分层抽样导学案1
分层抽样导学案

必修三第二章第三节分层抽样制作人:李广军高寒审核人:钱明华适用范围:高一使用日期:________【教学目标】1.正确理解分层抽样的概念;2.掌握分层抽样的一般步骤;3.区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。
【教学重难点】重点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本难点:恰当的选择三种抽样方法解决现实生活中的抽样问题。
【教学内容】自主学习1.当总体由_________的几部分组成时,为了使抽取的样本更好地反映总体的情况,常将总体中各个个体按某种特征分成若干个__________的几部分,每一部分叫做层,在各层中按层在总体中进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.2.分层抽样的优点(1)使样本具有较强的_________ .(2)在__________抽样时,可灵活地选用不同的抽样方法【例题讲解】知识点一:分层抽样的概念例1:一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是()A.12、24、15、9B.9、12、12、7C.8、15、12、5D.8、16、10、6变式1:某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一,高二,高三各年级抽取的人数分别为()A.15、5、25 B.15、15、15 C.10、5、30 D.15、10、20知识点二:分层抽样方法的应用例2:某政府机关有在编人员160人,其中有一般干部112人,副处级以上干部16人,后勤工人32人,为了了解政府机构改革意见,要从中抽取一个容量为20的样本,请用分层抽样的方法抽取样本,并写出过程。
变式2:某班有30名男生,20名女生,现调查平均身高,准备从总人数中抽取101做为调查对象,已知男女身高有明显不同,应如何抽样?知识点三:三种抽样方法的区别与联系例题3:某高中共有学生2700人,其中高一年级1080人,高二和高三年级各810人,现从中抽取100名同学参加某项调查,试分别用系统抽样和分层抽样两种方法抽取样本,并比较这两种方法的特点,哪种方法更合适?变式3:选择合适的抽样方法抽样,写出抽样过程(1)30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样(2)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样【课堂练习】1.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为()A.70 B.20C.48 D.22.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90的样本,应在这三校分别抽取学生()A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人3.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5C.6 D.74.某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,从中学中抽取________所学校.5.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.6.某学校高一年级有x个学生,高二年级有y个学生,高三年级有z个学生,采用分层抽样抽取一个容量为45人的样本,高一年级被抽取20人,高三年级被抽取10人,高二年级共有300人,则此学校共有高中学生多少人?7.某工厂有3条生产同一产品的流水线,每天生产的产品件数分别是3 000件,4 000件,8 000件.若要用分层抽样的方法从中抽取一个容量为150的样本,应该如何抽样?【课后作业】8.某小学三个年级共有学生270人,其中一年级108人,二、三年级各81人,现要用抽样方法抽取10人形成样本,将学生按一、二、三年级依次统一编号为1,2,…,270,如果抽得号码有下列四种情况:①5,9,100,107,111,121,180,195,200,265;②7,34,61,88,115,142,169,196,223,250;③30,57,84,111,138,165,192,219,246,270;④11,38,60,90,119,146,173,200,227,254;其中可能是由分层抽样得到,而不可能是由系统抽样得到的一组号码为()A.①②B.②③C.①③D.①④9.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.10.一批产品有一级品100个,二级品60个,三级品40个,分别采用系统抽样和分层抽样,从这批产品中抽取一个容量为20的样本.【探究与拓展】11.(2009•陕西)某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层抽样方法进行抽样,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为( )A. 9B. 18C. 27D. 3612 .某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为______________.13..某高中共有学生2700人,其中高一年级1080人,高二和高三年级各810人,现从中抽取100名同学参加某项调查,试分别用系统抽样和分层抽样两种方法抽取样本,并比较这两种方法的特点,哪种方法更合适?14.某单位有技师18人,技术员12人,工程师6人,需要从这些人中抽取一个容量为n的样本,如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中剔除1个个体,求样本容量n.。
分层抽样调查上课导学案

10.1分层抽样调查(3)导学案班级 姓名 自我打分 小组评分学习目标:感受分层抽样的必要性,初步体会用分层抽样的基本步骤和方法。
学习重点:初步体会用分层抽样进行统计的思想。
学习难点:正确确定比例进行抽样和由数据描述作出判断。
一、 温故而知新1、妈妈炖了一锅鸡汤,先用小勺舀了一点尝尝味道,这是利用了 的思想。
2、为了解参加运动会的2000名运动员的年龄情况,从中抽取了200名运动员的年龄进行统计,总体:______________ ;个体________________;样本_______________ ;样本容量___________;3、下列调查方式,合适的是( )A.要了解一批灯泡的使用寿命,采用普查方式B.要了解淮安电视台“有事报道”栏目的收视率,采用普查方式C.要保证“神舟九号”载人飞船成功发射,对重要零部件的检查采用抽查方式D.要了解外地游客对“淮扬菜美食文化节”的满意度,采用抽查方式4. 如图是某班学生到校的方式的条形统计图, 根据图形得出步行人数占班级总人数的 百分比:_____________.二、自主探索 问题3:某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况。
(1)能不能单一的抽取部分学生进行调查?(2)如果抽取容量为1000的样本进行调查,你会怎样调查?(3)如果青少年、成年人、老年人的人数比为2:5:3,则抽取的人数分别是:青少年为 人,成年人为 人,老年人为 人。
你认为这样抽取有什么好处吗?(4)认真阅读P157页,表格10—3。
分析:由上面的调查结果,可以估计这个地区观众随着年龄的增长,爱好娱乐类和动画类节目的百分比呈下降趋势。
归纳: 调查和 调查是收集数据的两种方式。
调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用 调查。
调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体的准确程度。
高中数学(新教材)《分层抽样》导学案

分层抽样(教师独具内容)课程标准:1.通过实例,了解分层抽样的特点和适用范围,了解分层抽样的必要性,掌握各层样本量比例分配的方法.2.在简单的实际情境中,能根据实际问题的特点,设计恰当的抽样方法解决问题.教学重点:分层抽样的概念、分层抽样的步骤.教学难点:恰当选择抽样方法解决现实生活中的抽样问题.知识点一分层抽样的概念一般地,如果相对于要考察的问题来说,总体可以分成有□01明显差别的、□02互不重叠的几部分时,每一部分可称为□03层,在各层中按□04层在总体中所占比例进行随机抽样的方法称为□05分层随机抽样(简称为分层抽样).知识点二分层抽样的实施步骤第一步,按某种特征将总体分成若干部分(层),分层需要遵循不重复、不遗漏的原则.第二步,计算抽样比,抽样比=样本容量总体中的个体数.第三步,各层抽取的个体数=□01各层总的个体数×抽样比.第四步,依各层抽取的个体数,按□02简单随机抽样从各层抽取样本.第五步,综合每层抽样,组成样本.1.分层抽样的几个要点(1)分层抽样适用于总体数目较多,且由明显差异的几部分组成的情况.(2)层内样本的差异要小,每层之间的样本差异要大,分成的各层互不交叉.(3)各层抽取的比例都等于样本容量在总体中的比例,即nN,其中n为样本容量,N为总体容量.(4)分层抽样使样本具有较强的代表性,而且在各层抽样时,又可灵活地选用不同的抽样法.(5)在分层抽样的过程中每个个体被抽到的可能性是相同的,与层数及分层无关.2.两种抽样方法的辨析1.判一判(正确的打“√”,错误的打“×”)(1)分层抽样实际上是按比例抽样.()(2)分层抽样中每个个体被抽到的可能性不一样.()(3)分层抽样中不能用简单随机抽样.()答案(1)√(2)×(3)×2.做一做(请把正确的答案写在横线上)(1)为调查某班学生的平均身高,从50名学生中抽取5名,因为男生的身高和女生的身高有显著不同,所以获取样本时宜采用________抽样.(2)一个班共有54人,其中男女人数比为5∶4,若抽取9人参加教改调查会,则应抽取男同学________人.(3)某学校有教师132人,职工33人,学生1485人.为了解食堂情况,拟采用分层抽样的方法从以上人员中抽取50人进行抽查,则在学生中应抽取________人.答案(1)分层(2)5(3)45题型一分层抽样的概念例1(1)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层抽样为保证每个个体等可能抽样,必须进行()A.每层等可能抽样B.每层可以不等可能抽样C.所有层按同一抽样比等可能抽样D.所有层抽取个体数量相同(2)某校要从高一、高二、高三共2012名学生中选取50名组成志愿团.若采用下面的方法选取,选用简单随机抽样的方法从2012人中剔除12人,剩下的2000人再按分层随机抽样的方法进行,则每人入选的概率()A.都相等且为502012B.都相等且为140C.不会相等D.均不相等[解析](1)保证每个个体等可能地被抽取是两种基本抽样方式的共同特征,为了保证这一点,分层抽样时必须在所有层都按同一抽样比等可能抽取.(2)由于简单随机抽样和分层抽样中,每个个体被抽到的概率都相等,因此每人入选的概率都相等.因为题中的样本容量是50,总体容量是2012,所以每人入选的概率为502012.[答案](1)C(2)A使用分层抽样应遵循的原则(1)将相似的个体归入一类,即为一层,分层要求每层的每个个体互不交叉,即遵循不重复、不遗漏的原则.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比等于抽样比.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101 B.808C.1212 D.2012答案 B解析依题意可知,甲社区驾驶员的人数占总人数的比例为1212+21+25+43=12 101,因此有96N=12101,解得N=808.题型二分层抽样的应用例2一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人,为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?[解]用分层抽样来抽取样本,步骤如下:①分层.按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工.②确定每层抽取个体的数目.抽样比为100500=15,则在不到35岁的职工中抽取125×15=25(人);在35岁至49岁的职工中抽取280×15=56(人);在50岁及50岁以上的职工中抽取95×15=19(人).③在各层分别按随机数表法抽取样本.④汇总每层抽样,组成样本.利用分层抽样抽取样本的操作步骤(1)将总体按一定标准进行分层;(2)计算抽样比,即样本容量与总体的个体数的比;(3)按各层的个体数与抽样比的乘积确定各层应抽取的样本容量;(4)在每一层进行抽样(可用简单随机抽样);(5)最后将每一层抽取的样本汇总合成样本.一个单位有职工800人,其中具有高级职称的有160人,具有中级职称的有320人,具有初级职称的有200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是________.答案8,16,10,6解析抽样比为40800=120,故各层抽取的人数依次为160×120=8,320×120=16,200×120=10,120×120=6.题型三两种抽样方法的综合应用例3为了考察某校高三年级学生眼睛的视力情况,抽查了这个学校高三年级部分学生的视力水平.为了全面地反映实际情况,采取以下两种方式进行(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的视力水平;②把该校高三年级的学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进行考察(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).根据上面的叙述,试回答下列问题:(1)上面两种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面两种抽取方式各自采用何种抽取样本的方法?(3)试分别写出上面两种抽取方法各自抽取样本的步骤.[解](1)这两种抽取方式中,其总体都是指该校高三年级全体学生的视力水平,个体都是指高三年级每个学生的视力水平.其中第一种抽取方式中样本为所抽取的14名学生的视力水平,样本容量为14;第二种抽取方式中样本为所抽取的100名学生的视力水平,样本容量为100.(2)上面两种抽取方式中,第一种方式采用的方法是简单随机抽样法;第二种方式采用的方法是分层抽样法和简单随机抽样法.(3)第一种方式抽样的步骤如下:第一步:在这14个班中用抽签法任意抽取一个班;第二步:从这个班中按学号用随机数表法或抽签法抽取14名学生,考察其视力水平.第二种方式抽样的步骤如下:第一步:分层,因为若按成绩分,其中优秀学生共105人,良好学生共420人,普通学生共175人,所以在抽取样本中,应该把全体学生分成三个层次;第二步:确定各个层次抽取的人数,因为样本容量与总体数的比为100∶700=1∶7,所以在每层抽取的个体数依次为1057,4207,1757,即15,60,25;第三步:按层分别抽取,在优秀学生中用简单随机抽样法抽取15人,在良好学生中用简单随机抽样法抽取60人,在普通学生中用简单随机抽样法抽取25人;第四步:将所抽取的个体组合在一起构成样本.(1)简单随机抽样和分层抽样是两种常用的抽样方法,在实际生活中有着广泛的应用.(2)两种抽样的适用范围不同,各自的特点也不同,但两种方法间又有密切联系.在应用时要根据实际情况选取合适的方法.(3)两种抽样中每个个体被抽到的可能性都是相同的.下列问题中,宜采用的抽样方法依次为:(1)________;(2)________;(3)________.(1)从10台电冰箱中抽取3台进行质量检查;(2)某社区有1200户家庭,其中高收入家庭420户,中等收入家庭470户,低收入家庭310户,为了调查该社区购买力的某项指标,要从所有家庭中抽取一个容量为120的样本;(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.答案(1)抽签法(2)分层抽样(3)分层抽样解析1.某校高三年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是()A.简单随机抽样B.抽签法C.随机数表法D.分层抽样答案 D解析从男生500人中抽取25人,从女生400人中抽取20人,抽取的比例相同,因此用的是分层抽样.2.在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样的方法从中抽取容量为20的样本,则每个个体被抽取的可能性是()A.124 B.136 C.160 D.16答案 D解析在分层抽样中,每个个体被抽取的可能性都相等,且为样本容量总体容量,所以每个个体被抽取的可能性是20120=1 6.3.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生()A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人答案 B解析先求抽样比为903600+5400+1800=1120,再各层按抽样比分别抽取,甲校抽取3600×1120=30(人),乙校抽取5400×1120=45(人),丙校抽取1800×1120=15(人).故选B.4.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.答案60解析根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.5.某校500名学生中,O型血有200人,A型血有125人,B型血有125人,AB型血有50人,为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.按照分层抽样方法抽取样本,各种血型的人分别抽多少?解按照分层抽样方法抽样,∵20 500=125,∴200×125=8,125×125=5,50×125=2.故O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人.A级:“四基”巩固训练一、选择题1.将A,B,C三种性质的个体按1∶2∶4的比例进行分层抽样调查,若抽取的样本容量为21,则A,B,C三种性质的个体分别抽取() A.12,6,3 B.12,3,6C.3,6,12 D.3,12,6答案 C解析 由分层抽样的概念,知A ,B ,C 三种性质的个体应分别抽取21×17=3,21×27=6,21×47=12.2.某工厂生产A ,B ,C 三种不同型号的产品,产品数量之比依次为2∶3∶5,现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件,那么此样本的容量n 等于( )A .60B .70C .80D .90答案 C解析 由题意知,总体中A 种型号产品所占的比例是22+3+5=15,因样本中A 种型号产品有16件,则15·n =16,解得n =80.故选C.3.某商场有四类食品,其中粮食类、植物油类、动物类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A .4B .5C .6D .7答案 C解析 分层抽样中,分层抽取时都按相同的抽样比来抽取,本题中抽样比为2040+10+30+20=15,因此植物油类食品应抽取10×15=2(种),果蔬类食品应抽取20×15=4(种),因此从植物油类和果蔬类食品中抽取的种数之和为2+4=6.4.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A .90C .180D .300答案 C解析 设样本中的老年教师人数为x ,则3201600=x900,解得x =180.5.某工厂的一、二、三车间在12月份共生产了3600件产品,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且满足a +c =2b ,则二车间在12月份生产的产品数为( )A .800B .1000C .1200D .1500答案 C解析 因为2b =a +c ,所以二车间抽取的产品数占抽取产品总数的三分之一,根据分层抽样的性质可知,二车间生产的产品数占总数的三分之一,即为3600×13=1200.二、填空题6.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.答案 1800解析 设乙设备生产的产品总数为x 件,则甲设备生产的产品总数为(4800-x )件.由题意,得5080=4800-x4800,解得x =1800.7.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,则这三种型号的轿车依次应抽取的辆数为________.答案 6,30,10解析 设三种型号的轿车依次抽取x 辆,y 辆,z 辆,则有 ⎩⎨⎧x 1200=y 6000=z2000,x +y +z =46,解得⎩⎪⎨⎪⎧x =6,y =30,z =10.故填6,30,10.8.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.若用分层抽样方法,则40岁以下年龄段应抽取________人.答案20解析由题意知,分层抽样时,由于40岁以下年龄段占总数的50%,故容量为40的样本中在40岁以下年龄段中应抽取40×50%=20(人).三、解答题9.某网站欲调查网民对当前网页的满意程度,在登录的所有网民中收回有效贴子共50000份,其中持各种态度的份数如下表所示:很满意满意一般不满意10800124001560011200为了了解网民的具体想法和意见,以便决定如何更改才能使网页更完美,打算从中抽选500份,为使样本更具有代表性,每类中各应抽选出多少份?解因为50050000=1100,所以10800100=108,12400100=124,15600100=156,11200100=112.故应从持四种态度的帖子中分别抽取108份,124份,156份,112份进行调查.10.某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3000名初中生、4000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?解(1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样.因为样本容量为120,总体个数为500+3000+4000=7500,则抽样比为1207500=2125,所以有500×2125=8,3000×2125=48,4000×2125=64,所以在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.分层抽样的步骤是:①分层:分为教职员工、初中生、高中生,共三层;②确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8,48,64;③各层分别按简单随机抽样的方法抽取样本;④综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简单随机抽样常用的有两种方法:抽签法和随机数表法.如果用抽签法,要作3000个号签,费时费力,因此采用随机数表法抽取样本,步骤是:①编号:将3000份答卷都编上号码:0001,0002,0003, (3000)②在随机数表上随机选取一个起始位置;③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于3000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.B级:“四能”提升训练1.某企业五月中旬生产A,B,C三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A,C产品的有关数据已被污染看不清楚,统计员只记得A产品的样本容量比C产品的样本容量多10,请你根据以上信息补全表格中的数据.解根据题意,可设A产品的数量为m件,样本容量为n,则C产品的数量为(1700-m)件,样本容量为n-10.根据分层抽样的特征可得nm =n-101700-m=1301300,解得m=900,n=90,所以1700-900=800,90-10=80.补全表格如下:2.某地区中小学生人数的分布情况如下表所示(单位:人).请根据上述数据,设计一个样本容量为总体容量千分之一的抽样方案.解第一步,确定城市、县镇、农村应抽取的个体数.城市、县镇、农村的学生数分别为:357000+226200+112000=695200,221600+134200+43300=399100,258100+11290+6300=275690.因为样本容量与总体容量的比为1∶1000,所以样本中包含的各部分个体数分别为695200×11000≈695,399100×11000≈399,275690×11000≈276.第二步,将城市应抽取的个体数按比例分配到小学、初中、高中.因为城市小学、初中、高中的人数比为357000∶226200∶112000=1785∶1131∶560,1785+1131+560=3476,所以城市小学、初中、高中被抽取的人数分别为695×17853476≈357,695×11313476≈226,695×5603476≈112.第三步,将县镇应抽取的个体数按比例分配到小学、初中、高中.因为县镇小学、初中、高中的人数比为221600∶134200∶43300=2216∶1342∶433,2216+1342+433=3991,所以县镇小学、初中、高中被抽取的人数分别为399×22163991≈222,399×13423991≈134,399×4333991≈43.第四步,使用同样的方法将农村应抽取的个体数按比例分配到小学、初中、高中.经计算,农村小学、初中、高中被抽取的人数分别为259,11,6.第五步,在各层中应抽取的个体数目如下表所示:按照上表中数目在各层中用合适的方法抽取个体,将抽取的个体合在一起形成所需的一个样本.。
高中数学《分层抽样与系统抽样》导学案

1.2.2分层抽样与系统抽样[航向标·学习目标]1.理解并掌握分层抽样与系统抽样的概念及一般步骤.2.理解三种抽样方法的使用条件及相互间的区别与联系,能根据实际问题选择合适的抽样方法进行抽样.3.通过对现实生活中的实际问题进行抽样,感知应用数学知识解决实际问题的方法.[读教材·自主学习]1.分层抽样:将总体按其□01属性特征分成若干类型(有时称作层),然后在每个类型中按照□02所占比例随机抽取一定的样本,这种抽样方法通常叫作分层抽样,有时也称为类型抽样.2.系统抽样:将总体中的个体□03进行编号,□04等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按□05分组的间隔(称为抽样距)抽取其他样本,这种抽样方法有时也叫等距抽样或机械抽样.3.分层抽样的步骤:(1)将总体按一定标准□06分层.(2)计算各层的个体数与总体的个体数的□07比.(3)按各层的个体数占总体的个体数的比确定各层应抽取的□08样本容量.(4)在每一层进行抽样(可用简单随机抽样或系统抽样).4.系统抽样的步骤:(1)将总体中的N个个体□09编号;(2)确定分段间隔k(k∈N)□10分段(组);(3)在第1段用□11简单随机抽样确定起始个体的编号l(l∈N,0≤l≤k);(4)按照一定的规则抽取样本,通常是将起始编号l加上□12间隔k得到第2个个体编号□13l+k,再加上k得到第3个个体编号□14l+2k,这样继续下去,直到获取整个样本.[看名师·疑难剖析]1.分层抽样的特点当总体容量和样本容量较大时,不宜采用简单随机抽样,又由于总体差异明显,所以采用分层抽样为妥.2.系统抽样的特点(1)用于总体的个体数较多的情况.(2)它是从总体中逐个地进行抽取.(3)它是一种不放回抽样.(4)每一个个体被抽到的可能性均等.3.三种抽样的特点及适用范围知识拓展:三种抽样方法都是不放回抽样,抽样过程中每个个体被抽到的可能性相同,注意总结这些抽样方法的特点及适用范围,特别是系统抽样和分层抽样的区别与联系.考点一分层抽样与系统抽样的概念例1某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如下表所示:很喜爱喜爱一般不喜爱2435456739261072电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,则应如何进行抽样?[分析] 因为总体中人数较多,所以不宜采用简单随机抽样,又由于持不同态度的人数差异较大,故也不宜用系统抽样法,而以分层抽样法为宜.[解] 可用分层抽样法,其总体容量为12000,“很喜爱”的占2435/12000=487/2400,应取60×487÷2400≈12(人);“喜爱”的占4567/12000,应取60×4567÷12000≈23(人);“一般”的占3926/12000,应取60×3926/12000≈20(人);“不喜爱”的占1072/12000,应取60×1072÷12000≈5(人).因此,采用分层抽样的方法在“很喜爱”,“喜爱”,“一般”和“不喜爱”的2435人,4567人,3926人和1072人中分别抽取12人,23人,20人和5人.[变式训练1] 为了保证分层抽样时,每个个体等可能地被抽取,必须要求( )A .每层等可能抽样B .每层抽取的个体数相等C .每层抽取的个体可以不一样多,但必须满足抽取n i =n ·N i N (i =1,2,…,k )个个体(其中i 是层数,n 是抽取的样本容量,N i 是第i 层中个体的个数,N 是总体的容量)D .只要抽取的样本容量一定,每层抽取的个体数没有限制答案 C解析 分层抽样时,在各层中按层在总体中所占的比例进行简单随机抽样.A 虽然每层等可能地抽样,但是没有指明各层中应抽取几个个体,故A 不正确.B 由于每层的容量不一定相等,每层抽取同样多的个体数,显然,从总体来看,各层之间的个体被抽取的可能情况就不一样了,故B 也不正确.C 对于第i 层的每个个体,它被抽到的可能性与层数i 无关,即对于每个个体来说,被抽取为样本的可能性是相同的,故C 正确,D 不正确.故选C.例2 下列抽样实验中,最适宜用系统抽样法的是( )A .某市的3个区共有2000名学生,且3个区的学生人数之比为3∶2.8∶2,从中抽取200人入样B.从某厂生产的2000个电子元件中随机抽取5个入样C.从某厂生产的2000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样[解析]A总体有明显层次,不适宜用系统抽样法;B样本容量很小,适宜用随机数法;D总体容量很小,适宜用抽签法.[答案] C类题通法当总体容量较大,样本容量也较大时适宜用系统抽样法抽样.[变式训练2]某商场想通过检查发票及销售记录的2%来快速估计每月的销售金额.采用如下方法:从某本发票的存根中随机抽一张,如15号,然后按序号往后将65号,115号,165号,…,发票上的销售金额组成一个调查样本.这种抽取样本的方法是()A.抽签法B.随机数法C.系统抽样法D.其他方式的抽样答案 C解析上述抽样方法是将发票平均分成若干组,每组50张.从第一组中抽出了15号,以后各组抽15+50n(n为自然数)号.符合系统抽样的特点.考点二分层抽样与系统抽样的步骤例3某城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,计划抽取一个容量为21的样本,按照分层抽样方法抽取时,各种百货商店分别要抽取多少家?写出抽样过程.[分析]由题目可以获取以下主要信息:①某城市的百货商店包括差异明显的大、中、小型商店三种;②总体容量为210;③样本容量为21.解答本题应按分层抽样的步骤抽取,首先算出抽样比例,然后求出各层抽样的样本数,最后在各层抽取得到样本.[解](1)样本容量与总体的个体数的比为21210=110;(2)确定各种商店要抽取的数目:大型:20×110=2(家),中型:40×110=4(家)小型:150×110=15(家);(3)采用简单随机抽样在各层中抽取大型:2家;中型:4家;小型:15家;这样便得到了所要抽取的样本.类题通法对于个体差异较为明显的总体,以分层抽样法抽取样本,所得样本的代表性较好,在按比例确定各层抽取个数后,在各层中又可以采用简单随机抽样或系统抽样,甚至可以再次使用分层抽样.[变式训练3]某运输队有货车1200辆,客车800辆.从中抽取110调查车辆的使用和保养情况.请给出抽样过程.分析因为货车和客车的使用和保养情况有明显的差别,所以用分层抽样.解采用分层抽样的方法进行抽样,具体步骤如下:第一步:明确货车和客车各应抽取多少辆.货车应抽取1200×110=120辆,客车应抽取800×110=80辆.第二步:用系统抽样法分别抽取货车120辆,客车80辆.这些货车和客车便组成了所要抽取的样本.例4为了解参加某种知识竞赛的1000名学生的成绩,从中抽取一个容量为50的样本,那么采用什么抽样方法比较恰当?简述抽样过程.[分析]由题目可以获取以下主要信息:①总体容量为1000,总体容量较大;②样本容量为50,也较大.解答本题目可先分析总体容量和样本容量的特点以及所学的各种抽样方法的适用范围,再选择恰当的抽样方法并简述抽样过程.[解]适宜选用系统抽样,抽样过程如下:(1)随机地将这1000名学生编号为1,2,3, (1000)(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如是18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.类题通法(1)解决系统抽样问题中两个关键的步骤为:①分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.②起始编号的确定应用随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.(2)当总体中的个体数不能被样本容量整除时,需要在总体中剔除一些个体.[变式训练4]某单位在岗职工共624人,为了调查工人上班途中所用时间,决定抽取10%的工人进行调查,如何采用系统抽样法完成这一抽样?分析剔除多余个体是为了保证“等距”分段,方便系统抽样的应用,在剔除个体时需用简单随机抽样.解第一步:将624人用随机方式编号;第二步:从总体中剔除4人(可用随机数法),将剩下的620名职工重新编号,分别为000,001,…,619,并分成62段;第三步:在第一段000,001,…,009这10个编号中用简单随机抽样抽出一个(如002)作为起始号;第四步:将编号为002,012,022,…,612的个体抽出,组成样本.考点三三种抽样的区别与联系例5选择合适的抽样方法抽样,写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个.(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个.(3)有甲厂生产的300个篮球,抽取10个.(4)有甲厂生产的300个篮球,抽取30个.[分析]由题目可获取以下主要信息:①本题是要求选择适当的抽样方法.②要写出抽样过程.解答本题应综合三种抽样方法的适用范围和实际情况,灵活选取适当的方法进行抽取.[解](1)总体容量较小,用抽签法.①将30个篮球编号,编号为00,01, (29)②将以上30个编号分别写在完全一样的一张小纸条上,揉成小球,制成号签;③把号签放入一个不透明的袋子中,充分搅拌;④从袋子中逐个抽取3个号签,并记录上面的号码;⑤找出和所得号码对应的篮球即可得到样本.(2)总体由差异明显的两个层次组成,需选用分层抽样法.①确定抽取个数.抽样比1030=13,所以甲厂生产的应抽取213=7个,乙厂生产的应抽取93=3个;②用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本.(3)总体容量较大,样本容量较小,宜用随机数法.①将300个篮球用随机方式编号,编号为001,002, (300)②在随机数表(见课本附录2)中随机的确定一个数作为开始,如第8行第29列的数“1”开始.任选一个方向作为读数方向,比如向右读;③从数“1”开始向右读,每次读三位,凡不在001~300中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大宜用系统抽样.①将300个篮球用随机方式编号,编号为000,001,002,…,299,并分成30段,其中每一段包含30030=10个个体;②在第一段000,001,002,…,009这十个编号中用简单随机抽样抽出一个(如002)作为起始号码;③将编号为002,012,022,…,292的个体抽出,组成了所要求的样本.类题通法弄清三种抽样方法的实质和适用范围,是灵活选用抽样方法的前提和基础.若用分层抽样,应先确定各层的抽取个数,然后在各层中用系统抽样或简单随机抽样进行抽取.[变式训练5]一个单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人,为了了解职工的某种情况,要从中抽取一个容量为20的样本,按下述三种方法抽样:方法1:将160人从1至160编上号,然后用白纸做成有1~160号的签160个放入箱内拌匀,然后从中抽20个签,与签号相同的20个人被选出.方法2:将160人从1至160编上号,按编号顺序分成20组,每组8人,1~8号,9~16号,…,153~160号,先从第1组中用抽签法抽出k号(1≤k≤8),其余组的(k+8n)号(n=1,2,…,19)亦被抽到,如此抽取到20人.方法3:按20∶160=1∶8的比例,从业务人员中抽取12人,从管理人员中抽取5人,从后勤服务人员中抽取3人,都用随机数法从各类人员中抽取所需的人数,他们合在一起恰好抽到20人.上述三种抽样方法,按简单随机抽样、分层抽样、系统抽样的顺序是() A.方法1、方法2、方法3 B.方法2、方法1、方法3C.方法1、方法3、方法2 D.方法3、方法1、方法2答案 C解析方法1是简单随机抽样;方法2是系统抽样;方法3是分层抽样.故选C.[例](12分)从111个总体中抽取10个个体的样本,则每个个体入样的可能性为多少?若用系统抽样的方法抽样,则抽样距k等于多少?(一)精妙思路点拨(二)分层规范细解(三)来自一线的报告通过阅卷后分析,对解答本题的失分警示和解题启示总结如下:(注:此处的①②③见分层规范细解过程)(四)类题练笔掌握某校高中二年级有253名学生,为了了解他们的视力情况,准备按1∶5的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.解(1)先把这253名学生编号000,001, (252)(2)用随机数法任取出3个号,从总体中剔除与这三个号对应的学生.(3)把余下的250名学生重新编号1,2,3, (250)(4)分段.取分段间隔k=5,将总体均分成50段,每段含5名学生.(5)以第一段即1~5号中随机抽取一个号作为起始号,如l.(6)从后面各段中依次取出l+5,l+10,l+15,…,l+245这49个号.这样就按1∶5的比例抽取了一个样本容量为50的样本.(五)解题设问(1)本题中Nn是整数吗?________,253×15=50.6不是整数.(2)抽样过程的第1步是什么?需用简单随机抽样的方法先________,使N′n为整数.答案(1)不是(2)剔除多余个体1.下列说法不正确的是()A.简单随机抽样是从个体数较少的总体中逐个随机抽取个体B.系统抽样是从个体数较多的总体中,将总体均分,再按事先确定的规则在各部分抽取C.系统抽样是将差异明显的总体均分成几部分,再进行抽取D.分层抽样是将由差异明显的几部分组成的总体分成几层,分层进行抽取答案 C解析A、B、D均正确,C中的叙述应是分层抽样而非系统抽样.2.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取n名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为() A.10 B.9 C.8 D.7答案 A解析抽样比等于7210=130,则从高三学生中抽取的人数应为300×130=10.3.从容量为N的总体中抽取容量为n的样本,若用系统抽样法,则抽样间隔为()A.N/n B.nC.[N/n] D.[N/n]+1答案 C解析要抽n个个体入样,需将N个编号均分成n组.(1)若N/n是整数,则抽样间隔为N/n;(2)若N/n不是整数,则先剔除多余个体,再均分成n组,此时的抽样间隔为[N/n].故选C.4.某市有大型超市200家、中型超市400家、小型超市1400家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市________家.答案20解析本题考查了分层抽样知识.易知抽样比为120,故应抽取中型超市20家.5.调查某班学生的平均身高,从50名学生中抽取110,如何抽样?已知男、女生的身高有显著不同(男生30人,女生20人),又如何抽样?分析本题可以用简单随机抽样的方法,当男、女生身高有显著不同时,可以采用分层抽样.解用简单随机抽样先将50名学生按1至50编号,然后采用抽签法抽得5名学生,也可以采用随机数法抽得5名学生.当男、女生身高有显著不同时,可以采用分层抽样,男生抽3人,女生抽2人.一、选择题1.某城区有农民、工人、知识分子家庭共计2000家,其中农民家庭1800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有()①简单随机抽样②系统抽样③分层抽样A.②③B.①③C.③D.①②③答案 D解析由于各类家庭有明显差异,所以首先应用分层抽样的方法分别从三类家庭中抽出若干户.又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样;而工人、知识分子家庭户数较少,宜采用简单随机抽样.故整个抽样过程要用到①②③三种抽样方法.2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为()A.7 B.15 C.25 D.35答案 B解析 设样本容量为n ,则依题意有350750×n =7,n =15,选B.3.一个年级有10个班,每个班有50名同学,随机编为1至50号,为了了解他们的学习情况,要求每个班的30号同学留下来进行问卷调查,这里运用的调查方法是( )A .分层抽样B .抽签法C .随机数法D .系统抽样答案 D解析 根据系统抽样的定义可知,10个班为10个组.4.为了了解参加一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本.那么总体中应随机剔除的个体数目是( )A .2B .4C .5D .6答案 A解析 因为1252=50×25+2,所以应随机剔除2个个体.5.总体容量为524,采用系统抽样法抽样,若想不剔除个体,则抽样间隔为( )A .3B .4C .5D .6答案 B解析 判断各选项是否能整除524.6.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是 ( )A .简单随机抽样B .系统抽样C .分层抽样D .先从老年人中剔除1人,再用分层抽样的方法抽取样本答案 D解析 总人数28+54+81=163人,样本容量为36,由于总体是由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整数解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取54×29=12人,青年人取81×29=18人,先从老年人中剔除1人,老年人取27×29=6人,组成容量为36的样本.故选D.二、填空题7.若总体中含有1650个个体,现要采用系统抽样从中抽取一个容量为35的样本,分段时应从总体中随机剔除________个个体,编号后应均分为________段,每段有________个个体.答案53547解析根据系统抽样的定义求解.8.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.答案16解析本题考查统计初步的知识,考查分层抽样方法以及基本的运算能力.应在丙专业抽取的学生人数是400150+150+400+300×40=16.9.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k号码的个位数字相同,若m=6,则在第7组中抽取的号码是________.答案63解析根据题目中的规定,若m=6,第7组中抽取的号码个位数字与m+k =6+7=13的个位数字相同为3,又第7组的号码是60,61,62,63,64,…,69,其号码个位数字是3的仅有63,所以在第7组中抽取的号码是63.三、解答题10.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数是多少?解本题考查分层抽样方法在解决实际问题中的应用,注重考查考生的实际应用能力.由分层抽样的比例都等于样本容量比总体容量可知:若设高二年级抽取x人,则有630=x40,解得x=8,所以在高二年级学生中应抽取的人数为8人.11.某工厂平均每天生产某种零件大约20000件,要求产品检验员每天抽取100件零件检查其质量状况,假设一天的生产时间中生产机器零件的件数是均匀的,试设计一个抽样方案.解 第一步:按生产时间将一天分为100个时间段,也就是说,每个时间段大约生产20000100=200(件)产品,这时抽样距就是200;第二步,将一天中生产出的机器零件按生产时间进行顺序编号,如第一个生产出的零件就是0号,第二个生产出的零件就是1号等等;第三步,从第一个时间段中按简单随机抽样的方法抽取一个产品.比如是k 号零件;第四步,顺次地抽取编号分别为下列数字的零件:k +200,k +400,k +600,…,k +19800,这样总共就抽取了50个样本.12.某中学共有教职工300人,分为业务人员、管理人员、后勤服务人员三部分,其组成比例为8∶1∶1,现用分层抽样法从中抽取一个容量为20的样本,写出抽样过程.解 第一步:计算抽样比为20300=115,即每一层所抽取的个体数占该层总人数的115;第二步:分别计算业务人员、管理人员和后勤服务人员的人数分别为300×45=240(人),300×110=30(人),300×110=30(人);第三步:分别计算每一层抽取的业务人员、管理人员和后勤服务人员的人数分别为240×115=16(人),30×115=2(人),30×115=2(人);第四步:用简单随机抽样的方法在业务人员、管理人员和后勤服务人员中分别抽取16人、2人、2人组成样本.13.为了考察某校的教学水平,将抽查这个学校高三年级的部分学生的本学年考试成绩.为了全面地反映实际情况,采用以下三种方式进行抽查(假定该校高三年级共有20个班,且每班学生已按随机方式编好了学号,每班的人数相等):①从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们的成绩;②每个班都抽取1人,共计20人,抽查这20个学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从三个级别中按比例抽取100名学生(已知按成绩该校高三优秀生150人,良好生600人,普通生250人).根据以上的叙述,试回答下面的问题:(1)上面三种方式中各采用何种抽取样本的方法?(2)试分别写出上面三种抽取方式抽取样本的简要步骤.解(1)第一种抽取方式采用的是简单随机抽样;第二种抽取方式采用的是系统抽样;第三种抽取方式采用的是分层抽样.(2)第一种抽样方式的抽样步骤是:先用抽签法抽取一个班,再用抽签法或随机数法抽取20人.第二种抽样方式的抽样步骤是:首先在第一个班中用简单随机抽样法抽取一名学生,比如其学号为k,然后在其他班上选取学号为k的学生共19人,从而得到一个容量为20的样本.第三种抽样方式的抽样步骤是:先确定各层的人数,由于1001000=110,故优秀生抽取15人,良好生抽取60人,普通生抽取25人,然后分别在各层中用简单随机抽样法抽取相应数目的个体.。
学案1:9.1.2 分层随机抽样

9.1.2分层随机抽样【自主预习】1.分层随机抽样的相关概念(1)分层随机抽样的定义:一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行抽样,再把所有子总体中抽取的样本作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.(2)比例分配:在分层随机抽样中,如果每层都与层的大小成比例,那么称这种样本量的分配方式为比例分配.2.样本平均数的计算公式在分层随机抽样中,第1层和第2层包含的个体数分别为M和N,抽取的样本量分别为m 和n,第1层和第2层样本的平均数分别为x和y,则样本的平均数ω=.思考1:分层随机抽样的总体具有什么特性?思考2:简单随机抽样和分层随机抽样有什么区别和联系?【基础自测】1.某林场有树苗30 000棵,其中松树苗4 000棵.为调查树苗的生长情况,采用分层随机抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30B.25C.20 D.152.某校高三年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是()A.简单随机抽样B.抽签法C.随机数表法D.分层随机抽样3.某学院的A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层随机抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取名学生.【合作探究】【例1】(1)某政府机关在编人员共100人,其中副处级以上干部10人,一般干部70人,工人20人,上级部门为了了解该机关对政府机构改革的意见,要从中抽取20人,用下列哪种方法最合适()A.抽签法法B.随机数法C.简单随机抽样法D.分层随机抽样法(2)分层随机抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层随机抽样为保证每个个体等可能抽样,必须进行()A.每层等可能抽样B.每层可以不等可能抽样C.所有层按同一抽样比等可能抽样D.所有层抽取的个体数量相同【规律方法】1.使用分层随机抽样的前提分层随机抽样的总体按一个或多个变量划分成若干个子总体,并且每一个个体属于且仅属于一个子总体,而层内个体间差异较小.2.使用分层随机抽样应遵循的原则(1)将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则;(2)分层随机抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比等于抽样比.【跟踪训练】1.下列问题中,最适合用分层随机抽样抽取样本的是()A.从10名同学中抽取3人参加座谈会B.某社区有500个家庭,其中高收入的家庭125户,中等收入的家庭280户,低收入的家庭95户,为了了解生活购买力的某项指标,要从中抽取一个容量为100户的样本C.从1 000名工人中,抽取100人调查上班途中所用时间D.从生产流水线上,抽取样本检查产品质量【例2】某学校有在职人员160人,其中行政人员有16人,教师有112人,后勤人员有32人.教育部门为了了解在职人员对学校机构改革的意见,要从中抽取一个容量为20的样本,请利用分层随机抽样的方法抽取,写出抽样过程.【规律方法】分层随机抽样的步骤【跟踪训练】某一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.类型三分层随机抽样中的计算问题[探究问题]1.在分层随机抽样中,N为总体容量,n为样本容量,如何确定各层的个体数?2.在分层随机抽样中,总体容量、样本容量、各层的个体数、各层抽取的样本数这四者之间有何关系?【例3】 (1)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层随机抽样调查,假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( )A .101B .808C .1 212D .2 012(2)将一个总体分为A ,B ,C 三层,其个体数之比为5∶3∶2.若用分层随机抽样方法抽取容量为100的样本,则应从C 中抽取 个个体.(3)分层随机抽样中,总体共分为2层,第1层的样本量为20,样本平均数为3,第2层的样本量为30,样本平均数为8,则该样本的平均数为 .[母题探究]在例3(2)中,A ,B ,C 三层的样本的平均数分别为15,30,20,则样本的平均数为 .【规律方法】进行分层随机抽样的相关计算时,常用到的2个关系(1)样本容量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.(3)样本的平均数和各层的样本平均数的关系为: ω=m m +n x -+n m +n y -=M M +N x -+N M +Ny -. 【课堂小结】1.对于分层随机抽样问题,常利用以下关系式求解:样本容量n 总体容量N =各层抽取的样本数该层的容量. 2.选择抽样方法的规律:(1)当总体和样本量都较小时,采用抽签法;当总体量较大,样本量较小时,采用随机数法;(2)当总体可以分为若干个层时,采用分层随机抽样.【当堂达标】1.判断正误(1)在统计实践中选择哪种抽样方法关键是看总体容量的大小.( )(2)分层随机抽样中,个体数量较少的层抽取的样本数量较少,这是不公平的.( )(3)从全班50名同学中抽取5人调查作业完成情况适合用分层随机抽样.( )2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生的课业负担情况,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.简单随机抽样C.分层随机抽样D.随机数法3.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层随机抽样法抽取一个容量为90的样本,应在这三校分别抽取学生()A.30人,30人,30人B.30人,45人,15人C.20人,30人,40人D.30人,50人,10人某大学为了了解在校本科生对参加某项社会实践活动的意向,拟采用分层随机抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取名学生.5.一批产品中有一级品100个,二级品60个,三级品40个,用分层随机抽样法从这批产品中抽取一个容量为20的样本. 请利用分层随机抽样的方法抽取,写出抽样过程.【参考答案】【自主预习】(1) 简单随机合在一起(2) 样本量2.mm+n x-+nm+n y-=MM+Nx-+NM+Ny-思考1:[提示]分层随机抽样的总体按一个或多个变量划分成若干个子总体,并且每一个个体属于且仅属于一个子总体.思考2:[提示]区别:简单随机抽样是从总体中逐个抽取样本;分层随机抽样则首先将总体分成几层,在各层中按比例分配抽取样本.联系:(1)抽样过程中每个个体被抽到的可能性相等;(2)每次抽出个体后不再将它放回,即不放回抽样.【基础自测】1.C[样本中松树苗为4 000×15030 000=4 000×1200=20(棵).]2.D[从男生500人中抽取25人,从女生400人中抽取20人,抽取的比例相同,因此用的是分层随机抽样.]3.40[C专业的学生有1 200-380-420=400(名),由分层随机抽样原理,应抽取120×4001200=40(名).]【合作探究】【例1】(1)D(2)C[(1)总体由差异明显的三部分构成,应选用分层随机抽样法.(2)保证每个个体等可能的被抽取是三种基本抽样方式的共同特征,为了保证这一点,分层随机抽样时必须在所有层都按同一抽样比等可能抽取.]【跟踪训练】1.B[A中总体所含个体无差异且个数较少,适合用简单随机抽样;C和D中总体所含个体无差异且个数较多,不适合用分层随机抽样;B中总体所含个体差异明显,适合用分层随【例2】 [解] 抽样过程如下:第一步,确定抽样比,样本容量与总体容量的比为20160=18. 第二步,确定分别从三类人员中抽取的人数,从行政人员中抽取16×18=2(人);从教师中抽取112×18=14(人);从后勤人员中抽取32×18=4(人). 第三步,采用简单随机抽样的方法,抽取行政人员2人,教师人员14人,后勤人员4人. 第四步,把抽取的个体组合在一起构成所需样本.【跟踪训练】2.[解] 因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层随机抽样的方法.具体过程如下:第一步,将3万人分为5层,其中一个乡镇为一层.第二步,按照样本容量的比例求得各乡镇应抽取的人数分别为60人,40人,100人,40人,60人.第三步,按照各层抽取的人数随机抽取各乡镇应抽取的样本.第四步,将300人合到一起,即得到一个样本.[探究问题]1.[提示] 每层抽取的个体的个数为n i =N i ×n N,其中N i 为第i (i =1,2,…,k )层的个体数, n N为抽样比. 2.[提示] 设总体容量为N ,样本容量为n ,第i (i =1,2,…,k )层的个体数为N i ,各层抽取的样本数为n i ,则n i N i =n N,这四者中,已知其中三个可以求出另外一个. 【例3】(1)B (2)20 (3)6 [(1)因为甲社区有驾驶员96人,并且在甲社区抽取的驾驶员的人数为12人,所以四个社区抽取驾驶员的比例为1296=18,所以驾驶员的总人数为(12+21+25+43)÷18=(2)∶A,B,C三层个体数之比为5∶3∶2,又有总体中每个个体被抽到的概率相等,∶分层随机抽样应从C中抽取100×210=20(个)个体.(3)ω=2020+30×3+3020+30×8=6.][母题探究]20.5[由题意可知样本的平均数为ω=55+3+2×15+35+3+2×30+25+3+2×20=20.5.]【当堂达标】1.[提示](1)错误.在统计实践中选择哪种抽样方法除看总体和样本容量大小外,还要依据总体的构成情况.(2)错误.根据抽样的意义,对每个个体都是公平的.(3)错误.适合用简单随机抽样.[答案](1)×(2)×(3)×2.C[根据年级不同产生差异及按人数比例抽取易知应为分层随机抽样.]3.B[先求抽样比nN=903 600+5 400+1 800=1120,再各层按抽样比分别抽取,甲校抽取 3600×1120=30(人),乙校抽取5 400×1120=45(人),丙校抽取1 800×1120=15(人),故选B.]4.60[根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.]5.[解]第一步,确定抽样比,因为100+60+40=200,所以20200=1 10,第二步,确定各层抽取的样本数,一级品:100×110=10,二级品:60×110=6,三级品:40×110=4.第三步:采用简单随机抽样的方法,从各层分别抽取样本.第四步,把抽取的个体组合在一起构成所需样本.。
《分层随机抽样》教案、导学案、课后作业

《9.1.2 分层随机抽样》教案【教材分析】本节是在学习了简单随机抽样的基础上,结合随机抽样特点和适用范围,针对总体的复杂性,为提高样本的代表性,有学习掌握分层抽样这种随机抽样的必要性;为下节“用样本估计总体”的学习打下了基础.因此本节内容具有承前启后的作用,地位重要.【教学目标与核心素养】课程目标1.理解分层抽样的基本思想和适用情形.2.掌握分层抽样的实施步骤.3.了解两种抽样方法的区别和联系.数学学科素养1.数学抽象:分层抽样的相关概念;2.数据分析:分层抽样的应用;3.数学运算:分层抽样中各层样本容量的计算.【教学重点和难点】重点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本.难点:选择合适的抽样方法解决现实生活中的抽样问题.【教学过程】一、情景导入由上一节知道,简单随机抽样抽取样本会出现极端现象,那么有没有一种抽取方式可以规避这种情况?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本181-184页,思考并完成以下问题1、什么情况下适用分层抽样?分层抽样的步骤是?2、简单随机抽样和分层抽样有什么区别与联系?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究 1.定义一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫分层抽样.2.适用范围当总体是由差异明显的几个部分组成时,往往采用分层抽样. 3.分层抽样的步骤(1)根据已掌握的信息,将总体分成若干部分.(2)根据总体中的个体数N 和样本容量n 计算出抽样比k =nN.(3)根据抽样比k 计算出各层中应抽取的个体数:nN ·N i (其中N i为第i 层所包含的个体总数).(4)按步骤3所确定的数在各层中随机抽取个体,并合在一起得到容量为n 的样本.探究: 计算各层所抽取个体的个数时,若N i ·n N的值不是整数怎么办,分层抽样公平吗?答案 为获取各层的入样数目,需先正确计算出抽样比n N ,若N i ·n N的值不是整数,可四舍五入取整,也可先将该层等可能地剔除多余的个体.分层抽样中,每个个体被抽到的可能性是相等的,与层数、分层无关.4. 两种抽样方法的区别和联系四、典例分析、举一反三题型一分层抽样的概念例1为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.无法确定【答案】C【解析】由于该地区的中小学生人数比较多,不能采用简单随机抽样,所以排除A项;由于该地区小学、初中、高中三个学段学生的视力情况有较大差异,可采取按照学段进行分层抽样,而男女生视力情况差异不大,不能按照性别进行分层抽样,所以排除B,D项.解题技巧(分层抽样的依据)(1)适用于总体由差异明显的几部分组成的情况.(2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.跟踪训练一1.下列问题中,最适合用分层抽样抽取样本的是( )A.从10名同学中抽取3人参加座谈会B.某社区有500个家庭,其中高收入的家庭125户,中等收入的家庭280户,低收入的家庭95户,为了了解生活购买力的某项指标,要从中抽取一个容量为100户的样本C.从1 000名工人中,抽取100人调查上班途中所用时间D.从生产流水线上,抽取样本检查产品质量【答案】B .【解析】A 项中总体所含个体无差异且个数较少,适合用简单随机抽样;C 项和D 项中总体所含个体无差异,不适合用分层抽样;B 项中总体所含个体差异明显,适合用分层抽样.题型二 分层抽样中各层样本容量的计算例2 某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样的结果,该企业统计员制作了如下的统计表.由于不小心,表格中A ,C 产品的有关数据丢失,统计员记得A 产品的样本容量比C 产品的样本容量多10.根据以上信息,可得C 产品的数量是________件.【答案】800.【解析】因为C 产品的数量为y ,则A 产品的数量为x =3 000-1 300-y =1 700-y ,又C 产品的样本容量为n ,则A 产品的样本容量为m =10+n ,由分层抽样的定义可知x m =1 700-y n +10=y n =1 300130,解得y =800.解题技巧 (分层抽样中每层抽取的个体数的确定方法)(1)已知总体容量、样本容量及各层的个体数时,首先确定抽样比nN,其中N为总体容量,n 为样本容量;然后确定每层抽取的个体的个数n i =N i ×n N,其中N i 为第i (i =1,2,…,k )层的个体数,n i 为第i 层应抽取的个体数.(2)已知各层个体数之比为m 1∶m 2∶…∶m k ,样本容量为n 时,每层抽取的个体数为n i =n ×m im 1+m 2+…+m k(i =1,2,…,k ).跟踪训练二1.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100 B.150C.200 D.250【答案】A.【解析】n=(3 500+1 500)×703 500=100.故选A项.题型三分层抽样的应用例3一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解与身体状况有关的某项指标,要从所有职工中抽取100名职工作为样本,若职工年龄与这项指标有关,应该怎样抽取?【答案】见解析【解析】用分层抽样来抽取样本,步骤是:(1)分层.按年龄将500名职工分成三层:不到35岁的职工,35岁至49岁的职工,50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为100500=15,则在不到35岁的职工中抽125×15=25(人);在35岁至49岁的职工中抽280×15=56(人);在50岁以上的职工中抽95×15=19(人).(3)在各层分别按抽签法或随机数法抽取样本.(4)综合每层抽样,组成样本.解题技巧(分层抽样注意事项)(1)分层抽样实质是利用已知信息尽量使样本结构与总体结构相似.在实际操作时,并不排斥与其他抽样方法联合使用.(2)在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体容量之比.跟踪训练三1.在100个产品中,有一等品20个,二等品30个,三等品50个,现要抽取一个容量为30的样本,请说明抽样过程.【答案】见解析.【解析】先将产品按等级分成三层;第一层,一等品20个;第二层,二等品30个;第三层,三等品50个.然后确定每一层抽取的个体数,因为抽样比为30100=310,所以应在第一层中抽取产品20×310=6(个),在第二层中抽取产品30×310=9(个),在第三层中抽取产品50×310=15(个).分别给这些产品编号并贴上标签,用抽签法或随机数表法在各层中抽取,得到一等品6个,二等品9个,三等品15个,这样就通过分层抽样得到了一个容量为30的样本.五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本184页练习,188页习题9.1的5、7题. 【教学反思】本班学生对本章节的基本知识、基本技能掌握情况良好,具体表现在:概念比较清晰,基础扎实,掌握情况总体不错。
高中数学必修3《分层抽样》导学案

思考5样本容量与总体的个体数之比是分层抽样的比例常数,按这个比例可以确定各层应抽取的个体数,如果各层应抽取的个体数不都是整数该如何处理?
答如果不能调整样本容量,可以剔除不是整数层中的个体,剔除个体时一般使用简单随机抽样法抽取被剔除的个体,目的是为了保证每个个体被抽到的机会相等.
(3)在各层分别按抽签法或随机数法抽取样本.
(4)综合每层抽样,组成容量为100的样本.
跟踪训练2某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.
解(1)由于该市高中学生的视力有差异,按3个区分成三层,用分层抽样来抽取样本.
答案50
任务2分层抽样的一般步骤
问题某单位有职工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查职工的身体状况,要从中抽取一个容量为100的样本,如何进行抽取?
思考1该项调查应采用哪种抽样方法进行?不同年龄段的职工中,按什么比例抽取人数?三个年龄层次的职工分别抽取多少人?
答不能,因为不同年龄阶段的学生的近视情况可能存在明显差异,为了使样本具有较好的代表性,应该分高中、初中、小学三个层次分别抽样.
思考2在高中,初中和小学三部分学生中都按1%的比例抽取,那么各抽取多少人?
答高中生中抽取2 400×1%=24(人),初中生中抽取10 900×1%=109(人),小学生中抽取11 000×1%=110(人).
数学(高二上)导学案
必修三第二章第一节课题:随机抽样
教学内容
2.1.3分层抽样
编制人
审核人
执教教师
《分层随机抽样》教学设计、导学案、同步练习

《9.1.2 分层随机抽样》教学设计【教材分析】本节《普通高中课程标准数学教科书-必修二(人教A版)第九章《9.1.2 分层抽样》,本节的主要内容在本章的结构上,通过大背景的“串联”,从大背景中不断提出新问题,从而通过问题链进行探究学习,合理选择抽样方法的必要性并掌握分层抽样方法。
从而发展学生的直观想象、逻辑推理、数学建模的核心素养。
【教学目标与核心素养】1.数学建模:结合实际问题情景,理解分层抽样的必要性和重要性;2.逻辑推理:学会用分层抽样的方法从总体中抽取样本;3.直观想象:对简单随机抽样、分层抽样方法进行比较,揭示其相互关系.4.数学运算:总体平均数的估计方法【教学重点】:理解分层抽样的基本思想和适用情形..【教学难点】:掌握分层抽样的实施步骤,会计算总体平均数.【教学过程】抽样调查最核心的问题是样本的代表性,简单随机抽样是使总体中每一个个体都有相等的机会被抽中,但因为抽样的随机性,有可能会出现比较“极端”的样本,二、问题探究例如,在对树人中学高一年级学生身高的调查中,可能出现样本中50个个体大部分来自高个子或矮个子的情形,这种“极端”样本的平均数会大幅度地偏离总体平均数,从而使得估计出现较大的误差.能否利用总体中的一些额外信息对抽样方法进行改进呢?在对树人中学高一年级学生身高的调查中,采取简单随机抽样的方式抽取了50名学生。
1.抽样调查最核心的问题是什么?2.会不会出现样本中 50 个个体大部分来自高个子或矮个子的情形?3.为什么会出现这种“极端样本”?4.如何避免这种“极端样本”?样本代表性;会;抽样结果的随机性个体差异较大;分组抽样,减少组内差距在树人中学高一年级的 712 名学生中,男生有 326 名、女生有 386 名。
样本量在男生、女生中应如何分配?假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?80604020你认为哪些因素影响学生视力?抽样要考虑哪些因素?分层抽样每一层抽取的样本数=一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样(stratified random sampling),每一个子总体称为层.在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.×总样本量做一做1.下列问题中,最适合用分层抽样抽取样本的是( )A.从10名同学中抽取3人参加座谈会B.某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C.从1 000名工人中,抽取100名调查上班途中所用时间D .从生产流水线上,抽取样本检查产品质量【解析】A 中总体个体无明显差异且个数较少,适合用简单随机抽样;C 和D 中总体个体无明显差异且个数较多,适合用系统抽样;B 中总体个体差异明显,适合用分层抽样. 【答案】 B2.某公司生产三种型号的轿车,产量分别是1 200辆,6 000辆和2 000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取________辆、________辆、________辆. 【解析】 三种型号的轿车共9 200辆,抽取样本为46辆,则按469 200=1200的比例抽样,所以依次应抽取1 200×1200=6(辆),6 000×1200=30(辆),2 000×1200=10(辆).【答案】 6 30 10 1.分层抽样的步骤2.分层抽样的特点有哪些?【提示】 (1)分层抽样适用于已知总体是由差异明显的几部分组成的;(2)分成的各层互不交叉;(3)各层抽取的比例都等于样本容量在总体中的比例,即nN,其中n 为样本容量,N 为总体容量.3. 计算各层所抽取个体的个数时,若N i ·n N的值不是整数怎么办?【提示】 为获取各层的入样数目,需先正确计算出抽样比n N ,若N i ·nN 的值不是整数,可四舍五入取整,也可先将该层等可能地剔除多余的个体. 探究3 分层抽样公平吗?第1层的总体平均数和样本平均数为:第2层的总体平均数和样本平均数为:总体平均数和样本平均数为:由于用第一层的样本平均数 可以估计第1层的总体平均数 ,第二层的样本平均数 可以估计第2层的总体平均数,因此我们可以用估计总体平均数对各层样本平均数加权(层权)求和;分层随机抽样如何估计总体平均数12m...==X X X X M++11Mii XM =∑12...m x x x x m++==11mi i x m =∑12N ...==Y Y Y Y N++11Ni i Y N =∑12...m y y y y n++==11mi i y n =∑11M Niii i X YM X NY M NW X Y M NM N M N M N==++===+++++∑∑11m ni ii i x ymx ny m nx y m nm n m n m nω==++===+++++∑∑x X y Y Mx Ny M Nx y M N M N M N+=++++W 11M Ni ii i x yw m n==+=+∑∑m nx y m n m n=+++=m n m n M N M N +=+M m M N m n =++N n M N m n =++M Nx y M N M N=+++到男生女生平均身高分别为170.2cm和160.8cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1.3分层抽样
【创设情境】
假设我们有高中生300人,初中生200人,小学生100人,教育局为了了解我校中小学学生的近视情况,要从中抽取30名学生进行调查,你认为应当怎样抽取样本?
方案一:随机抽出30人。
方案二:从高中生、初中生、小学生中各抽取10人。
以上两种抽样方案你认为合理吗?样本能很好的体现总体的特征吗?
问题:究竟应当怎么抽取才合理?
【学习目标】
1、知识与技能:
(1)正确理解分层抽样的概念;
(2)掌握分层抽样的一般步骤;
(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。
2、过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用
数学知识解决实际问题的方法。
3、情感态度与价值观:通过对统计学知识的研究,感知数学知识中“估
计
与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与
价值观。
4、重点与难点:正确理解分层抽样的定义,灵活应用分层抽样抽取样
本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。
【学习重点】正确理解分层抽样的定义,灵活应用分层抽样抽取样本【学习难点】恰当的选择三种抽样方法解决现实生活中的抽样问题。
【自学提纲】阅读课本P60-61,并完成以下填空:
1.一般地,在抽样时,将总体分成,然后按照一定的,从各层独立的抽取一定数量的个体,将各层取出的个体,这种抽样称为分层抽样。
2. 分层抽样时,每一个个体被抽到的概率都是
的,分层抽样适用于;在每一层抽
样时,采用的抽样方法可以是。
3. 分层抽样的步骤:
第一步:将分成互不相交的层;
第二步:根据总体中的个体数N和样本容量n,计算抽样比
k= ;
第三步:确定第i 层应该抽取个体数目n i.
第四步:在各层中,按步骤 3 中确定的数目在各层中随机抽取个体,合在一起得到一个容量为n的样本。
【合作探究】
1.某市区的4个区中共有2000 名学生,且4个区的学生人数之比为3 :
2.8 :2.2 :2,现要用分层抽样的方法从所有学生中抽取一个容量
为200 的样本,那么在这 4 个区中分别应抽多少名学生?
2某政府机关在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人。
上级机关为了了解他们对政府机构改革的意见,要
从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实
施抽取。
【堂清练习】
一、必做题
1、某校有教职工240 人,其中教师160 人,行政人员48 人,后勤人员32 人。
为了了解教职工的收入情况,需要从中抽取一个容量为30 的样本,以下抽样方法中依照随机抽样、系统抽样、分层抽样的顺序是()
方法一:将240 人从1~240 编号,然后制出有编号1~240 的240 个形状、大小相同的号签,并将号签放入同一个箱子里进行均匀搅
拌,然后从中抽取30 个号签,编号和号签相同的30 个人被选出。
方法二:将240 个人分成30 组,每组8 人,并将每组8 人按照1~8 编号,在第一组采用抽签法抽出K 号(1≤K≤8),则其余各组K 号也被抽到,30 个人被选出。
方法三:按照30:240=1:8 的比例,从教师中抽出20 人,从行政人员中抽出6 人,从后勤人员抽出4 人,(从各类人员中抽取所需人员时均采用随机数法)可抽到30 人。
A.方法一、方法二、方法三B.方法二、方法一、方法三C.方法二、方法一、方法三D.方法三、方法一、方法二2.某公司在甲、乙、丙、丁四个地区分别有150 个、120 个、180 个、150 个销售点.公司为了调查产品销售情况,需从这600 个销售点中抽取一个容量为100 的样本,记这项调查为①;在丙地区有20个特大型销售点,要从中抽取7 个调查其销售收入和售后服务等情况,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次是( )
A.分层抽样法,系统抽样法
B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法
D.简单随机抽样法,分层抽样法3.某中学高一年级有x个学生,高二年级有900 个学生,高三年级有y 个学生,采用分层抽样抽取一个容量为370 人的样本,高一年级抽取120 人,高三年级抽取100 人,则全校高中部共有多少学生?
4.围棋队有男队员36 人,女队员24 人,现用分层抽样的方法选出20 人组成出访代表团,则男、女队员分别应选____________人和
____________人。
二、挑战题5
【当堂总结】。