∠BAE +∠BAC =∠CAF +∠BAC ,∴∠EAC =∠BAF ,在△ABF 和△AEC 中,AB AE EAC BAF AF AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,由(1)得:△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∴∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=90°,∴EC⊥BF.【点睛】本题主要考查了全等三角形的性质与判定,对顶角的定义,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.5、见解析【分析】证明△BAC≌△BDC即可得出结论.【详解】解:∵BC平分∠ABD,∴∠ABC=∠DBC,在△BAC和△BDC中A DABC DBCBC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△BDC,∴AC=DC.【点睛】本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.1认识三角形同步检测一、选择题:1.三角形中最大的内角不能小于( )A.30ºB.45ºC.60ºD.90º2.如图,图中共有三角形( )A.6个B.7个C.8个D.9个3.如图,∠BAC 的对边是( )A.BDB.DCC.BCD.AD4.已知三角形的一个内角是另一个内角的32 ,是第三个内角的54 ,则这个三角形各内角的度数分别为( )A.60°,90°,75°B.48°,72°,60°C.48°,32°,38°D.40°,50°,90° 5.已知△ABC 中,∠A=2(∠B+∠C ),则∠A 的度数为( )A.100°B.120°C.140°D.160°6.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形二、填空题:7.在△ABC 中,若∠B=∠C=40º,则∠A= .8.在△ABC 中,∠ABC=90º,∠C=43º,则∠A= .9.在△ABC 中,AD 是角平分线,若∠B=50º,∠C=70 º,则∠ADC= .10.如果△ABC 中,∠A :∠B :∠C=2:3:5,则此三角形按角分类应为 .11.直角三角形两锐角平分线相交所成的钝角为 .12.如图,(1)图中共有 _____个三角形,分别是_______;(2)△ABE的顶点是______,三个内角是 ________;(3)∠B是哪些三角形的内角: _______;(4)AC是哪些三角形的边:____________;(5)∠B在△ABC,△DBC中是_____,____边的对角;(6)AC分别是△AOC,△ADC,△AEC,△ABC中∠______,∠______,∠_______,∠_______的对边.三、解答题:13.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.14.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.答案1.C2.C3.C4.B5.B6.C7.100º8.47º9.80º10.直角三角形11.135º12.解:(1)8,△ABE ,△ACE ,△BCD ,△ABC ,△COE ,△AOD ,△AOC ,△ACD ;(2)A ,B ,E ;∠B ,∠BAE ,∠AEB ;(3)△ABE ,△BDC ,△ABC ;(4)△ADC ,△AEC ,△ABC ,△AOC ;(5)AC ,DC ;(6)AOC ;ADC ;AEC ;ABC .13.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,,∴ A BPC ∠>∠.14.∵ A C ∠=∠74,∴ C A ∠=∠74, ∴ C B C ∠<∠<∠74. 又∵ ︒=∠+∠+∠180C B A ,∴︒=∠+∠+∠18074C B C . ∴ C B ∠-︒=∠711180, ∵ C C C ∠<∠-︒<∠71118074, ∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数, ∴ ∠C 的度数为7的倍数. ∴ ︒=∠77C ,∴ ︒=∠=∠4474C A .4.1.2认识三角形同步检测一、选择题:1.有长度分别为10 cm ,7 cm ,5 cm 和3 cm 的四根铁丝,选其中三根组成三角形,则( )A .共有4种选法B .只有3种选法C. 只有2种选法 D .只有1种选法2.四根铁棒的长分别为 4 cm ,6 cm ,10 cm ,15 cm ,以其中三根的长为边长,焊接成一个三角形框架,则这个框架的周长可能是( )A.31 cmB.29 cmC.25 cmD.20 cm3.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有【 】A.2个B.3个C.4个D.6个4.有下列长度的三条线段,能组成三角形的是()A.1 cm,2 cm,3 cmB.1 cm,2 cm,4 cmC.2 cm,3 cm,4 cmD.2 cm,3 cm,6 cm二、填空题:5.一个木工师傅现有两根木条,它们长分别为50cm,70cm,他要选择第三根木条,将它们钉成一个三角形木架,设第三根木条为xcm,则x的取值范围是 .6.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为,如果第三边长为偶数,则次三角形的周长为 .7.如果一个等腰三角形的两已知边长分别为4cm和9cm,则此等腰三角形的周长为 .8.已知五条线段长分别为1cm,2cm,3cm,4cm,5cm,以其中三条为边长可以构成个不同的三角形.9.两根木棒的长分别是8 cm,10 cm,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x的取值范围是________.三解答题:10.a,b,c是△ABC的三边的长,化简|a-b-c|+|b-c-a|+|c+a-b|.11.三角形中有一边比第二条边长3cm,这条边又比第三条边短4cm,这个三角形的周长为28cm,求最短边的长。
参考答案1.C[提示:根据三角形三边关系判断.]2.A3.B4.C5.20<x<1206.3或5 107.22cm8.两9.2 cm<x<18 cm10.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b >0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.11.设第二边长为xcm,则第一边长为(x+3)cm,第三边长为(x+7)cm,又x+x+3+x+7=3x+10=28,解得x=6cm即为最短边长.4.1.3认识三角形同步检测一、选择题:1.三角形的角平分线、中线、高线中( )A.角平分线是射线,其余的是线段B.高是直线,其余的是线段C.高是直线,角平分线是射线,中线是线段D.每一条都是线段2.三角形三边上的高的交点恰是三角形的一个顶点,则这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.以上三种都不是3.下列说法正确的是( )①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③4.满足条件“三条高均在三角形内部”的三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5.如图,D,E分别是△ABC的边AC,BC的中点,则下列说法错误的是( )A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BE=ECD.∠C的对边是DE二、填空题:6.如图所示,在ΔABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=.7.如图所示,在ΔABC中,AB=AC,CD平分∠ACB交AB于点D,AE∥DC交BC的延长线于点E,已知∠E=36°,则∠B=度.8.如图,CD是△ABC的中线,AC=9 cm,BC=3 cm,那么△ACD和△BCD的周长差是 _______.9.如图,已知AB⊥BC,EF⊥BC,CD⊥AD,则有:(1)在△AEC中,AE边上的高是 _____;(2)在△FEC中,EC边上的高是 _________;(3)若AB=CD=2 cm,AE=3 cm,则△AEC的面积为 _______cm2.三、解答题:10.要使四边形木架(用四根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?n边形木架呢?11.如图所示,已知∠XOY=90°,点A,B分别在射线OX,OY上移动.BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C,则∠ACB的大小是否变化?如果保持不变,请说明原因;如果随点A,B的移动而发生变化,求出变化范围.参考答案1.D2.B3.B4.A5.D6.82.5°[提示:因为AB =AC ,所以∠ABC =∠ACB =21-(180°-∠A )=65°.因为BD 平分∠ABC ,所以∠ABD =21∠ABC =32.5°,而∠BDC 是ΔABD 的外角,所以∠BDC =∠A +∠ABD =82.5°.故填82.5°。
]7.72[提示:由已知条件知AE ∥DC ,所以∠DCB =∠E =36°.又因为CD 平分∠ACB ,所以∠ACB =2∠DCB =72°.又因为AB =AC ,所以∠B =∠ACB =72°。
故填72.]8.6 cm9.(1)CD ;(2)EF ;(3)310.解:四边形木架,至少要再钉上1根木条,使四边形变成两个三角形;五边形木架,至少要再钉上2根木条,使五边形变成3个三角形;六边形木架,至少要再钉上3根木条,使六边形变成4个三角形;n 边形木架,至少要再钉上(n-3)根木条,使n 边形变成(n-2)11.提示:作∠ABO 的平分线交AC 于点D ,则∠BDA =180°-(∠DAB+∠DBA )=180°-21 (∠OAB+∠OBA )=135°,由BD ,BE 分别是∠OBA 和∠YBA 的平分线,可知BD ⊥CB ,所以∠ACB =∠BDA -∠DBC =135°-90°=45°.可见∠ACB 的大小始终为45°.4.1.4认识三角形同步检测一、选择题:1.如图所示,虚线部分是小刚作的辅助线,则你认为线段CD 为A.边AC 上的高B.边BC 上的高C.边AB 上的高D.不是△ABC 的高二、填空题:2.如图(1),AD ⊥BE,垂足为点D,AD 是___________的高,△ABD 的高是___________.(1)(2)3.如图(2),BF⊥AF,EC⊥AF,CD⊥AB,垂足为F、C、D.在△ABF中,_____是AF边上的高;在△ACE中,CE是_______边上的高;CD是△__________中______边上的高,是△__________中_____边上的高,也是△___________中_______边上的高.4.如图1所示,CD是△ABC的高,且CD=5,S△ABC=25,则AB=________.5.如图2所示,在△ABC中,CD⊥AB,∠ACB=86°,∠B=20°,则∠ACD=________.图1 图2三、解答题:6.如图(3),∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.可知哪些线段是哪个三角形的角平分线、中线或高?7.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.8.锐角△ABC中,BD和CE是两条高,相交于点M,BF和CG是两条角平分线,相交于点N,如果∠BMC=100°,求∠BNC的度数.参考答案:1.答案:C2.AD是△ABC、△ABD、△ABE、△ADE的高.△ABD的高是AD、BD3.在△ABF中,BF是AF边上的高.在△ACE中CE是AC边上的高.CD是△ACE 中AE边上的高,是△ADC中AD边上的高,也是△EDC中ED边上的高.4.答案: 105.答案: 16°6.AD 是△ABC 的角平分线、中线、高; ED 是△BEC 的角平分线、中线、高; BD 是△ABE 的高,CD 是△AEC 的高; ED 、CD 是△CDE 的高; BD 、ED 是△BDE 的高. 7.120°;8.解:∵BD 、CE 是△ABC 的高 ∴∠BDC=∠CEB=90° ∴∠ABC=90°-∠BCE ∠ACB=90°-∠CBD 又∵∠BMC=100° ∴∠DBC+∠BCE=80° ∴∠ABC+∠ACB=100° ∵BF 、CG 是△ABC 的角平分线. ∴∠BCG=21∠ACB ,∠CBF=21∠ABC ∴∠BNC=180°-(∠BCG+∠CBF ) =180°-21(∠ABC+∠ACB ) =130°.4.2图形的全等同步检测一、选择题:1.下列说法正确的个数为( )(1)用一张像底片冲出来的10张一寸照片是全等形 (2)我国国旗商店四颗小五角星是全等形(3)所有的正六边形是全等形(4)面积相等的两个正方形是全等形A.1个B.2个C.3个D.4个2.下列命题:(1)只有两个三角形才能完全重合;(2)如果两个图形全等,它们的形状和大小一定都相同;(3)两个正方形一定是全等形;(4)边数相同的图形一定能互相重合.其中错误命题的个数是()A.4个B.3个C.2个D.1个3.一个正方形的侧面展开图有()个全等的正方形.A.2个B.3个C.4个D.6个二、填空题:4.两个能够完全重合的图形称为 .5.全等图形的和完全相同.6.由同一张底片冲洗出来的两张五寸照片的图案全等图形,而由同一张底片冲洗出来的五寸照片和七寸照片全等图形(填“是”或“不是”).三、作图与解答:7.观察如图所示的各个图形,指出其中的全等图形.8.如图所示,判断各组中的两个图形是否是全等图形.9.如图5—36所示,试判断图中的两个图形是否全等;若不全等,请说明理由;若全等,请说明怎样做才能使它们重合,10.画一个三角形,再画一个与其全等的图形.11.画一个长方形,再用尺规作一个图形,使它们成为全等图形.12.在一个梯形上画出你喜爱的图形,然后复制6个并拼成一个较大的图案.13.用相同的长方形(长与宽的比为2:1)尽量拼成几种不同的图案.14.如图所示,把梯形分割成两对全等的图形.15.按下列步骤设计图案.①画一个ΔABC,其中AB=AC;②去掉两个全等的等边三角形l,2,并且BD=CD′;③将三角形1,2分别放在3,4的位置,其中AE=BD=AE′.参考答案1.C2.B3.C4.全等图形5.形状 大小6.是 不是7.解:①和⑥,②和⑤,③和⑧分别为全等的图形. 8.解:甲不是,乙是.9.解:两个图形全等;折叠能使它们重合. 10.略. 11.略. 12.略. 13.略. 14.解;如图所示.15.解:如图所示.4.3.1 探索三角形全等的条件同步检测一、选择题1.已知:如图,AB 与DC 相交于点BE DE EC EA E ==,,,若使AED ∆≌CEB ∆,则( )A .应补充条件C A ∠=∠B .应补充条件D B ∠=∠C .不用补充条件D .以上说法都不正确2.如图,在ABC ∆中,D BC AD ,⊥为BC 边中点,那么以下结论不正确的是( ) A .ABD ∆≌ACD ∆ B .C B ∠=∠ C .AD 平分BAC ∠ D .ABC ∆是等边三角形3.如图,︒=∠===55,,,B BF CE DF AE DC AB ,则=∠C ( ) A .45° B.55° C.35° D.65°4.如图,已知DF BE BC AD DC AB =,//,//,则图中全等三角形的总对数是( ) A .3 B .4 C .5 D .6二、填空题5.如图,已知EC BD AE AD AC AB ===,,,则ABD ∆≌____,ABE ∆≌____.6.如图,若点E 、F 在DC 上,C D BC AD EC DF ∠=∠==,,,则∆____≌∆____,根据是____.7.如图,BE 平分ABC ∠,且BC AB =,则∆____≌∆____,根据是_________;____=AD ,根据是______.8.已知在ABC ∆和C B A '''∆中,A A B A AB '∠=∠''=,,若ABC ∆≌C B A '''∆,还需要的条件是_____________9.如图,在ABC ∆中,AD BE ⊥于AD CF E ⊥,于F ,且BD CF BE ,=与DC 相等吗?你能说明下面小明思考过程的理由吗?①__________________ ②_________________ 三、解答题10.如图,已知C 在BD 上,ABC CF BC CD AC BD AC ∆==⊥,,,和DFC ∆全等吗?若全等请说出根据.11.如图,已知BC AD CE AE CD AB ===,,,问ABE ∆和CDE ∆全等吗?若全等请说出根据.12.如图,已知BD AC DC BD AC AB 、,,⊥⊥的交点是E ,并且AB ,21∠=∠与DC相等吗?试说明你的答案.13.如图:已知,EF AC CF DB ED AB ===,,,那么ABC ∆≌EDF ∆吗?14.如图,D 是ABC ∆的边AB 上一点,DF 交AC 于点AB FC FE DE E //,,=,那么CE AE =吗?参考答案1.C 2.D 3.B 4.D5. ACD ACE ∆∆, 6.SAS BCF ADE ,,7.CD SAS CBD ABD ,,,,全等三角形对应边相等 8.C B BC ''=或B B '∠=∠或C C '∠=∠ 9.①:AAS ②全等三角形的对应边相等 10.全等,根据:SAS 11.全等,根据:SSS 或SAS 12.相等(提示ABC ∆≌DCB ∆) 13.CF DB = ∴BF CF BF DB +=+ 即BC DF = 在ABC ∆和EDF ∆中⎪⎩⎪⎨⎧===BC DF EF AC ED AB ∴ABC ∆≌EDF ∆(SSS ) 14.CE AE =AB CF //∴ADE F ∠=∠ 在ADE ∆和CFE ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠CEF AED FE DE F ADE ∴ADE ∆≌CFE ∆(ASA )∴CE AE =4.3.2 探索三角形全等的条件同步检测一、选择题1.如图,BD AC AB BC CD AD AD AB 、,,,⊥⊥=相交于E ,则图中全等三角形有( )A .1对B .2对C .3对D .4对2.在下列四组条件中,能判定ABC ∆≌C B A '''∆的是( ) A .A A C B BC B A AB '∠=∠''=''=,, B .C B AC C C A A ''='∠=∠'∠=∠,, C .C B AB C B B A ''='∠=∠'∠=∠,,D .ABC C B BC B A AB ∆''=''=,,的周长等于C B A '''∆的周长3.如图,BD AC BC AD CD AB 、,,==相交于点O ,则图中全等三角形有( )对. A .1 B .2 C .3 D .44.在ABC ∆和C B A '''∆中,①B A AB ''=,②C B BC ''=,③C A AC ''=,④A A '∠=∠,⑤B B '∠=∠,⑥C C '∠=∠,则下列各组条件中使ABC ∆和C B A '''∆全等的是( )A .④⑤⑥ B.①②⑥ C .①③⑤ D.②⑤⑥5.如图,已知AE OE OF OB OA ,,==和BF 交于点D ,①OAE ∆≌OBF ∆;②ADF ∆≌BDE ∆,③D 在AOB ∠的平分线上,则以上结论中正确的是( )A .只有① B.只有①② C.有①②③ D.①和③二、填空题6.如图,AE AD =,若利用“角边角公理”判定ADC ∆≌AEB ∆,则需要加一个条件为_____________;若利用“角角边公理”判定ADC ∆≌AEB ∆,则需要加一个条件为___________; 若利用“边角边公理”判定ADC ∆≌AEB ∆,则需要加一个条件为__________.7.在下面的证明中,填写需补充的条件或理由,使结论成立.如图,由⎪⎩⎪⎨⎧∠=∠=(已知)或或(已知)(已知)__________________D A DF AE可得ACE ∆≌DBF ∆(根据______或______或______)8.如图,已知:CF BE DE AC DF AB ===,,,那么DF AB //.请在每步后面的括号里写出这一步的理由.↓⎪⎩⎪⎨⎧====↓= .,,. .FE BC DE AC DF AB FE BC CF BE ABC ∆≌.DFE ∆(____________)(______).// (______) .________ DF AB ↓∠=∠↓三、解答题9.如图,已知:AM EM CN DN E D ===∠=∠,.求证:点B 是线段AC 的中点.补全下列证明过程,证明:在DBN ∆和EBM ∆中⎪⎩⎪⎨⎧==∠=∠.____,____,EM DN E D∴DBN ∆≌EBM ∆(______) ∴______=______.在DBC ∆和EBA ∆中⎪⎩⎪⎨⎧===.__________________,____________,______∴DBC ∆≌EBA ∆(根据______) ∴AB BC = 即点B 是线段AC 的中点.10.如图,C B CE BD ∠=∠=∠=∠,,21,问ABE ∆和ACD ∆能全等吗?如果能请说明理由.11.如图,点C 是AB 的中点,BE CD //,且BE CD =,求证:E D ∠=∠12.如图,CAB DAB C D ∠=∠∠=∠,,那么,BC BD =吗?参考答案1.C 2.D 3.D 4.D 5.C6. AB AC B C AEB ADC =∠=∠∠=∠,,或BD CE = 7.AAS SAS ASA DB AC FBD ECA F E 、、,,,=∠=∠∠=∠8.F B SSS ∠=∠,,全等三角形对应角相等;内错角相等,两直线平行. 9.SAS EA DC E D EB DB EB DB AAS EBM DBN ,,,,,,=∠=∠==∠=∠ 10.全等(提示:CAD BAE CD BE ∠=∠=,) 11.证明:BE CD // ,∴CBE ACD ∠=∠⎪⎩⎪⎨⎧=∠=∠=BE CD CBE ACD BC AC )(中点定义 ∴ACD ∆≌CBE ∆(SAS ) ∴E D ∠=∠ 12.BC BD = 在ABD ∆和ABC ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)(公共边AB AB CAB DAB C D ∴ABD ∆≌ABC ∆(AAS ) ∴BC BD =4.3.3 探索三角形全等的条件同步检测一.选择题1.如图,已知AC 和BD 相交于O,且BO =DO,AO =CO,下列判断正确的是( ) A .只能证明△AOB ≌△CODB.只能证明△AOD≌△COBC.只能证明△AOB≌△COBD.能证明△AOB≌△COD和△AOD≌△COB2.某同学把一块三角形的玻璃打碎也成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去 D.带①和②去3.下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等B.两个锐角对应相等C.一条直角边和它所对的锐角对应相等D.一个锐角和锐角所对的直角边对应相等4.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙5.如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条件是()A.∠M=∠N B.AB=CDC.AM=CN D.AM∥CN6.△ABC中,AB=AC,BD、CE是AC、AB边上的高,则BE与CD的大小关系为()A.BE>CD B.BE=CD C.BE<CD D.不确定二、填空题:7.如图,是一个三角形测平架,已知AB=AC,在BC的中点D挂一个重锤,自然下垂.调整架身,使点A恰好在重锤线上,AD和BC的关系为______.8.如右图,正方形ABCD 中,AC 、BD 交于O,∠EOF =90o,已知AE =3,CF =4,则EF 的长为___.9、若△ABC 的边a,b 满足2212161000a a b b -+-+=,则第三边c 的中线长m 的取值范围为10.“三月三,放风筝”,如图1—24—4是小明制作的风筝,他根据DE =DF,EH =FH,不用度量,就知道∠DEH =∠DFH,小明是通过全等三角形的识别得到的结论,请问小明用的识别方法是_____(用字母表示).三、解答题:11.已知如图,AE =AC,AB =AD,∠EAB =∠CAD,试说明:∠B =∠D12.如图,已知线段AB 、CD 相交于点O,AD 、CB 的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.13.沿矩形ABCD 的对角线BD 翻折△ABD 得△A /BD,A /D 交BC 于F,如图所示,△BDF 是何种三角形?请说明理由.14.如图,在四边形ABCD中,已知BD平分∠ABC,∠A+∠C=180o,试说明AD=CD.15.在△ABC中,∠ACB=90o,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.⑴当直线MN绕点C旋转到图⑴的位置时,求证:①△ACD≌△CEB;②DE=AD+BE⑵当直线MN绕点C旋转到图⑵的位置时,求证:DE=AD-BE;⑶当直线MN绕点C旋转到图⑶的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第小题.参考答案1.D[结合对项角相等,它们都符合SAS 判定方法]2.B[AAA 不能判定全等]3.B[△ABD ≌△ACE]4.B[注意条件间的对应关系]5.C[C 的关系为SSA]6.C[符合ASA 的判定,三角形是唯一的]7.AD 垂直平分BC[由全等可得]8.5[可证△AOE ≌△BOF,所以BF=AE=3,BC=7,BE=4,由勾股定理可得]9.a 2-12a+b 2-16b+100=( a 2-12a+62)+(b 2-16b+82)=(a-6)2+(b-8)2=0 ∴a=6,b=8 如下图:根据三角形的三边之间的关系,有:8-6<2AD <8+6 ∴1<AD <7 答案为:1<m <710.SSS[DH 为两个三角形的公共边] 11.解:∵∠EAB =∠CAD (已知) ∴∠EAB +∠BAD =∠CAD +∠BAD 即∠EAD =∠BAC 在△ABC 和△ADE 中AB AD EAD BAC AC AE ⎧⎪∠∠⎨⎪⎩===(已知)(已证)(已知)∴△ABC ≌△ADE (SAS )∴∠B =∠D (全等三角形的对应角相等)12.解:连结OE 在△EAC 和△EBC 中OA OC EA EC OE OE ⎧⎪⎨⎪⎩===(已知)(已知)(公共边)∴△EAC ≌△EBC (SSS )∴∠A =∠C (全等三角形的对应角相等) 13.解:△BDF 是等腰三角形 ∵△ABD 翻折后得△A /BD ∴△ABD ≌△A /BD ∴∠1=∠2∵四边形ABCD 是矩形 ∴AD ∥BC ∴∠1=∠3 ∴∠2=∠3∴BF =DF (等角对等边) ∴△BDF 是等腰三角形14.(本题有多种解法)解:过点D 作DE ⊥BA 交BA 的延长线于E,过点D 作DF ⊥BC,垂足为F∴∠4=∠5=∠6=90o∵BD 平分∠ABC ∴∠1=∠2 在△BED 和△BFD 中1254BD BD ∠∠⎧⎪∠∠⎨⎪⎩===(已证)(已证)(公共边)∴△BED ≌△BFD (AAS )∴DE =DF (全等三角形的对应边相等) ∵∠A +∠C =180o,∠A +∠3=180o∴∠3=∠C (等角的补角相等)在△AED 和△CFD 中356C DE DF ∠∠⎧⎪∠∠⎨⎪⎩===(已证)(已证)(已证)∴△AED ≌△CFD (AAS )∴AD =CD (全等三角形的对应边相等)15.解:如图:⑴①∵∠ADC =∠ACB =90o, ∴∠1+∠2=∠3+∠2=90o , ∴∠1=∠3.又∵AC =BC,∠ADC =∠CEB =90o , ∴△ADC ≌△CEB. ②∵△ADC ≌△CEB, ∴CE =AD,CD =BE, ∴DE =CE +CD =AD +BE. ⑵∵∠ACB =∠CEB =90o, ∴∠1+∠2=∠CBE +∠2=90o, ∴∠1=∠CBE.又∵AC =BC,∠ADC =∠CEB =90o , ∴△ACD ≌△CBE, ∴CE =AD,CD =BE, ∴DE =CE -CD =AD -BE.⑶当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE =BE -AD (或AD =BE -DE,BE =AD +DE 等).∵∠ACB =∠CEB =90o,∴∠ACD+∠BCE=∠CBE+∠BCE=90o,∴∠ACD=∠CBE,又∵AC=BC,∠ADC=∠CEB=90o,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD.4.4作三角形同步检测一、选择题1.利用尺规作图不能唯一作出三角形的是().A.已知三边 B.已知两边及其夹角C.已知两角及其夹边 D.已知两边及其中一边的对角2.用尺规作图,已知三边作三角形,用到的基本作图是().A.作一个角等于已知角 B.作已知直线的垂线C.作一条线段等于已知线段 D.作角的平分线3.已知线段a,b和m,求作△ABC,使BC=a,AC=b,BC边上的中线AD=m,作法合理的顺序依次为().①延长CD到B,使BD=CD;②连接AB;③作△ADC,使DC=12a,AC=b,AD=m.A.③①② B.①②③ C.②③① D.③②①4.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是 ( )A.SSS D.SAS C.ASA D.AAS二、填空题5.如图,使用直尺作图,看图填空:(1) (2) (3) (4)(1)过点_______和_______作直线AB ;(2)连接线段______;(3)以点_______为端点,过点______作射线_______.(4)延长线段________到_______,使BC=2AB .6.如图,使用圆规作图,看图填空:(1)在射线AM 上______线段________=________;(2)以点________为圆心,以线段______为半径作弧交_____于点________.(3)分别以点______和点________为圆心,以大于12PQ 的长为半径作弧,•两弧分别交于点_______和点_______;(4)以点______为圆心,以任意长为半径作弧,分别交∠AOB 两边_______,•_____于点________,点_______.三、解答题7.已知:任画一条线段a .求作:等腰三角形(两腰长相等),使底边长为2a ,腰长为3a .8.已知:任意画出一个∠α、一个∠β(都是锐角)和一条线段a .求作:ΔABC ,使∠A = ∠α,∠B =∠β,AC =a .9.已知:任画两条线段a ,b (a>b ).求作:边长为a-b 的等边三角形(三边长相等).10.已知:任意画出一个∠α、一个∠β(都是钝角)和一条线段a .求作:ΔABC ,使∠A =180°-∠α,∠B =180°-∠β,AB =a .11.已知:如图5—95所示,线段a ,m ,h (m>h ),O 为线段a 的中点.求作:ΔABC ,使它的一边等于a ,这条边上的中线和高分别等于m 和h(m>h ).参考答案:1.D2.C3.A4.A[提示:由作法知,OC=OD=O′C′=O′D′,CD=C′D′,由SSS可知,ΔOCD≌ΔO′C′D′,从而说明∠A′O′B′=∠AOB.故选A.]5.(1)A,B;(2)AB;(3)O,A,OA;(4)AB,C6.(1)截取,AB,a;(2)A,r,FB,C;(3)P,Q,M,N;(4)O,OA,OB,C,D 7.作法:如图5—96所示.(1)作线段BC=2a;(2)分别以B,C为圆心,3a长为半径在BC 同侧画弧,两弧的一个交点为A;(3)连接AC,AB.ΔABC就是所求作的三角形.8.略.9.提示:如图所示.(1)作线段BC=a-b;(2)分别以B,C为圆心,a-b长为半径在BC同侧画弧,两弧的一个交点为A;(3)连接AC,AB.ΔABC就是所求作的三角形.10.略.11.作法:如图所示.(1)作ΔAED,使∠AED=90°,AE=h,AD=m(AD在AE右侧);(2)延长ED 到B ,使DB =21a ; (3)在DE 上截取DC =21a ;(4)连接AB ,AC .则ΔABC 即为所求作的三角形.4.5利用三角形全等测距离一、选择题:1,如图,O 为AC ,BD 的中点,则图中全等三角形共有( )对.A.2B.3C.4D.52,如图,AB=AD ,AC=AE ,∠BAD=∠CAE,那么△ACD≌△AEB 的依据是( )A. ASAB.AASC.SASD.SSS第1题图 第2题图3.如图5—107所示,将两根钢条AA ′,BB ′的中点连在一起,使AA ′,BB ′可以绕着点O 自由转动,就做成了一个测量工件,则A ′B ′的长等于内槽宽AB ,那么判定ΔOAB ≌ΔOA ≌B ≌的理由是 ( )A.边角边 B .角边角 C.边边边 D .角角边二、填空题:4,如右图,要测量河岸相对两点A ,B 的距离,可以从AB 的垂线BF 上取两点C ,D.使BC=CD ,过D 作DE⊥BF,且A ,C ,E 三点在一直线上,若测得DE=15米,即可知道AB 也为15米,请你说明理由.5,要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则次工件的外径必是CD之长了,你能说明其中的道理吗?6,如图,为修公路,需测量出被大石头阻挡的∠BAC的大小,为此,小张师傅便在直线AC 上取点D使AC=CD,在BC的延长线上取点E,使BC=CE,连DE,则只要测出∠D的度数,则知∠A的度数也与∠D的度数相同了,请说明理由.7,有一座锥形小山,如图,要测量锥形两端A,B的距离,先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A,B的距离,你能说说其中的道理吗?8,如图所示,要测量湖中小岛E距岸边A和D的距离,作法如下:(1)任作线段AB,取中点0;(2)连接DO并延长使DO=CO;(3)连接BC;(4)用仪器测量E,0在一条线上,并交CB于点F,要测量AE,DE,只须测量BF,CF即可,为什么?9,如图,沿AC方向开山修路,为了加快施工进度,要在山的另一边同时施工,工人师傅在AC上取一点B,在小山外取一点D,连接BD,延长,使DF=BD,过F点作AB的平行线MF,连接MD,并延长,在延长线上取一点E,使DE=DM,在E点开工就能使A,C,E成一条直线,你知道其中道理吗?参考答案1,C2,C3.A[提示:因为O是AA′和BB′的中点,所以OA=OA′,OB=OB′,且∠AOB=∠A′O B′,符合三角形全等的条件.故选A.]4,由题意可知,∠ABC=∠EDC=90º,BC=CD,∠BCA=∠DCE,从而△ABC≌△EDC,故AB=DE=15米5,显然由OA=OD,OB=OC,∠AOB=∠DOC,可知△AOB≌△COD,从而AB=CD.6,易知△ABC≌△DEC,故∠A=∠D7,由条件可知△ABC≌△DCE,故AB=DE8,由条件可知,△AOD≌△BOC,∴BC=AD,又∠A=∠B,∠AOE=∠BOF,BO=AO,故三角形△AOE≌△BOF,∴BF=AE,从而DE=CF,因此只要测出BF,CF即可知AE,DE的长度了.9,因为BD=DF,DE=DM,∠BDE=∠MDF,所以△BDE≌△FDM,故∠BEM=∠M,因此BE∥MF,又因为AB∥NF,根据过直线外一点有且只有一条直线与已知直线平行,故A,C,E在一条直线上.。